با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

عصاره و اسانس برخی از گیاهان دارویی دارای خاصیت ضدمیکروبی می­باشند، که جایگزین مناسبی برای قارچ‌کش­های شیمیایی محسوب می­گردند، لذا استفاده از اسانس­های گیاهی در افزایش انبارمانی و حفظ کیفیت محصولات باغبانی به­عنوان ایده­ای جدید در کشاورزی نوین مطرح می­باشد. این مطالعه به­منظور تعیین اثر ضدقارچی اسانس­های زنجبیل، زنیان، ترخون و هل در پنج غلظت صفر، 200، 400، 600 و 800 میکرولیتر در لیتر روی میوه انار(Punica granatum L.)  رقم ̓شیشه‌کپ̒ جهت جلوگیری از رشد قارچ پنی­سیلیوم در شرایط  in vitroو in vivo اجرا شده است. نتایج آزمایش in vitro نشان داد که افزایش غلظت اسانس­ها، فعالیت ضدقارچی آن­ها را نیز افزایش می­دهد، به­طوری­که کم­ترین قطر هاله قارچ از غلظت 800 میکرولیتر بر لیتر اسانس به دست آمد. مقایسه میانگین نوع اسانس نشان داد که بیش­ترین میزان بازدارندگی از رشد قارچ در اسانس زنجبیل و کم­ترین میزان در اسانس هل بر روی رشد کلنی قارچ مشاهده شد. نتایج اثر متقابل نشان داد که غلظت­های بالاتر از 200 میکرولیتر در لیتر اسانس زنیان مانع رشد 100 درصدی کلنی قارچ شدند. در شرایط in vivo، بهترین ظاهر میوه در انار­های آغشته به اسانس­های زنیان و زنجبیل به دست آمد وکم­ترین آن در اسانس هل مشاهده شد. اسانس زنجبیل دارای بیش­ترین میزان مواد جامد محلول (79/15)، فنل کل (194/0 میلی­گرم اسید گالیک بر 100 گرم وزن تر) و سفتی بافت میوه (67/7 نیتون بر کیلوگرم) بود. بیش­ترین pH آب میوه و میزان آنتی­اکسیدان از تیمار اسانس زنجبیل و زنیان حاصل شد. بیش­ترین میزان آنتی‌اکسیدان میوه­های انار آلوده به قارچ پنی­سیلیوم در تیمار 800 میکرولیتر در لیتر اسانس زنیان به دست آمد. نتایج این بررسی نشان داد که می­توان از اسانس­های گیاهی زنجبیل و زنیان به­عنوان مهار­کننده بیماری­های پس از برداشت در محصولات کشاورزی استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Antifungal Effect of Some Essential Oils on Increasing Shelf Life and Quality Parameters of Pomegranate (Punica granatum L.) Fruit

نویسندگان [English]

  • mina bahrami 1
  • Mehdi Jahani 1
  • mohmmad Hossein Aminifard 2

1 university of birjand

2 2- Associate Professor, Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran

چکیده [English]

 
Introduction
Long term storage of pomegranate fruit is compromised by pathogens that cause postharvest rots and decay. Pomegranatesare predisposed to attack from various pathogens at pre- and/or postharvest stage, which has a significant impact on fruit quality and storage life. These pathogens often cause damage to the tissues, thereby making the fruit unsaleable. A significant portion of pomegranate pre- and postharvest losses is attributed to dis-eases associated with various bacterial and fungal species. The use of plant essential oils is considered as a new idea in reducing post-harvest waste and increasing the storage life of horticultural products and controlling fungal contamination in developed agriculture. This study was conducted with the aim of determining the antifungal effect of some herbal essential oils in different concentrations on pomegranate fruit to prevent the growth of Penicillium fungus in vitro and in vivo.
 
Materials and Methods
In order to investigate the effect of the essential oils of some medicinal plants on the fungus Penicilliumsp. in pomegranate fruit in in vivo and in vitro conditions, a factorial experiment was conducted in the form of a completely randomized design with three replications at the Faculty of Agriculture of Birjand University in 2022. The first factor included the type of essential oil: Ginger, Zenian, Tarragon and Cardamom essential oils, and the second factor included the concentration of essential oil at five levels (0, 200, 400, 600, and 800 microliters.liter-1).The index measured in in vitro conditions was the radial growth of the fungus. The indicators measured in vivo conditions include appearance of the fruit, TSS, pH, total acidity (meq.g-1), total phenol (mg galic acid.100 g-1 FW), antioxidant (%), antocyanin (mg.g-1) and tissue firmness. Finally, the experimental data were statistically analyzed using SAS program and comparison of means was performed by LSD test at 5% probability level.
 
