تأثیر شدت نور بر خصوصیات مورفو-فیزیولوژیک و گل‌دهی جعفری آفریقایی و فرانسوی در کشت دیرهنگام

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه لرستان

چکیده

گل جعفری Tagetes spp. یک گیاه زینتی مهم در فضای سبز شهری است و همانند سایر گیاهان زینتی جهت رشد و گل‌دهی نیازمند شدت نور مناسب می‏باشد. هدف از این تحقیق بررسی تأثیر شدت‏های نور مختلف بر رشد و گل‌دهی دو گونه‏ی گل جعفری در کشت دیرهنگام بود. این آزمایش به‏صورت کرت خرده شده در قالب طرح کاملاً تصادفی، با سه تکرار انجام شد. شدت نور با سه سطح (1800، 1200 و 600 میکرومول بر مترمربع در ثانیه) به‌عنوان عامل اصلی و دو گونه گل جعفری آفریقایی و فرانسوی، به‌عنوان عامل فرعی در نظر گرفته شد. نتایج تجزیه واریانس داده‎ها نشان داد که اثر شدت نور بر صفات مورد مطالعه به‌جز قطر دمگل و محتوای نسبی آب تأثیر معنی‏داری داشت. مقایسه میانگین داده‎ها نشان داد واکنش گونه‌های مختلف گل جعفری نسبت به شرایط نوری متفاوت است. گونه آفریقایی در شدت نور زیاد (1800 میکرومول بر مترمربع در ثانیه) از بین رفت که نشان‌دهنده حساسیت بیشتر این گونه به کشت دیرهنگام است. با آن‌که شدت نور زیاد بر رشد و گل‌دهی دو گونه‏ گل جعفری اثرات نامطلوبی داشت اما گونه فرانسوی در تمامی سطوح شدت نور توانایی رشد داشته و بنابراین قابل توصیه در کشت دیرهنگام است. گونه آفریقایی در شدت نور 600 میکرومول بر مترمربع در ثانیه، بهترین رشد و گل‌دهی را در مقایسه با شدت نورهای دیگر نشان داد، لذا در کشت دیرهنگام در سایه درختان و هرجایی که سایه‏دهی مطلوبی وجود داشته باشد، قابل کشت و توصیه می‏باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Light Intensity on Morpho-Physiological Traits and Flowering of Tagetes patula and T. erecta under Late Season Planting Conditions

نویسندگان [English]

  • Mehri Mahdavi-Fard
  • Abdolhossein Rezaei Nejad
  • sadegh Mousavi-Frad
Lorestan University
چکیده [English]

