بررسی تأثیر محیط کشت‌ها و تنظیم کننده‌های رشد گیاهی بر کشت تک گره گیاه پپینو (Solanum muricatum Aiton) در شرایط کشت بافت

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 جهاد دانشگاهی خراسان رضوی

چکیده

پپینو یک سبزی‌ میوه‌ای متعلق به خانواده سولاناسه بوده که مشکل اساسی در توسعه‌ی کشت این گیاه تکثیر آن می‌باشد که از طریق بذر موفقیت اندکی دارد. از این‌رو این پژوهش با هدف تکثیر انبوه از طریق کشت بافت انجام گردید. به‌منظور دستیابی به بهترین نوع محیط کشت و ترکیب تنظیم کننده‌های رشد گیاهی از ریزنمونه تک گره پپینو استفاده گردید. این تحقیق در قالب سه آزمایش جداگانه با استفاده از چهار نوع محیط کشت (MS، ½ MS، SH و B5)، دو نوع سیتوکنین (بنزیل آدنین (BA) و کینتین (Kin)) و دو نوع اکسین (ایندول بوتریک اسید (IBA) و نفتالین استیک اسید (NAA)) برای تعیین بهترین محیط کشت و دستیابی به ترکیب مناسبی از تنظیم کننده‌های رشد گیاهی برای پرآوری شاخساره و ریشه‌زایی انجام شد. نتایج نشان داد که بهترین محیط کشت برای ریزازدیادی ریزنمونه تک گره پپینو با توجه به تعداد شاخساره، طول شاخساره، تعداد ریشه، طول ریشه، تعداد برگ و طول برگ محیط کشت پایه MS بود. در آزمایش پرآوری شاخه، بیش‌ترین تعداد شاخساره، تعداد برگ، رنگ شاخساره و کیفیت شاخساره القا شده در اثر کاربرد محیط کشت MS غنی شده با دو میلی‌گرم در لیتر BA به‌همراه یک میلی‌گرم در لیتر Kin به‌دست آمد. همچنین بیش‌ترین میزان طول شاخساره و طول برگ به‌ترتیب با کاربرد محیط کشت MS غنی شده با یک میلی‌گرم در لیتر BA همراه با دو میلی‌گرم در لیتر Kin و تیمار یک میلی‌گرم در لیتر BA همراه با یک میلی‌گرم در لیتر Kin حاصل شد. در آزمایش ریشه‌زایی، بیش‌ترین میانگین تعداد ریشه و کیفیت ریشه با استفاده از IBA با غلظت 6/0 میلی‌گرم در لیتر به‌دست آمد، در حالی که بیش‌ترین میانگین طول ریشه با کاربرد IBA با غلظت 3/0 میلی‌گرم در لیتر مشاهده شد. در مجموع بهترین نتایج با محیط کشت MS، غلظت دو میلی‌گرم در لیتر BA همراه با یک میلی‌گرم در لیتر Kin جهت پرآوری و همچنین غلظت 6/0 میلی‌گرم در لیتر IBA جهت ریشه‌زایی ریزنمونه پپینو به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Medium and Plant Growth Regulators on Micropropagation of Pepino (Solanum muricatum Aiton) in vitro Condition

نویسندگان [English]

  • maedeh aghdaei 1
  • S.H. Nemati 1
  • L. Samiei 1
  • A. Sharifi 2
1 Ferdowsi university
2 Iranian Academic Center for Education, Culture and Research, Branch of Mashhad, Iran
چکیده [English]