Results and Discussion
The results showed that the increase in the concentration of essential oils also increases their antifungal activity, so the highest inhibition rate was observed in Ginger essential oil and the lowest in Cardamom essential oil on the growth of the fungus colony. The strongest antifungal activity was observed with the essential oils of ginger, zedoary (Zenian), tarragon, and cardamom, in that order. Notably, no fungal growth was detected in samples treated with ginger essential oil throughout the entire sampling period. These results indicate that the tested essential oils effectively inhibited fungal colony growth and demonstrated significant antifungal potential.In in vivo conditions, the best fruit appearance was obtained in pomegranates impregnated with Zenian and Ginger essential oils, and the least was observed in Cardamom essential oil. Ginger essential oil had the highest amount of soluble solids. The highest pH value of fruit juice was obtained from Ginger essential oil and the lowest pH value was obtained from Tarragon and Cardamom essential oils. The fruits treated with Tarragon essential oil had the highest total acidity. The fruits treated with Ginger essential oil had the highest amount of total phenol. The statistical comparison of the averages showed that the highest percentage of antioxidants was observed in the Ginger essential oil treatment and the lowest antioxidant percentage was found in the Tarragon essential oil treatment. The results showed that the infected fruits treated with Zenian essential oil with a concentration of 800 microliters.liter-1 had the highest antioxidant. The results of the comparison of the averages related to the effect of the type of essential oil show that Cardamom and Ginger essential oils had the highest and lowest anthocyanin content, respectively. In this experiment, Ginger essential oil had the highest hardness of the fruit texture and the lowest index was obtained from the essential oil of Zenian.
 
Conclusions
In general, the results of this research showed that essential oils have antifungal properties in the control of fungal disease after harvest; in-vitro tests showed that Cardamom essential oil had a very low fungicidal effect and in the control of Penicillium sp. Ginger essential oil had the most fungicidal effect. Antifungal properties increased with increasing the concentration of essential oil, but the antifungal property of Ginger essential oil was 100% in 400-800 concentrations used. Under natural conditions, Ginger and Zenian essential oil has good antifungal activity against Penicilliumsp.Considering the biodegradability and low toxicity of plant essential oils, the use of Ginger and Zenian essential oil is recommended to increase the shelf life of food products and can be used as disease controllers in agriculture.

کلیدواژه‌ها [English]

