با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

کشاورزی شهری به‌عنوان یکی از ویژگی­های اساسی برنامه‌ریزی شهری، به‌علت داشتن مزایای فرهنگی، اقتصادی و اجتماعی به افزایش کیفیت زندگی شهری کمک می‌کند. بااین‌حال، آلودگی به فلزات سنگین در شهرها موجب تجمع این فلزات در قسمت­های مختلف گیاهان کاشته شده و نیز خطر مصرف خوراکی آن‌ها را در فضای سبز شهری در پی خواهد داشت. این تحقیق به‌منظور ارزیابی میزان جذب عناصر سرب و کادمیوم و تأثیر آن روی برخی از خصوصیات فیزیولوژیکی و بیوشیمیایی گیاه نعنا فلفلی (Mentha piperita L.) در دو بوستان از فضای سبز شهری منطقه نُه مشهد (بوستان فاز چهار کلانتری و بوستان نسیم) اجرا گردید. این گیاه که به‌عنوان یک گیاه پوششی دارای رشد سریع است که علی‌رغم زیبایی در شکل برگ‌ها و ایجاد رایحه مطبوع برای مخاطبان بوستان‌ها، توانایی تولید محصول را نیز به‌صورت اقتصادی دارد، به‌عنوان گیاه هدف انتخاب شد. آزمایش به‌صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی در سه تکرار شکل گرفت. عامل اول مکان، که دو بوستان فاز چهار کلانتری (به‌عنوان منطقه با درجه آلودگی بالاتر) و نسیم (به‌عنوان منطقه با درجه آلودگی کم‌تر) با توجه به آنالیز خاک، در نظر گرفته شدند. عامل دوم نیز زمان‌ برداشت (15 خرداد، 15 تیر و 15 مرداد) در نظر گرفته شد. نتایج حاکی از آن بود که در بوستان فاز چهار، فعالیت آنزیم­های آنتی‌اکسیدانی آسکوربات پراکسیداز، کاتالاز و پراکسیداز بالاتر بود. از سوی دیگر، محتویات غلظت کلروفیل‌های a، b و کاروتنوئید و کلروفیل کل در بوستان نسیم بالاتر بود. علاوه‌براین، در بوستان فاز چهار نسبت به بوستان نسیم در زمان­ برداشت، محتوای فنل کل، فلاونوئید، پرولین، غلظت عناصر کادمیوم و سرب روند کاهشی داشت، امّا میزان این صفات در برداشت اول نسبت به برداشت­های بعدی بیشتر بود. درصد اسانس نیز با افزایش جذب عناصر سرب و کادمیوم در بوستان فاز چهار نسبت به بوستان نسیم روند افزایشی نشان داد. به­طور کلی، می­توان بیان داشت که آلودگی به فلزات سنگین سرب و کادمیوم در بوستان فاز چهار نسبت به بوستان نسیم بیشتر بود که خود عاملی در جهت کاهش خصوصیات رشدی گیاه نعنا فلفلی گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Biochemical and Physiological Responses of Peppermint (Mentha piperita L.) Plant to Heavy Metal Stress in Urban Areas

نویسندگان [English]

  • K. Poorhossein
  • B. Abedy
  • M. Shoor

Department of Horticultural Science and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Introduction
Urban agriculture, as one of the basic features of urban planning, helps to increase the quality of urban life due to its cultural, economic and social benefits. However, pollution with heavy metals in cities causes the accumulation of these metals in different parts of planted plants and also the risk of consuming them for food in urban green spaces.
 
Materials and Methods
This study was conducted to assess the amount of heavy metal absorption and its effect on some biochemical and physiological properties of peppermint plant (Mentha piperita L.), in Mashhad city in 2021.The experiment was carried out as a factorial based on randomized complete block design with three replications. The first factor (location) were phase 4 Park (with high degree of contamination) and Nasim Park (with low degree of contamination). The second factor was the times of harvest (June15, July15 and August 15). At the time of every harvest fully developed leaves were collected to evaluate the traits.
