با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

هدف از این مطالعه، بررسی تأثیر محلول‎پاشی نانوذرات مس بر ویژگی‎های رشد و عملکرد گیاه تره ایرانی (Allium ampeloperasum subsp. Persicum) تحت شرایط تنش شوری بود. آزمایش به‌‎صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. فاکتور اول شامل محلول‌پاشی نانوذرات مس در سه سطح صفر (شاهد)، 150 و 300 میلی‎گرم بر لیتر و فاکتور دوم شامل تنش شوری در چهار سطح صفر (شاهد)، 50، 100 و 150 میلی‎مولار کلرید سدیم بود که به‌صورت آبیاری سه روز یک‌بار (در سطح 90 درصد ظرفیت زراعی) انجام شد. نتایج آزمایش نشان داد که افزایش تنش شوری موجب کاهش معنی‌داری در ارتفاع بوته، قطر ساقه و پیاز، تعداد برگ، حجم ریشه، وزن تر و خشک اندام هوایی، پیاز و ریشه، شاخص مقاومت به تنش، محتوای کلروفیل a، b و کل، کارتنوئید، شاخص ثبات کلروفیل و محتوای نسبی آب شد و از سوی دیگر، باعث افزایش قابل توجهی در طول ریشه، درصد ماده خشک، نشت الکترولیت، میزان مالون دی‌آلدئید و فعالیت آنزیم‌های آنتی‌‌اکسیدانی از جمله پراکسیداز و آسکوربات پراکسیداز در گیاه تره ایرانی شد. نتایج نشان داد که محلول‌پاشی نانوذرات مس اثرات تنش شوری را با افزایش فعالیت آنزیم‌های آنتی‌اکسیدانی و بهبود تعادل آبی تعدیل کرد. استفاده از هر دو غلظت نانوذرات مس باعث افزایش معنی‌داری در تمامی‏ ویژگی‌های مورد مطالعه نسبت به شاهد شد. به‌طور کلی، نتایج حاصل از این مطالعه نشان داد که تنش شوری در همه‏ سطوح دارای اثرات منفی بر رشد و عملکرد در تره ایرانی می‏باشد، درصورتی‌که کاربرد نانوذرات مس به‌ویژه در غلظت 150 میلی‎گرم بر لیتر با افزایش شاخص ثبات کلروفیل، بهبود روابط آبی گیاه و همچنین افزایش شاخص مقاومت گیاه به تنش منجر به افزایش قطر پیاز، وزن تر و خشک اندام هوایی و پیاز شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of the Foliar Application of Copper Nanoparticles on the Growth and Yield of Persian Leek (Allium ampeloprasum subsp. Persicum) under Salinity Stress

نویسندگان [English]

  • F. Shakarami 1
  • S. Mousavi-Fard 2
  • A. Rezaei Nejad 1
  • F. Beiranvand 1

1 Department of Horticultural Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Introduction
Salinity in water and soil stands as a crucial environmental factor that significantly hampers global agricultural production. Over recent decades, the escalating demand for irrigation in arid and semi-arid regions has intensified this issue, making it a major agricultural challenge. Salinity stress, characterized by reduced water absorption, heightened salt uptake (especially sodium, chlorine, and boron), and the generation of reactive oxygen species, induces oxidative stress in plants, severely impacting their growth and overall performance. To enhance plant tolerance to salinity stress, elicitors are employed as a short-term and viable solution to mitigate the adverse effects of stress. Copper, serving as a cofactor and essential element for numerous enzymes involved in photosynthesis and respiration processes, plays a crucial role in sustaining natural plant growth and metabolism. Copper ions function as cofactors in enzymes like superoxide dismutase (Cu/Zn SOD) and polyphenol oxidase, contributing to the removal of reactive oxygen species. However, the absence of this element in plants cultivated in alkaline and saline soils of arid and semi-arid regions can lead to nutritional disorders. In this context, copper nanoparticles emerge as a suitable alternative to chemical fertilizers due to their rapid and efficient effects. Their use not only mitigates the negative consequences of excessive fertilizer application but also decreases the frequency of applications. The Persian leek (Allium ampeloprasum subsp. Persicum) is a valuable edible-medicinal plant native to Iran, belonging to the Amaryllidaceae family. It holds significance in Iran as a key leafy vegetable, valued for its freshness and high processing potential among horticultural plants. Given the nutritional and medicinal importance of Persian leek and the prevalence of salinity stress, this study aims to explore the impact of copper nanoparticle spray in modifying the effects of salinity stress on the morphophysiological and biochemical characteristics of Persian leek.
 