Introduction: Pepino (Solanum muricatum Aiton) is a diploid herbaceous plant belongs to the Solanaceae family, which is growing in subtropical zone, originates from Andes in South America. It is commercially grown for its fruit, which is appreciated not only for food but also for its appearance, in South American countries, including Bolivia, Colombia, Ecuador and Peru, as well as in countries such as New Zealand and Australia. Pepino is propagated by seed, cutting, and tissue culture methods. Most pepino cultivars are sexually fertile and produce viable seeds, but their seeds have poor germination and high level of heterozygosis causing to highly variable plants. Both mentioned negative aspects have limited the mass production of this plant through seed. In this case, stem cutting is used as the most common way of propagating pepino led to transmission of viral diseases and increasing propagation costs as two main limiting factors of pepino propagation. So, micropropagation systems are a promising tool to produce disease-free clonal plant material with low costs. Therefore, the present study was aimed to assess the effect of different media and plant growth regulators on micropropagation traits of pepino.
Materials and Methods: Three separate experiments were carried out in institute of plant sciences of Ferdowsi University of Mashhad in 2016. Pepino seeds were bought from company of Plant World Seed, UK, were cultivated on MS medium. Grown plants were used as source of providing explants. Four mediums, including MS, ½ MS, SH and B5 were used to determine the best culture medium for shoot regeneration of pepino using single node explant. A factorial experiment was conducted based on a completely randomized design. Some growth properties such as number of shoots, shoot length, number of roots, root length, leaf number and leaf length were evaluated after two and four weeks. In proliferation experiment, MS medium was compared with MS supplemented with different concentrations of BA (0.5, 1 and 2 mg L-1) and Kin (0.5, 1 and 2 mg L-1) applied as combined treatments, and also BA used alone at concentrations of 2, 4 and 6 mg L-1 that was conducted based on a completely randomized design. For rooting of explants, an experiment was conducted based on a completely randomized design containing of two concentrations of IBA (at 0.3 and 0.6 mg L-1) and three concentrations of NAA (at 0.3, 0.6 and 0.9 mg L-1) in MS medium. Some growth properties including root number and length, root density and root quality were evaluated after four weeks
Results and Discussion: Results indicated that micropropagation rate of pepino was affected by culture medium type. The highest shoot length, number of root, root length and leaf number were obtained in MS medium, although statistically there was no significant difference between MS and ½ MS media. The highest number of shoots and leaf length were observed in MS medium, which led to a significant difference with other media (½ MS, SH and B5). Overall, Based on obtained results MS medium was the best culture medium for micropropagation of pepino using single node. In the proliferation experiment, the highest shoot and leaf number and plant color were obtained with using 2 mg L-1 BA + 1 mg L-1 Kin, whereas the highest shoot length and leaf length were observed in the 1 mg L-1 BA + 2 mg L-1 Kin and 1 mg L-1 BA+1 mg L-1 Kin treatments, respectively. Increasing in concentration of BA up to 2 mg L-1 in combination with Kin had a positive effect on shoot proliferation, while applying BA at concentration 2, 4 and 6 mg L-1 alone led to decrease in proliferation. Results obtained from rooting experiment showed that the highest root number, root density and root quality were obtained using IBA at the concentration of 0.6 mg L-1, whereas the highest root length was observed by applying IBA at concentration of 0.3 mg L-1, which led to a significant difference with other treatments. Furthermore, results indicated that the effect of IBA on rooting of pepino microshoots was more than NAA.
Conclusion: Generally, the best results were obtained by MS medium, 2 mg L-1 BA with 1 mg L-1 Kin for shoot proliferation, and IBA at concentration of 0.6 mg L-1 for the rooting of pepino nodal segments.

کلیدواژه‌ها [English]