 
Results and Discussion
The results of analysis of variance indicated that the effect of location was significant on all traits except for the yield of essential oil. Also, the effect of harvest time was significant on all traits except for peroxidase activity and the yield of essential oil. However, the interaction of location and harvest was significant only on phenol, flavonoid, proline, cadmium and lead concentration. The results indicated that the ascorbate peroxidase, catalase and peroxidase activities were higher in phase 4 Park. Moreover, the highest activities of ascorbate peroxidase, catalase and peroxidase were recorded in phase 4 + first harvest. Heavy metals cause the production of reactive free radicals and also increase the activity of antioxidant enzymes. However, the chlorophyll a, b, carotenoid and total chlorophyll contents were higher in Nasim. Thus, the highest contents of Chla, Chlb, Chltotal and carotenoid were observed in Nasim + first harvest. The higher amount of chlorophyll and carotenoids in the first harvest is due to the optimal growth conditions such as day length and sunlight and ambient temperature. In addition, total phenol, flavonoid, proline, Cd and Pb elements indicated a reducing trend in phase 4 compared to Nasim Park in different harvest times, but the amount of these traits were higher in the first harvest than in the subsequent harvests. Increased amount of total phenol in the first harvest can be related to the high air temperature at the first harvest which caused stressful conditions in this stage. Proline production also increases under heavy metal stress to help protect the plant against toxicity. However, the percentage of essential oil showed an increasing trend with enhanced absorption of Pb and Cd in phase 4 compared to Nasim Park. The higher percentage of essential oil in phase 4 may be attributed to reduced leaf growth due to the higher presence of heavy metals in that area.
 
Conclusions
Overall, while the concentration of Pb exceeded the global standard level in both parks, contamination with Cd and Pb (especially Pb) was greater in phase 4 than in Nasim Park, contributing to reduced growth traits in peppermint plants. Regarding harvest times, the first harvest exhibited better growth characteristics and higher absorption of heavy metals due to the plant's greater vigor. In contrast, the third harvest showed lower growth characteristics and weaker absorption of Pb and Cd, likely due to the energy expended for regrowth.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Cadmium
  • Green space
  • Growth traits
  • Lead

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  • Aghaei, K., Bouryaei, M., & Zamani, A. (2021). Study of cadmium contamination and its effects on some physiological and nutritional characteristics of alfalfa plants. Environmental Sciences, 18(4), 109-124. (In Persian). https://doi.org/10.52547/envs.18.4.109
  • Amani Machiani, M., Javanmard, A., Ostadi, A., & Morshedloo, M.R. (2021). Evaluation of Essential Oil Yield and Ecological Indices in the Intercropping of thyme (Thymus vulgaris L.) and soybean (Glycine max L.) with Application of Arbuscular Mycorrhizal Fungus. Sustainable Agriculture and Production science, 31(3), 32-50. (In Persian). https://doi.org/10.22034/saps.2021.13687
  • Amani Machiani, M., Javanmard, A., Nasiri, Y., & Morshedloo, M. (2017). Advantage of peppermint (Mentha piperita ) and faba bean (Vicia faba L.) intercropping in different cropping patterns. Sustainable Agriculture and Production science, 27(3), 45-62. https://doaj.org/article/3a4de7de93124f1ba4125671d446ace3
  • Antisari, L.V., Orsini, F., Marchetti, L., Vianello, G., & Gianquinto, G. (2015). Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for Sustainable Development35, 1139–1147. https://doi.org/10.1007/s13593-015-0308-z
  • Arnon, D.I., (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in: (Beta vulgaris). Journal of Plant Physiology, 24, 1–15. https://doi.org/10.1104/pp.24.1.1
  • Azimychetabi, Z., Sabokdast Nodehi, M., Moghadam, T., & Motesharezadeh, B. (2021). Cadmium stress alters the essential oil composition and the expression of genes involved in their synthesis in peppermint (Mentha piperita). Industrial Crops and Products, 168(15), 113602. https://doi.org/10.1016/j.indcrop.2021.113602
  • Bates, L.S., Waldran, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water studies. Plant Soil, 39, 205–208. https://doi.org/10.1007/BF00018060