  • Anthocyanin
  • Anti-Pathogen
  • Inhibitory
  • Post-Harvest

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal Economic Entomol, 18(2), 265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Adekenov, S.M. (2017). Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia, 121, 16-30. https://doi.org/10.1016/j.fitote.2017.05.017
  3. Aidoo, K.E., Smith, J.E., & Henderson, R.S. (1991). Postharvest Storage and Preservation of Tropical Crops. In Mycotoxin and Animal Foods. CRC Press.
  4. Alikhani, M., Sharifani, M., Azizi, M., Hemmati, Kh., & Musavizadeh, S.J. (2010).The effect of some natural compounds in shelf-life and quality of pear fruit (Esfahan Shah Mive cultivar). Journal of Agricultural Sciences and Natural Resources, 16(3), 158-171. (in Persian)
  5. Aminifard, M.H., & Bayat, H. (2017). Antifungal activity of black caraway and anise essential oils against Penicillium digitatum on blood orange fruits. International Journal of Fruit Science, 18(3), 307–319. https://doi.org/10.1080/15538362.2017.1409682
  6. Amiri, A., Mortazavi, S.M.H., Mahmoodi Sourestani, M., Kiasat, A.R., & Ramezani, Z. (2019). The Effect of active microbial packaging on postharvest quality of strawberry fruit. Iranian Journal of Food Science and Technology, 16(87), 263-274. (in Persian with English abstract)
  7. Antunes, M.D.C., & Cavaco, A.M. (2010). The use of essential oils for postharvest decay control. A–review. Flavour and Fragrance Journal, 25, 351–366. https://doi.org/10.1002/ffj.1986
  8. AOAC. (1980).Official Method of Analysis, 13th Washington, D.C.
  9. Asgari Marjanlu, A., Mostofi, Y., Shoeibi, S., & Maghoumi, M. (2009). Effect of basil (Ocimum basilicum) essential oil on gray mold control and postharvest quality of strawberry (cv. Selva). Journal of Medicinal Plants, 8(29), 131-139. (in Persian)
  10. Asghari, M. (2014). Hormones and New (non-classical) Plant Growth Regulators. Urmia University Publications, Urmia, Iran. 352 p.
  11. Astani, A., & Schnitzler, P. (2014). Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran Journal Microbiology, 6(4), 149-55.
  12. Atress, M.M., Amal, S.H., El-Mogy, M.M., Aboul-Anean H.E., & Alsanius, B.W. (2010) Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science and Ornamental Plants, 2(3), 88-97.
  13. Bagamboula, C.F., Uyttendaele, M., & Debevere, J. (2004). Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and pcymene towards Shigella sonnei and flexneri. Food Microbiology, 21(1), 33-42. https://doi.org/10.1016/S0740-0020(03)00046-7
  14. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, I. (2008). Biological effects of essential oils– A review. Food and Chemistry Toxicology, 46(2), 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  15. Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M.L., & Spadero, D. (2018). Thyme and savory essential oil efficacy and induction of resistance against botrytis cinerea through priming of defense responses in apple. Foods, 7(2), 11. https://doi.org/10.3390/foods7020011
  16. Bairwa, R., Sodha, R.S., & Rajawat, B.S. (2012): Trachyspermum ammi. Journal of Pharmacognosy Phytochemistry, 6(11), 56-60.
  17. Brighenti, V., Iseppi, R., Pinzi, L., Mincuzzi, A., Ippolito, A., Messi, P., Sanzani, S.M., Rastelli, G., & Pellati, F. (2021). Antifungal activity and DNA topoisomerase inhibition of hydrolysable tannins from Punica granatum International Journal of Molecular Sciences, 22, 4175. https://doi.org/10.3390/ijms22084175
  18. Bruni, R., Medici, A., Andreotti, E., Fantin, C., Muzzoli, M., & Dehesa, M. (2003). Chemical composition and biological activities of Isphingo essential oil, a traditional Ecuadorian spice from Ocoteaquixos (lam) kosterm. (lauraceae) flower calkes. Food Chemestry, 85, 415-421. https://doi.org/10.1016/j.foodchem.2003.07.019
  19. Cao, J., Liu, H., Wang, Y., He, X., Jiang, H., Yao, J., Xia, F., Zhao, Y., & Chen, X. (2021). Antimicrobial and antivirulence efficacies of citral against foodborne pathogen Vibrio parahaemolyticusFood Control120, 107507. https://doi.org/10.1016/j.foodcont.2020.107507
  20. Casimir, C.A., & Min, D.B. (2002). Food Lipids Chemistry. Nutrition and Biotechnology. CRC Press, 928 p.
  21. Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of colored peppers. Food Chemistry, 111, 20-28. https://doi.org/10.1016/j.foodchem.2008.03.022