  • BA
  • IBA
  • Proliferation
  • Rooting
  • Tissue culture
1- Ahmed M.B., Salahin M., Karim R., Razvy M.A., Hannan M.M., Sultana R., Hossain M., and Islam R. 2007. An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. American-Eurasian Journal of Scientific Research 2: 121-125.
2- Atkinson R.G., and Gardner R.C. 1991. Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants. Plant Cell Reports 10: 208-212.
3- Bermejo J.E.H., and Leon J. 1994. Neglected crops: 1492 from a different perspective (No. 26). Food and Agriculture Org.
4- Blakesley D., and Chaldecott M.A. 1997. The role of endogenous auxin in root initiation. Plant Growth Regulation 13: 77-84.
5- Blanca J.M., Prohens J., Anderson G.J., Zuriaga E., Cañizares J., and Nuez F. 2007. AFLP and DNA sequence variation in an Andean domesticate, pepino (Solanum muricatum, Solanaceae): implications for evolution and domestication. American Journal of Botany 94: 1219-1229.
6- Cavusoglu A., and Sulusoglu M. 2013. In vitro propagation and acclimatization of pepino (Solanum muricatum). Journal of Food Agriculture Environment 11:410-415.
7- Contreras C., Gonzalez-Agüero M., and Defilippi B.G. 2016. A review of pepino (Solanum muricatum Aiton) fruit: a quality perspective. HortScience 51: 1127-1133.
8- Devi C.S., and Srinivasan V.M. 2008. In vitro propagation of Gymnema sylvestre. Asian Journal of Plant Sciences 7: 660-665.
9- Emarah 2008. Factors affecting propagation of strawberry (Fragaria spp.) through tissue cultures. International Journal of Product Development 13: 191-212.
10- Gamburg K.Z., and Semenova L.A. 1977. Clonal propagation, flowering and fruiting of tomato in vitro. Acta Horticulture 447: 147-148.
11- Hadayat M., and Khoushkhoui M. 2006. Effects of culture media and growth regulators on micropropagation of pyrethrum [Tanacetum cinerariaefolium (Trevir) Schultz–Bip.]. Iranian Journal of Horticultural Science and Technology, 4: 171-182. (In Persian).
12- Hrbans L., Hankins A., Mebrahtu T., Mullins J., and Rangappa M. 1996. Alternative crops research in Virginia, Progress in new crops. ASHS press, P: 87-96.
13- Jordan M., Obando M., Iturriaga L., Goreux A., and Velozo J. 1993. Organogenesis and regeneration of some Andean fruit species. Acta Horticulturae 336: 279-283.
14- Kojori F., Kiani G., Nematzadeh G.A., and Ghasemi Y. 2015. Effects of different growth regulators on in vitro direct shoot regeneration of strawberry cv. diamante (Fragaria x ananassa Duch.). Journal of Crop Breeding 7: 68-75.
15- Mohamed M.H., and Alsadon A.A. 2011. Effect of vessel type and growth regulators on micropropagation of Capsicum annuum. Biologia Plantarum, 55, p. 370.
16- Mohan L., Paranidharan V., and Murugesan R. 2000. New records - on pepino (Solanum muricatum). Indian Phytopathology 53: 495-497.
17- National Research Council. 1989. Lost crops of the incas: little-known plants of the Andes with promise for worldwide cultivation. Washington, DC: The National Academies Press.
18- Nordine A., Bousta D., El Khanchoufi A., and El Meskaoui A. 2013. An efficient and rapid in vitro propagation system of Thymus hyemalis Lange, a wild medicinal and aromatic plant of Mediterranean region. International Journal of Pharma Bioscience and Technology 1: 118-129.
19- Nemati H., and Tehranifar A. 2007. Investigation of sexual and asexual propagation of a new vegetable called pepino in Iran (Solanum muricatum, Atio, pepino). Mashhad, Journal of Agricultural Science and Technology 21: 3-9. (In Persian)
20- O'Riordain F. 1987. The effects of benzyladenine, indole butyric acid and gibberellic acid on the micropropagation of the strawberry cultivar Clonard. In Vitro Culture of Strawberry Plants, pp. 47-53.
21- Otroshi M., and Karimi Dehkordi R. 2014. Effect of different concentrations of plant growth regulators on In vitro micropropagation of cherry tomato. Journal of Science and Technology of Greenhouse Culture 5: 127-134.