Background and Objectives: Marigold species(Tagetes spp.) are ornamental plants which belong to Asteraceaefamily and their geographical dispersal occur mainly in temperate regions. Climate conditions, soil nutritional properties and water are considered as three important factors for plant growth. The majority of these plants are cultivated as bedding plant, flowerbed edging and mass planting from January through May in spring and early summer. During this period, plants are exposed to a wide range of temperature and light conditions. Light is an absolute requirement for plant growth and development. However, different plants have optimum requirements and both deficient and excessive light intensities are injurious. The aim of this study was to investigate the effect of different light intensity on the growth and flowering of two species of the Marigold under the late season planting dates, conditions in which young plants have to grow under high light intensity.
Material and Methods: In order to evaluate the effect of light intensity on the growth and flowering of two species of marigold (Tagetes erectaandTagetes patula), an experiment was conducted at the research station of Lorestan University (Khorramabad, Iran) in 2016. The experimental design was a split plot based on a completely randomized design with three replications. The treatments were consisted of three light intensity levels (600, 1200 and 1800 μmol m-2 s-1) as main factor and two species of marigold as a sub-plot factor. F1 seeds were growninto the pots containing equal amount of soil, sand and manure. Different levels of light intensities (1200 and 600 μmol m-2 s-1) were achieved by shading with one or two thin layers of green screen (Saran), respectively. Control plants were grown under natural light condition (no shading) with light intensity of about 1800 μmol m-2 s-1. The shading was applied at the two leaf stage until the end of the experiment. Plant height, stem diameter, numbers of axillary shoots, root length, internode length, leaf number, flower diameter, flower vase life, peduncle diameter, root, shoot and total dry and fresh weights, relative water content, chlorophyll and carotenoid content were measured at the flowering stage.
Results: The result of the present study showed that the effects of light intensity, species and their interaction effects were significant for plant height, leaf number, root length, flower diameter, leaf fresh weight, flower fresh weight, total fresh weight, leaf dry weight, stem dry weight, root dry weight, flower dry weight, chlorophyll a, carotenoids and total chlorophyll.The main effects of light intensity and species had also significant effects on stem diameter, flower vase life, stem fresh weight, root fresh weight, total dry weight and chlorophyll b. The highest mean of the most traits was found in plants grown under 600 μmol m-2 s-1, followed by that in 1200 μmol m-2 s-1. The mean comparison revealed that with increasing light intensity, plant height decreased in both cultivars. With decreasing light intensity, flower fresh and dry weight increased in T. erecta, while no differences were found in those of T. patula. The highest flower fresh and dry weight was found in T. erecta plants grown under 600 μmol m-2 s-1.In the present study, high light intensity had a detrimental effect on T.erecta as all plants died under the 1800 μmol m-2 s-1 level. However, under 600 or 1200 μmol m-2 s-1T. erecta performed much better than T. patulain most studied traits.
Discussions: The obtained results showed that by decreasing light intensity, plant height, internode length, stem diameter, leaf number, root length, number of axillary shoots, flower vase life and flower diameter increased which revealed that marigold is a sensitive plant to light intensity in late planting date, and so suitable planting date is very important for good performance of this plant. The responses of various species of marigold were different to light intensity and also toplanting date. Although the mean of most traits in T. erectawas higher compared to T. patula, T. erecta was more sensitive to light intensity compared to T. patulasince high light intensity could kill the T. erecta. Considering all the investigated traits, there is a possibility that high light intensity can affect marigold growth and development through oxidative stress. The results of present study suggest that, in late season planting conditions, T. patula and T. erectaare recommended for sunny and shaded area, respectively.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Flower vase life
  • Survival
  • Tagetes patula
1. Adams P., Nelson D.E., Yamada S., Chmara W., Jensen R.G., Bohnert H.J. and Griffiths H. 1998. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytologist, 138(2): 171-190.‏
2. Bertamini M., Muthuchelian K., Rubinigg M., Zorer R., Velasco R. and Nedunchezhian N. 2006. Low-night temperature increased the photo inhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environmental and Experimental Botany, 57(1): 25-31.‏
3. Boyer J.S. 1982. Plant productivity and environment. Science, 218 (4571): 443-448.‏
4. Cavagnaro J.B. and Trione S.O. 2007. Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. Journal of Arid Environments, 68(3): 337-347.
5. Cermeno P., Sotomayor J.A., Serrano Z. and Escobar A.I. 2001. The effects of solar radiation on Dendranthema. Acta Hortrticulturae, 559: 339–344.
6. Dai Y., Shen Z., Liu Y., Wang L., Hannaway D. and Lu H. 2009. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2): 177-182.‏
7. Dolatkhahi A., Matloobi M., Motallebiazar A. and Vahdati N. 2013a. Shading impact on qualitative characteristics and chlorophyll content of cut rose (Rosa hybrid cv. Avalanche). Journal of Ornamental Plants, 3(4): 215-220.‏