  22. El-Anany, A.M., Hassan, G.F.A., & Rehab Ali, F.M. (2009). Effects of edible coatings on the shelf-life and quality of Anna apple (Malus domestica Borkh) during cold storage. Journal of Food Technology, 7(1), 5–11.
  23. El-Ramady, H.R., Domokos-Szabolcsy, E., Abdalla, N.A., Taha, H.S., & Fári, M. (2014). Postharvest Management of Fruits and Vegetables Storage. In Sustainable Agriculture Reviews. E. Lichtfouse, (Ed.). Springer: Cham, Switzerland, 15, 65–152
  24. Farag, R.S., Daw, Z.Y., Hewed, F.M., & El-Baroty, G.S.A. (1989). Antimicrobial activity of some Egyptian spice oils. Journal of Food Protection, 52, 665-667. https://doi.org/110.4315/0362-028X-52.9.665.
  25. Fatemi, S., Jafarpour, M., Eghbaisaied, S., Rezapour, A., & Borji, H. (2011). Effect of essential oils of Thymus vulgaris and Mentha piperita on the control of green mould and postharvest quality of Citrus sinensis cv. Valencia. African Journal of Biotechnology, 10(66), 14932- https://doi.org/110.5897/AJB11.505
  26. Guerreiro, A.C., Gago, C.M.L., Faleiro, M.L., Miguel, M.G.C., & Antunes, M.D.C. (2015). The effect of alginate -based edible coatings enriched with essential oils constituents on Arbutus unedo fresh fruit storage. Postharvest Biology and Technology, 226-233. https://doi.org/10.1016/j.postharvbio.2014.09.002
  27. Guo, N., Zang, Y.P., Cui, Q., Gai, Q.Y., Jiao, J., Wang, W., Zu, Y.G., & Fu, Y.J. (2017). The preservative potential of Amomum tsaoko essential oil against coil, its antibacterial property and mode of action. Food Control, 75, 236–245. https://doi.org/10.1016/j.foodcont.2016.12.013
  28. Hosseini, Ch., Asghari, M.R., & Khezri, M. (2019). Evaluation of oregano essential oil effects on quality and biochemical attributes of sweet cherry (Prunus avium cv. ‘Takdaneh Mashhad’). Pomology Research, 3(2), 55-69. (in Persian)
  29. Jahani, M., Beheshti, M., Aminifard, M.H., & Hosseini, A. (2020). Effects of essential oils to control Penicillium in in vitro and in in vivo on grapevine (Vitis Vinifera L.) fruit. International Journal of Fruit Science, 20(2), 812-826. https://doi.org/10.1080/15538362.2020.1769526
  30. Jalili Marandi, R., Hassani, A., Ghosta, Y., Abdollahi, A., Pirzad, A.R., & Sefidgon, F. (2011). Improving postharvest quality of table grape cv. Rishbaba using Thymus kotschyanus and Carum copticum essential oils. Journal of Food Safety, 31(1), 132-139. https://doi.org/10.1111/j.1745-4565.2010.00276.x
  31. Jayaprakasha, K., & Patil, B.S. (2007). In vitro evaluation of the antioxidant activities in fruit extracts from citronand blood orange. Food Chemistry, 101(1), 410-418. https://doi.org/10.1016/j.foodchem.2005.12.038
  32. Jin, P., Wang, S.Y., Gao, H., Zheng, Y., & Wang, C.Y. (2012). Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chemistry, 132, 399-405. https://doi.org/10.1016/j.foodchem.2011.11.011
  33. Ju, Z., Duan, Y., & Ju, Z. (2000). Plant oil emulsion modifies internal atmosphere, delays fruit ripening, and inhibits internal browning in Chinese pears. Postharvest Biology and Technology20(3), 243-250. https://doi.org/10.1016/S0925-5214(00)00120-4
  34. Kalhoro, M.T., Zhang, H., Kalhoro, G.M., Wang, F., Chen, T., Faqir, Y., & Nabi, F. (2022). Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiaeScientific Reports12(1), 2191. https://doi.org/10.1038/s41598-022-06321-5
  35. Krasniewska, K., Gniewosz, M., Synowiec, A., Przyby, J.L., Baczek, K., & We Glarz, Z. (2014). The use of pullulan coating enriched with plant extracts from Satureja hortensis to maintain pepper and apple quality and safety. Postharvest Biology and Technology, 90, 63-72. https://doi.org/10.1016/j.postharvbio.2013.12.010
  36. Li, K.M., Dong, X., Ma, Y.N., Wu, Z.H., Yan, Y.M., & Cheng, Y.X. (2019). Antifungal coumarins and lignans from Artemisia annua. Fitoterapia, 134, 323-328.
  37. Louw, J.P., & Korsten, L. (2014). Pathogenic Penicillium on apple and pear. Plant Disease, 98(5), 590-598. https://doi.org/10.1094/PDIS-07-13-0710-RE
  38. Mahmood, T., Anwar, F., Abbas, M., Boyce, M.C., & Saari, N. (2012). Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. International Journal of Molecular Science, 13(2), 1380-1392. https://doi.org/10.3390/ijms13021380
  39. Mari, M., di Francesco, A., & Bertolini, P. (2014). Control of fruit postharvest diseases: Old issues and innovative approaches. Stewart PostharvestReview, 10, 1–4. https://doi.org/10.2212/spr.2014.1.1