22- Otroshy M., Moradi K., and Khayam Nekouei M. 2010. Micropropagation of Capsicum annuum L. in vitro. Iranian Journal of Plant Biology 2: 1-12.
23- Padmapriya H., Karthikeyan A.V.P., Jahir Hussain G., Karthi C., and Velayutham P. 2011. An efficient protocol for in vitro propagation of Solanum nigrum L. from nodal explants. Journal of Agricultural Technology 7:1063-1073.
24- Pan R., and Zhao Z. 1994. Synergistic effects of plant growth retardants and IBA on the formation ofadventitious roots in hypocotyl cuttings of mungbean. Plant Growth Regulation 14: 15-19.
25- Pauli R. 1988. Micropropagation of pepinos (SolanulIl lIluricalulIl Ait.). Acta Horticulturae 227: 387-389.
26- Pierik R.L.M. 1991. Horticulture new technologies and applications proceeding of the international seminar on new frontiers in horticulture. Current Plant Science and Biotechnology in Agriculture 12: 141-53.
27- Pierik R.L.M. 1997. Micropropagation of Solanum muricatum Ait. (Pepino). In High-Tech and Micropropagation V (pp. 160-172). Springer, Berlin, Heidelberg.‏ In Vitro Culture of Higher Plants. Springer Science and Business Media.
28- Prohens J., Rodriguez-Burruezo A., and Nuez F. 2005. Utilization of genetic resources for the introduction and adaptation of exotic vegetable crops: The case of pepino (Solanum muricatum, Ait.). Euphytica 146: 133-142.
29- Prohens J., and Nuez F. 1999. Strategies for breeding a new greenhouse crop, the pepino (Solanum muricatum Aiton). Canadian Journal of Plant Science 79: 269-275.
30- Prohens J., Ruiz J.J., and Nuez F. 1996. The pepino (Solanum muricatum, Solanaceae): A “new” crop with a history. Economic Botany 50: 355-368.
31- Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P., and Scheres B. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.
32- Sakamoto K., and Taguchi T. 1994. Somatic hybridization between tomato (Lycopersicon esculentum) and pepino (Solanum muricatum). In Somatic Hybridization in Crop Improvement I (pp. 244-254). Springer, Berlin, Heidelberg.
33- Sakila S., Ahmed M.B., Roy U.K., Biswas M.K., Karim R., Razvy M.A., Hossain M., Islam R., and Hoque A. 2007. Micropropagation of strawberry (Fragaria x ananassa Duch.) a newly introduced crop in Bangladesh. American-Eurasian Journal of Scientific Research 2: 151-154.
34- Sakomoto K., and Taguchi T. 1991. Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. Theoretical and Applied Genetics 81: 509-513.
35- Sanatombi K., and Sharma G.J. 2007. Micropropagation of Capsicum annuum L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 35, p. 57.
36- Siddique I., and Anis M. 2008. An improved plant regeneration system and ex vitro acclimatization of Ocimum basilicum L. Acta Physiologiae Plantarum 30: 493-499.
37- Szyndel M.S., Kowalczyk K., and Pawelczak A. 2008. Elimination of tomato mosaic virus (ToMV) from pepino (Solanum muricatum) plants. Phytopathologia Polonica 49: 57-63.
38- Tilkat E., Onay A., Yildirim H., and Cetin Ozen H. 2008. Micropropagation of mature male pistachio Pistacia vera L. The Journal of Horticultural Science and Biotechnology 83: 328-333.
39- Trewavas A.J., and Cleland R.E. 1983. Is plant development regulated by changes in the concentration of growth substances or by changes in the sensitivity to growth substances? Trends in Biochemical Sciences 8: 354-357.
40- Yildiz T., and Kalkan F. 2014. Some color and physical properties of pepino (Solanum Muricatum Aiton) fruit. Bulgarian Journal of Agricultural Science 20: 988-992.
41- Zarei M., Garoosi Gh., Nezami E., Hosseini R., and Ahmadi J. 2013. The effect of medium, carbon source, light spectrum and style treatment of auxin on shoot and root regeneration of Gisela 6 root stock. Journal of Cell and Tissue 4: 169-185.