Materials and Methods
A factorial experiment was conducted using a completely randomized design with three replications in the research greenhouses of Lorestan University's Faculty of Agriculture. The experimental conditions included daytime temperatures ranging from 20 to 28 °C, nighttime temperatures from 15 to 20 °C, relative humidity set at 60-70%, and a light intensity of 400-500 µmol.m-2.s-1. The first factor involved foliar spraying of copper nanoparticles at control levels (zero), 150, and 300 mg.l-1, while the second factor comprised salinity stress at control levels (zero), 50, 100, and 150 mM sodium chloride. F1 seeds were obtained from Pakan Bazr Company and planted in 1.5-liter pots, with each pot containing three plants. The copper nanoparticles were applied through foliar spraying twice on the shoot parts at the four-leaf and six-leaf stages. Salinity stress was introduced one week after the foliar application, implemented through irrigation once every three days at a level corresponding to 90% of the field capacity. The soil mixture comprised an equal ratio of agricultural soil, cow manure, and sand, maintaining a clay-sand loam texture. Following three months of applying salt stress, a comprehensive assessment of morphophysiological characteristics was carried out. This included the measurement of plant height, stem and bulb diameter, leaf count, fresh and dry weights of stem, root leaf, root volume and length, shoot/root ratio, dry matter (%), stress tolerance index, relative water content (RWC), electrolyte leakage, malondialdehyde content, photosynthetic pigments, chlorophyll stability index, as well as the activity of peroxidase and ascorbate peroxidase.
 
Results and Discussion
The results indicated that salinity stress had a detrimental impact on various aspects of plant growth, including a decrease in plant height, stem and bulb diameter, leaf number, and the fresh and dry weights of the stem, bulb, and root. Additionally, there was a reduction in root volume and length, along with decreased levels of photosynthetic pigments. The percentage of electrolyte leakage, malondialdehyde content, and the activity of antioxidant enzymes, namely peroxidase and ascorbate peroxidase, also increased, highlighting the adverse effects of salinity stress on plant development. The decline in plant growth can be attributed to multiple factors, including diminished cell division, ionic imbalance, reduced water absorption, impaired uptake of essential elements, and the impact of toxic ions, particularly sodium and chlorine. Other contributing factors include impaired absorption, regeneration, and metabolism of nitrogen and protein, as well as stomatal closure, collectively resulting in reduced photosynthetic efficiency. Salinity stress further leads to a reduction in soil water potential and an increase in the osmotic pressure of the soil solution. Consequently, the plant requires more energy to absorb water from the soil, leading to increased respiration and alterations in the hormonal balance of plant tissues, ultimately causing a decrease in growth and negative effects on the plant. The application of copper nanoparticles at both concentrations demonstrated positive effects on various growth components, including plant height, stem and bulb diameter, leaf count, and the fresh and dry weights of the stem, bulb, and root, as well as increased root volume and length. Additionally, the use of copper nanoparticles resulted in a decrease in the percentage of electrolyte leakage and malondialdehyde content, coupled with an increase in the concentration of photosynthetic pigments and the activity of antioxidant enzymes, including peroxidase and ascorbate peroxidase. Notably, the concentration of 150 mg.liter-1 exhibited a more pronounced effect in enhancing plant growth, with a diminishing impact observed at higher concentrations. Copper \nanoparticles improve plant growth under stress conditions by influencing the content of cellular antioxidants and modulating the hormonal balance of plant tissues.
 
Conclusions
The findings of this study indicated that increased salinity stress led to higher electrolyte leakage and malondialdehyde content, along with a reduction in RWC and photosynthetic pigments. These changes caused a decline in the morpho-physiological characteristics of Persian leek. However, salinity stress also increased the activity of peroxidase and ascorbate peroxidase enzymes. Foliar application of copper nanoparticles under these conditions had beneficial effects on the plants. Specifically, at a concentration of 150 mg.liter-1, the negative effects of salinity stress on the morpho-physiological indices of Persian leek were alleviated. This improvement was due to an increase in the activity of antioxidant enzymes, RWC, and the concentration of photosynthetic pigments.