8. Dolatkhahi A., Mtluby M. and Mtlbyazr A. 2013b. Responses of arching and traditional training systems to shading in cut roses (Rosa hybrida cv. Avalanche). Journal of Science and Technolog of Greenhouse Culture, 5(18):115-121. (In Persian)
9. Funk V.A., Chan R. and Holland A. 2007. Cymbonotus (Compositae: Arctotideae, Arctotidinae): an endemic Australian genus embedded in a southern African clade. Botanical Journal of the Linnean Society, 153: 1-8.
10. Ganelevin R. and Zieslin N. 2000. Effects of flower bud shading on growth and development of rose flowers. In III International Symposium on Rose Research and Cultivation, 547: 403-412.‏
11. Ghasemi Ghasareh M. and Kafi M. 2009. Scientific and practical flowering. Razavi Publications (1): Pp313. (In Persian)
12. Hamerlynck E.P., Tuba Z., Csintalan Z., Nagy Z., Henebry G. and Goodin D. 2000. Diurnal variation in photochemical dynamics and surface reflectance of the desiccation-tolerant moss, Tortula ruralis. Plant Ecology, 151(1): 55-63.‏
13. Hatamian M., Arab M. and Roozban M. 2014a. Photosynthetic and non-photosynthetic pigments of two rose cultivars under different light intensities. Journal of Crops Improvement, 16 (2): 259-270. (In Persian)
14. Hatamian M., Arab M., Roozban M. and Salehi H. 2014b. Evaluation of growth and developmental characteristics of two rose cultivars as influenced by different levels of shading. Iranian Journal of Horticultural Science and Technology, 15(3): 331-344. )In Persian(
15. Hlatshwayo M.S. and Wahome P.K. 2010. Effects of shading on growth, flowering and cut flower quality in carnation (Dianthus caryophyllus). Journal of Agriculture and Social Sciences, 6(2): 34-38.‏
16. Kaya M.D., Okçu G., Atak M., Çıkılı Y. and Kolsarıcı O. 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24(4): 291-295.‏
17. Kotilainen M., Helariutta Y. and Mehto M. 1999. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. The Plant Cell, 11(6): 1093-1104.
18. Lichtenthaler H.K. 1987. Chlorophylls and cartenoides: pigments of hotosynthetice biomembranes. Method in Enzymol, 148: 350-382.
19. Lorrain S., Allen T., Duek P.D., Whitelam G.C. and Fankhauser C. 2008. Phytochrome‐mediated inhibition of shade avoidance involves degradation of growth‐promoting bHLH transcription factors. The Plant Journal, 53(2): 312-323.‏
20. Meng Q. and Runkle E.S. 2017. Moderate-intensity blue radiation can regulate flowering, but not extension growth, of several photoperiodic ornamental crops. Environmental and Experimental Botany, 134: 12-20.
21. Moe R. and Kristoffersen T. 1968. The effect of temperature and light on growth and flowering of Rosa 'Baccara' in greenhouses. In Symposium on Flower Regulation in Florist Crops, August. 14: 157-166.
22. Pires M.V., Almeida A.A., Figueiredo A.L., Gomes F.P. and Souza M.M. 2011. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica, 49(4): 593-602.‏
23. Priyanka D., Shalini T. and Navneet V.K. 2013. A brief study on marigold (Tagetes species). A review. International Research Journal of Pharmacy, 4(1): 43-48.‏
24. Rhie Y.H., Lee S.Y., Jung H.H. and Kim K.S. 2014. Light intensity influences photosynthesis and crop characteristics of (Jeffersonia dubia). Horticultural Science and Biotechnology, 32(5):584-589.
25. Ritchie S.W. and Hanson A.D. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30: 105-111
26. Romagnoli C., Bruni R., Andreotti E., Rai M.K., Vicentini C.B. and Mares D. 2005. Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L. Protoplasma, 225(1-2): 57-65.‏
27. Romagnoli C., Mares D., Fasulo M.P. and Bruni A. 1994. Antifungal effects of α‐terthienyl from Tagetes patula on five dermatophytes. Phytotherapy Research, 8(6): 332-336.‏
28. Sairam R.K. and Srivastava G.C. 2001. Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1): 63-70.‏
29. Shao Q., Wang H., Guo H., Zhou A., Huang Y., Sun Y. and Li M. 2014. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. Plos One, 9(2): e85996.
30. Song R., Kelman D., Johns K.L. and Wright A.D. 2012. Correlation between leaf age, shade levels and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chemistry, 133(3): 707-714.‏
31. Tian Z., Wang F., Zhang W., Liu C. and Zhao X. 2012. Antioxidant mechanism and lipid peroxidation patterns in leaves and petals of marigold in response to drought stress. Horticulture, Environment and Biotechnology, 53(3): 183-192.‏
32. Villegas E., Perez M. and Lao M.T. 2005. Influence of lighting levels by shading cloths on Cyclamen persicum quality. In V International Symposium on Artificial Lighting in Horticulture, 711: 145-150.‏
33. Wittmann C., Aschan G. and Pfanz H. 2001. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic and Applied Ecology, 2(2): 145-154.‏
34. Zhang B.B., Jiang W.B., Weng M.L. and Han J. 2009. Research progress on photosynthetic characteristics of horticulture and landscape tree species under shading condition. Nonwood Forest Research, 27(3): 115-119.‏
35. Zhang S., Ma K. and Chen L. 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environmental and Experimental Botany, 49(2): 121-133.‏
36. Zhao D., Hao Z. and Tao J. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiology and Biochemistry, 61: 187-196.
37. Zieslin N. and Moe R. 1985. Rosa. p. 280-287. In: A.H. Halevy, (ed.). Handbook of Flowering. CRC Press, Boca Raton, FL. 723 p.
38. Zieslin N. and Mor Y. 1990. Light on roses. A review. Scientia Horticalturae, 43: 1-14.
39. Zieslin N. and Tsujita M.J. 1990. Response of miniature rose to supplementary illumination. II. Effect of stage of plant development and cold storage. Scientia. Horticalturae, 42: 123-131.