  • Biyok, B., Soltani, S., & Hashemi, A.S. (2022). Investigation of heavy metal (Pb+) effect in presence of (Ca2+) on photosynthetic pigments and antioxidant enzymes activity of Entromorpha sp. Journal of Plant Environmental Physiology, 68(4), 55-68. (in Persian). https://doi.org/10.30495/iper.2022.688799
  • Çatav, Ş.S., Genç, T.O., Oktay, M.K., & Küçükakyüz, K. (2020). Cadmium toxicity in wheat: Impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bulletin of Environmental Contamination and Toxicology104, 71–77. https://doi.org/10.1007/s00128-019-02745-4
  • Croteau, R., & Johnson, M.A. (1984). Biosynthesis of terpenoids in glandular trichomes. Chemistry of Plant Trichomes, 133-185. https://doi.org/10.1007/978-1-4899-5355-1_7
  • Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
  • Czepak, M.P. (1998). Produção de óleo bruto e mentol cristal-izável em oito freqüências de colheita da menta (Menta ar-vensis). Science Botucatu, 53-80. https://doi.org/10.11606/D.11.1995.tde-20231122-100730
  • De Pinto, M.C., & De Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55(408), 2559–2569. https://doi.org/10.1093/jxb/erh253
  • Dinu, C., Gheorghe, S., Tenea, A.G., Stoica, C., Vasile, G.G., Popescu, R.L., Serban, E.A., & Pascu, L.F. (2021). Toxic metals (As, Cd, Ni, Pb) impact in the most common medicinal plant (Mentha piperita). International Journal of Environmental Research and Public Health18, 3904. https://doi.org/10.3390/ijerph18083904
  • Dumont, S., & Rivoal, J. (2019). Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Frontiers in Plant Science10, 166. https://doi.org/10.3389/fpls.2019.00166
  • Gallego, S.M. & Benavides, M.P. (2019). Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants, 233–274. https://doi.org/10.1016/B978-0-12-814864-8.00010-3
  • Ebrahimpour, M., & Mushrifah I. (2008). Heavy metal concentrations (Cd, Cu and Pb) in five aquatic plant species in Tasik Chini, Malaysia. Journal of Environmental Geology, 54, 689–698. https://doi.org/10.1007/s00254-007-0838-z
  • EL-Leithy, A.S., EL-Hanafy, S.H., Khattab, M.E., Ahmed, S.S., & Ghafour, A. (2017). Effect of nitrogen fertilization rates, plant spacing and their interaction on essential oil percentage and total flavonoid content of summer savory (Satureja hortensis) plant. Egyptian Journal of Chemistry, 5(5), 805-816. https://doi.org/10.21608/ejchem.2017.1296.1074
  • Fallah, F., Soltaninejhad, M., & Taddayon, R. (2016). Effects of cattle manure, chemical fertilizers, and their combination on cadmium accumulation and growth of purslane (Portulaca eoleracea). Soil Research (Soil and Water Sciences), 30(4), 1-14. (In Persian). https://doi.org/10.22092/ijsr.2017.109259
  • Farsaraei, S., & Moghaddam, M. (2020). Morphophysiological and biochemical responce of basil cultivar Keshkeni luveluo under salinity stress and superabsorbent polymers application. Journal of Plant Research (Iranian Journal of Biology), 33(4), 982- 996. (In Persian). https://dor.isc.ac/dor/20.1001.1.23832592.1399.33.4.19.5
  • Gupta, A., Sharma, S., & Verma, N. (2019). Oxidative stress and antioxidant responses in peppermint plants exposed to heavy metals. Plant Physiology and Biochemistry, 25(2), 123-136.
  • Giviand Rad, M., Sadeghi, T., Larejani, K., & Hosseini, S. (2011). Determination of heavy metals of cadmium and lead in green straw cultivated in different lands of southern Tehran. Food Science and Nutrition, 8(2), 38-42. http://dx.doi.org/10.29252/arakmu.10.5.23
  • Ghasemi Pirbalouti, A., Samani, M.R., Hashemi, M., & Zeinali, H. (2014). Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis) under reduced irrigation. Plant Growth Regulation, 72(3), 289-301. https://doi.org/10.1007/s10725-013-9860-1
  • Gill, S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Ghlich, S., Zarrin Kamar, F., & Niknam, V. (2015). Lead accumulation and it's effects on peroxidase activity, phenolic and flavonoid compounds in seedlings of Medicago sativa L. Journal of Plant Research (Iran biology), 28(1), 164-174. (In Persian). https://dor.isc.ac/dor/20.1001.1.23832592.1394.28.1.15.0
  • Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, L., & Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences23, 5186. https://doi.org/10.3390/ijms23095186
  • He, Z., Shentu, J., Yang, X., Baligar, V.C., Zhang, T.Q., & Stoffella, P.J. (2015). Heavy Metal Contamination of soils: Sources, indicators and assessment. Journal of Environmental Indicators, 9, 17-18.