  40. Martinez-Romero, D., Castillo, S., Valverde, J.M., Guillen, F., Valero, D., & Serrano, M. (2005). The use of natural aromatic essential oils helps to maintain post-harvest quality of crimson'table grapes. Acta Horticulturae682(3), 1723-1729. https://doi.org/10.17660/ActaHortic.2005.682.230
  41. Meighani, H., Ghasemnezhad, M., & Bakshi, D. (2014). Evaluation of biochemical composition and enzyme activities in browned arils of pomegranate fruits. International Journal of Horticultural Science and Technology, 1(1), 53-65. (In Persian with English abstract).https://doi.org/10.22059/ijhst.2014.50518
  42. Nasrullah Zade Asl, N. (2012). The effect of edible coatings in maintaining the quality and increasing the shelf life of fruits and vegetables. Agricultural Engineering and Natural Resources Quarterly, 11, 36-31. (in Persian)
  43. Nelson, P.E., Toussoun, T.A., & Marasas, W.F.O., (1983). Fusarium Species: An illustrated Manual for Identification. Pennsylvania state University Press.
  44. Nikkhah, M., Hashemi, M., Habibi Najafi, M., & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. https://doi.org/10.1016/j.ijfoodmicro.2017.06.021
  45. Nikos, G., & Tzortzakis, A. (2007). Maintaining postharvest quality of fresh produce with volatile compounds. Journal of Innovative Food Science and Emerging Technologies, 8, 111-116. https://doi.org/10.1016/j.ifset.2006.08.001
  46. Nychas, G.J.E. (1995). Natural antimicrobials from plants. In: Gould GW of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, 88, 170-175. https://doi.org/10.1007/978-1-4615-2105-1_4
  47. Oliveira, J., Parisi, C.M., Baggio, J.S., Silva, P.P.M., Paviani, B., Spoto, M.H.F., & Gloria, E.M. (2019). Control of Rhizopus stolonifer in strawberries by the combination of essential oil with carboxymethylcellulose. International Journal of Food Microbiology, 292, 150-158. https://doi.org/10.1016/j.ijfoodmicro.2018.12.014
  48. Perez-Alfonso, C., Martınez-Romero, D., Zapata, P., Serrano, M., Valero, D., & Castillo, S. (2012). The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and italicum involved in lemon decay. International Journal of Food Microbiology, 158(2), 101-106. https://doi.org/10.1016/j.ijfoodmicro.2012.07.002
  49. Petrović, J., Stojković, D., & Soković, M. (2019). Terpene core in selected aromatic and edible plants: Natural health improving agents. In Advances in Food and Nutrition Research90, 423-451. https://doi.org/10.1016/bs.afnr.2019.02.009.
  50. Rabiei, V., Shirzadeh, E., RabbiAngourani, H., & Sharafi, Y. (2011). Effect of thyme and lavender essential oil on the qualitative and quantitative traits and storage life of apple Jonagold cultivar. Journal of Medicinal Plant Research, 5(23), 5522-5527.
  51. Ramezanian, A., Azadi, M., Mostowfizadeh-Ghalamfarsa, R., & Saharkhiz, M.J. (2016). Effect of Zataria multiflora Boiss and Thymus vulgaris essential oils on black rot of‘Washington Navel’ orange fruit. Postharvest Biology and Technology, 112, 152–158. https://doi.org/10.1016/j.postharvbio.2015.10.011
  52. Rastegar, S., & Tahmasebi, S. (2017). The use of essential oils of rose, marigold and salvia in preventing the growth of Botrytis sinerer fungus in two varieties of strawberry fruit. Journal of Innovation in Food Science and Technology, 10(3), 96-85. (In Persian)
  53. Roussos, P.A. (2011). Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Scientia Horticulturae, 129(2), 253-258. https://doi.org/10.1016/j.scienta.2011.03.040
  54. Samad, M., Sajid, M., Hussain, I., Samad, N., & Jan, N. (2019). Influence of herbal extract and storage duration on fruit quality of china lime. Horticulture International Journal, 3(3), 153-158. https://doi.org/10.15406/hij.2019.03.00123
  55. Sazvar, E., Jahani, M., Aminifard, M.H., & Hosseini, A. (2022). In vitro and in vivo control of Alternaria alternata in barberry (Berberis vulgaris) by some essential oils. Erwerbs-Obstbau, 64, 413–423. https://doi.org/10.1007/s10341-022-00645-2
  56. Savan, E.K., & Küçükbay, F.Z. (2013). Essential oil composition of Elettaria cardamomumJournal of Applied Biological Sciences7(3), 42-45.