کلیدواژه‌ها [English]

  • Electrolyte leakage
  • Malondialdehyde
  • Peroxidase enzyme
  • Relative water content

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  • Abdelraheem, A., Esmaeili, N., O’Connell, M., & Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 130, 118-129. https://doi.org/10.1016/j.indcrop.2018.12.070
  • Abdel-Salam, E., Alatar, A., & El-Sheikh, M. A. (2018). Inoculation with arbuscular mycorrhiza fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences, 25, 1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015
  • Acosta-Motos, J.R., Maria Fernanda, O., Agustin, B., Pedro, D.V., Maria, J.B., & Jose Antonio, H. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Akbari, S., Dashti, F., & Gholami, M. (2011). Effect of salinity stress on performance and some biochemical and physiological characteristics of Iranian leek. 7th Congress of Iranian Horticultural Science, Isfahan, Iran. (In Persian with English abstract). https://civilica.com/doc/174155
  • Arvin, P. (2015). Effect of gibberellin on some morphological traits, photosynthetic pigments content and proline in savory (Satureja hortensis) under salinity stress conditions. Journal of Agricultural Research, 7(2), 90-104.
  • Betran, F.J., Beck, D., Banziger, M., & Edmeades, G.O. (2003). Secondary traits in parental inbreeds and hybrids under stress and nonstress environments in tropical maize. Field Crops Research, 83, 51-65. https://doi.org/10.1016/S0378-4290(03)00061-3
  • Choudhary, R.C., Kumaraswamy, R.V., Kumari, S., Sharma, S.S., Pal, A., Raliya, R., & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays). Scientific Reports7(1), 9754. Https://doi.org/10.1038/s41598-017-08571-0
  • Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea morian, Piccea glausa and Pinus banksiana. Environmental Pollution, 115, 6-16. https://doi.org/10.1016/S0269-7491(01)00097-5
  • Da Costa, M.V.J., & Sharma, P.K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativaPhotosynthetica54, 110-119. https://doi.org/10.1007/s11099-015-0167-5
  • Della Maggiora, L., Francini, A., & Giovannelli, A.(2023). Assessment of the salinity tolerance, response mechanisms and nutritional imbalance to heterogeneous salt supply in Populus alba clone ‘Marte’ using a split-root system. Plant Growth Regul, 101, 251–265. https://doi.org/10.1007/s10725-023-01017-w
  • Farouk, S., & Al-Amri, S.M. (2019). Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Industrial Crops and Products142, 111823. https://doi.org/10.1016/j.indcrop.2019.111823
  • Fattahi, M., Mohammadkhani, A., Shiran, B., Baninasab, B., & Ravash, R. (2021). Investigation of phosphorus use efficiency and drought and salinity stress resistance index in pistachio rootstocks coexisted with mycorrhiza arbuscular. Plant Productions44(4), 587-600. (In Persian with English abstract). https://doi.org/10.22055/ppd.2020.33219.1894
  • Fischer, R.A., & Maurer, R. (1998). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 897-912. https://doi.org/10.1071/AR9780897
  • Gholamzadeh Alam, A., Mousavi-Fard, S., & Rezaei Nejad, A. (2022). Morphological and physiological characteristics for evaluation of salicylic acid effects on Celosia argentea under salinity stress. Iranian Journal of Plant Physiology, 12(1), 4027-4037. https://doi.org/10.30495/ijpp.2022.689078
  • Gorgini Shabankareh, H., Khorasaninejad, S., & Soltanloo, H. (2021). Physiological response and secondary metabolites of three lavender genotypes under water deficit. Scientific Reports11(1), 19164. https://doi.org/10.1038/s41598-021-98750-x
  • Guzman, M.R., &  Marques, I. (2023). Effects of salinity on edible marigold flowers (Tagetes patula). Biology Life Science Forum, 27, 38. https://doi.org/10.3390/IECAG2023-15986
  • Hejazi, M. M., Shariatmadari, H., Khoshgoftarmanesh, A. H., & Dehghani, F. (2012). Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. Journal of Agricultural Science and Technology, 14, 205-212.
  • Hernandez-Hernandez, H., Juárez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sánchez-Aspeytia, D., & González-Morales, S. (2018). Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 8(9), 175. https://doi.org/10.3390/agronomy8090175
  • Jampeetonga, A., & Brix, H. (2009). Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 3, 181-186. https://doi.org/10.1016/j.aquabot.2009.05.003
  • Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10, 5692. https://doi.org/10.3390/app10165692
  • Lawlor, W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment, 25, 275–294.https://doi.org/10.1046/j.0016-8025.2001.00814.x
  • Lichtenthaler, H.K. (1987). Chlorophyll and carotenoids–pigments of photosynthetic biomembrances za Colowick SP, Kaplan NO Methods in Enzymology, Vol. 148.
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa) cultivars differing in salinity resistance. Annals of Botany78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
  • MacAdam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology99(3), 872-878. https://doi.org/10.1104/pp.99.3.872
  • Nabati, J., Kafi, M., Nezami, A., Rezvani Moghaddam, P., Masoumi, A., & Zare Mehrjerdi, M. (2012). Evaluation of quantitative and qualitative characteristic of forage kochia in different growth under salinity stress. Journal of Crop Production5(2), 111-128. (In Persian with English abstract). http://dorl.net/dor/1001.1.2008739.1391.5.2.7.8
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Noman, M., Ahmed, T., Shahid, M., Niazi, M.B.K., Qasim, M., Kouadri, F., & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
  • Osakabe, Y., Yamaguchi‐Shinozaki, K., Shinozaki, K., & Tran, L.S.P. (2014). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist202(1), 35-49. https://doi.org/10.1111/nph.12613
  • Panahandeh, J. (2015). Meiosis in persian leek Allium ampeloprasum persicum. In VII International Symposium on Edible Alliaceae, 1143, 23-26. https://doi.org/10.17660/ActaHortic.2016.1143.4
  • Pérez-Labrada, F., López-Vargas, E.R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants8(6), 151. https://doi.org/10.3390/plants8060151
  • Radi, A.F. (2013). Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Sciences, 3, 72-88.
  • Raza, A., Tabassum, J., Fakhar, A. Z., Sharif, R., Chen, H., Zhang, C., & Varshney, R.K. (2023). Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43(7), 1035-1062. https://doi.org/10.1080/07388551.2022.2093695
  • Ritchie, S.W., Nguyen, H.T., & Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science30(1), 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
  • Roozbahani, F., Mousavi-Fard, S., & Nejad, A.R. (2020). Effect of proline on some physiological and biochemical characteristics of two cultivars of Impatiens walleriana under salt stress. Iranian Journal of Horticultural Science51(3), 537-550. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2019.279774.1632
  • Safari, M., Mousavi-Fard, S., Rezaei Nejad, A., Sorkheh, K., & Sofo, A. (2022). Exogenous salicylic acid positively affects morpho-physiological and molecular responses of Impatiens walleriana plants grown under drought stress. International Journal of Environmental Science and Technology, 19(2), 969–984. https://doi.org/10.1007/s13762-020-03092-2
  • Siddiqi, K.S., & Husen, A. (2020). Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomaterials Research24(1), 1-15. https://doi.org/10.1186/s40824-020-00188-1
  • Starman, T., & Lombardini, L. (2006). Growth, gas exchange and chlorophyll fluorescence of four ornamental herbaceous perennials during water deficit conditions. Journal American Horticultural Science, 131(4), 475.
  • Tabatabaee S., Iranbakhsh, A., Shamili, M., & Oraghi Ardebili Z. (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 9(5), 106151. https://doi.org/10.1016/j.jece.2021.106151
  • Thounaojam, T.C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G.D., Sahoo, L., & Sanjib, P. (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39. https://doi.org/10.1016/j.plaphy.2012.01.006
  • Vinaya Rai, R.S., & Parthiban, K.T. (1995). Studies on the drought tolerance of Eucalyptus at seedling stage. Journal Tropical For Science, 8(2), 155–160. https://www.jstor.org/stable/43582472
  • Vojodi Mehrabani, L., Valizadeh Kamran, R., Khurizadeh, S., & Seiied Nezami, S. (2018). Response of coriander to salinity stress. Journal of Plant Physiology and Breeding8(2), 89-98. https://doi.org/10.22034/JPPB.2018.9804
  • Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+- induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2
  • Zhang, H.Z. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus). Journal of Pineal Research, 57, 269-279. https://doi.org/10.1111/jpi.12167
CAPTCHA Image