  • Heidary Monfared, S. (2011). Community garden heavy metal contamination study. Environment Canada, Ecology Action Centre, 4–20.
  • Hu, J.Z., Shi, G.X., Xu, Q.S., Wang, X., Yuan, Q.H., & Du, K.H. (2007). Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispusRussian Journal of Plant Physiology, 54, 414–419. https://doi.org/10.1134/S1021443707030181
  • Irfan, M., Ahmad, A., & Hayat, S. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 21(2), 125-131. https://doi.org/10.1016/j.sjbs.2013.08.001
  • Kavousi, H.R., & Barandeh, F. (2016). Effect of cadmium on photosynthetic pigments, proline and soluble proteins in lentil (Lens culinaris) seedlings. Plant Process and Function, 5(16), 117-132. (In Persian). http://dorl.net/dor/20.1001.1.23222727.1395.5.16.9.4
  • Khakpour, A., Zolfaghari, M., & Sorkheh, K. (2020). A study on some secondary metabolites of Glycyrrhiza glabra in autumn and spring conditions in Khuzestan province. Iranian Journal of Medicinal and Aromatic Plants, 35(6), 991-1000. (In Persian). https://doi.org/10.22092/ijmapr.2020.125165.2496
  • Kumar, N.J.I., Soni, H., Kumar, R.N., & Bhatt, I. (2009). Hyperaccumulation and mobility of heavy metals in vegetable crops in India. Journal of Agriculture and Environment10, 34–45. 
  • Korkina, L.G. (2007). Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cellular and Molecular Biology, 53, 15-25. http://dx.doi.org/10.3126/aej.v10i0.2128
  • La Greca, P., La Rosa, D., Martinico, F., & Privitera, R. (2011). Agricultural and green infrastructures: The role of non-urbanised areas for ecosustainable planning in a metropolitan region. Environmental Pollution, 159, 2193–2202. https://doi.org/10.1016/j.envpol.2010.11.017
  • Leake, J., Adam-Bradford, A., & Rigby, J. (2009). Health benefits of ‘grow your own’ food in urban areas: implications for contaminated land risk assessment and risk management? Environmental Health, 8, S6. https://doi.org/10.1186/1476-069X-8-S1-S6
  • Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanisms of stress survival.  Redox Signal,19, 998–1011. https://doi.org/10.1089/ars.2012.5074
  • Mandal, R., & Dutta, G. (2020). From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International, 1, 100058. https://doi.org/10.1016/j.sintl.2020.100058
  • Maleki, M., Ghorbanpour, M., & Kariman, K. (2017). Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene, 11, 247-254. https://doi.org/10.1016/j.plgene.2017.04.006
  • Merrikhpour, H., & Izadifar, S. (2016). Investigating the concentration of heavy elements in fennel plant under irrigation with water contaminated with lead and cadmium. National Conference of Aromatic Medicinal Plants and Spices, 1-5. (In Persian)
  • Mishra, B., Sangwan, R.S., Mishra, S., Jadaun, J.S., Sabir, F., & Sangwan, N.S. (2014). Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma, 251(5), 1031-1045. https://doi.org/10.1007/s00709-014-0613-4
  • Montaño López, F., & Biswas, A. (2021). Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Scientific Reports11, 11286. https://doi.org/10.1038/s41598-021-90368-3
  • McKay, D.L., & Bumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita). Phytotherapy Research, 20, 619-633. https://doi.org/10.1002/ptr.1936
  • Naeem, A., Saifullah, Rehman, M.Z., Akhtar, T., Yong, S.O., & Rengel, Z. (2016). Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Communications in Soil Science and Plant, 47(5), 554-562. https://doi.org/10.1080/00103624.2016.1141918
  • Nigam, N., Khare, P., Yadav, V., Mishra, D., Jain, S., Karak, T., Panja, S., & Tandon, S. (2019). Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicology and Environmental Safety, 172, 411-422. https://doi.org/10.1016/j.ecoenv.2019.02.006
  • Oancea, S., Foca, N., & Airinei, A. (2005). Effects of heavy metals on plant growth and photosynthetic activity. Analele Ştiinţifice ale Universităţii .AL. I. CUZA1 IAŞI, 107–110.