  57. Sefu, G., Satheesh, N., & Berecha, G. (2015). Antifungal activity of ginger and cinnamon leaf essential oils on mango anthracnose disease causing funge ( gloeosporioides). Carpathian Journal of Food Science & Technology7(2), 26-34.
  58. Shahiri Tabaestani, H., Sedaghat, N., Saeedi Pooya, E., & Alipour, A. (2013). Shelf life improvement and postharvest quality of cherry tomato (Solanum lycopersicum) fruit using basil mucilage edible coating and cumin essential oil. International Journal of Agronomy and Plant Production, 4(9), 2346-2353.
  59. Shao, X., Wang, H., Xu, F., & Cheng, S. (2013). Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biology and Technology, 77, 94-101. https://doi.org/10.1016/j.postharvbio.2012.11.010
  60. Shiri, Bakhshi, D., Ghasemnezhad, M., Dadi, M., Papachatzis, A., & Kalorizou, H. (2013). Chitosan coating improved the shelf life and postharvest quality of table grape (Vitis vinifera) cultivar 'Shahrudi'. Turkish Journal of Agriculture and Forestry, 37, 148-156. https://doi.org/10.3906/tar-1101-1671
  61. Sivakumar, D., & Bautista-Baños, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27–37. https://doi.org/10.1016/j.cropro.2014.05.012
  62. Swain, T. (1965). Analytical Methods for Flavonoids. In The Chemistry and Biochemistry of Plant Pigments. T.W. Goodwin, (ed.). pp. 543-544, Academic press, London, U.K.
  63. Teksur, P.K. (2015). Alternative technologies to control postharvest diseases of pomegranate. Stewart Postharvest Review, 11, 1–8. https://doi.org/10.2212/spr.2015.4.3
  64. Turkmen, N., Sari, F., & Veliglu, Y.S. (2005). The effect of cooking methods on total phenolies and antioxidant activity of selected green vegtables. Food Chemistry, 93, 713-718. https://doi.org/10.1016/j.foodchem.2004.12.038
  65. Ultee, A., Bennik, M.H.J., & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002
  66. Ultee, A., Kets, E.P.W., & Smid, E.J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 65(10), 4606-4610. https://doi.org/10.1128/AEM.65.10.4606-4610.1999
  67. Valkova, V., Ďuranova, H., Galovicova, L., Vukovic, N., Vukic, M., & Kacaniova, M. (2023). Antifungal efficacy of mint essential oil against Penicillium inoculated on carrots. Bilge International Journal of Science and Technology Research7(1), 9-16. https://doi.org/10.30516/bilgesci.1206873
  68. Wang, S.Y., & Yin, H.S. (2000). Antioxidant activity in fruits and levels of blackberry, raspberry and strawberry varies with cultivar and development stage. Journal of Agricultural and Food Chemistry, 48, 140-146. https://doi.org/10.1021/jf9908345
  69. Wang, C.Y., Wang, S.Y., & Chen, C.T. (2008). Increasing antioxidant activity and reducing decay of blueberries by essential oils. Journal of Agricultural and Food Chemistry, 56, 3587–3592. https://doi.org/10.1021/jf7037696
  70. Wang, C.Y., Wang, S.Y., Yin, J.J., Parry, J., & Yu, L.L. (2007). Enhancing antioxidant, antiproliferation, and free radical scavenging activities in strawberries with essential oils. Journal of Agricultural and Food Chemistry, 55, 6527–6532. https://doi.org/10.1021/jf070429a
  71. Wang, Y., Feng, K., Yang, H., Zhang, Z., Yuan, Y., & Yue, T. (2018). Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansumFrontiers in Microbiology9, 597. https://doi.org/10.3389/fmicb.2018.00597
  72. Xiao, C.L., & Rogers, J.D. (2004). A postharvest fruit rot in d’Anjou pears caused by Sphaeropsis pyriputrescens nov. Plant Disease, 88(2), 114–118. https://doi.org/10.1094/PDIS.2004.88.2.114
  73. Yaman, O., & Bayindirh, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Science and Technology, 35(2), 146–150. https://doi.org/10.1006/fstl.2001.0827
  74. Yang, X., Niu, Z., Wang, X., Lu, X., Sun, J., Carpena, M., Prieto, M.A., Simal-Gandara, J., Xiao, J., Liu, C., & Li, N. (2022). The Nutritional and bioactive components, potential health function and comprehensive utilization of pomegranate: A review. Food Reviews International, 39(1), 6420-6446. https://doi.org/10.1080/87559129.2022.2110260
  75. Zhang, W., Shu, C., Chen, Q., Cao, J., & Jiang, W. (2019). The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chemistry, 299, 1-8. https://doi.org/10.1016/j.foodchem.2019.125109
  76. Zielińska-Błajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives—Recent development in biological and medical applications. International Journal of Molecular Sciences21(19), 7078. https://doi.org/10.3390/ijms21197078

 

CAPTCHA Image