  • Osman, K.T. (2018). Polluted Soils. In: Management of Soil Problems. Springer, Cham. 333- 408. https://doi.org/10.1007/978-3-319-75527-4_12
  • Pahlavan Rad, M., Keykha, G., Dahmardeh, K. & Moghaddam, A. (2009). The effect of using different sources of green manure in rotation with wheat on soil properties and wheat yield. 11th Soil Science Congress of Iran, 11, 934-936. (In Persian)
  • Pliszko, A., Klimek, B., & Kostrakiewicz-Gierałt, K. (2020). Effect of shoot cutting on trace metal concentration in leaves and capitula of potential phytoaccumulator, invasive Erigeron annuus(Asteraceae). Bulletin of Environmental Contamination and Toxicology, 104, 668–672. https://doi.org/10.1007/s00128-020-02844-7
  • Rajput, V.D., Harish, Singh, R.K., Verma, K.K., Sharma, L., Quiroz-Figueroa, F.R., Meena, M., Gour, V.S., Minkina, T., Sushkova, S., & Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10, 267. https://doi.org/10.3390/biology10040267
  • Rizwan, M., Meunier, J.D., Davidian, J.C., Pokrovsky, O.S., Bovet, N., & Keller, C. (2016) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research International, 23, 1414–1427. https://doi.org/10.1007/s11356-015-5351-4
  • Sarwar, N., Saifullah, Malhi, S.S., Zia, M.H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of plant nutrients in minimizing cadmium accumulation by plant. Journal of the Science of Food and Agriculture, 90, 925-937. https://doi.org/10.1002/jsfa.3916
  • Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
  • Srinivas, N.D., Rashmi, K.R. & Raghavarao. K.S.M.S. (1999). Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry, 35, 43–48. https://doi.org/10.1016/S0032-9592(99)00030-8
  • Srivastava, N.K., & Luthra, R. (1994). Relationship between photosynthetic carbon metabolism and essential oil biogenesis in peppermint under Mn stress. Journal of Experimental Botany, 45, 1127-1132. https://doi.org/10.1093/jxb/45.8.1127
  • Singleton, U.L., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-posphotungustic acid reagent. American Journal of Enology and Viticulture, 16, 144‒158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Singleton, V.L., Orthofer, R., & Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
  • United Nations. (2018). Department of Economic and Social Afairs, P. D. World Urbanization Prospects: Te 2018 Revision. World Urbanization Prospects, the 2018 Revision. https://www.un.org/en/desa/2018-revision-world-urbanization-prospects
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid raintreated bean plants. Protective role of exogenous polyamines. Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Yamaguchi, K., Mori, H., & Nishimura, M. (1995). A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal leaf peroxisomal membranes in pumpkin. Plant Cell Physiology, 36, 1157–1162. https://doi.org/10.1093/oxfordjournals.pcp.a078862
  • Zaid, A., Mohammad, F., & Fariduddin, Q. (2020). Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis). Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology26, 25–39. https://doi.org/10.1007/s12298-019-00715-y
  • Zeinali, H., Hosseini, H., & Shirzadi, M.H. (2014). Effects of nitrogen fertilizer and harvest time on agronomy, essential oil and menthol of Mentha piperita Iranian Journal of Medicinal and Aromatic Plants, 30(3), 486-495. (In Persian). https://doi.org/10.22092/ijmapr.2014.7684
  • Zhang, H., Troise, A.D., Qi, Y., Wu, G., Zhang, H., & Fogliano, V. (2021). Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols. Food Chemistry, 349, 129018. https://doi.org/10.1016/j.foodchem.2021.129018
  • Zheljazkov, V.D., Craker, L.E., & Xing, B. (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint and basil. Environmental and Experimental Botany, 58, 9–16. https://doi.org/10.1016/j.envexpbot.2005.06.008
  • Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H., & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports11(1), 9913. https://doi.org/10.1038/s41598-021-89322-0
CAPTCHA Image