با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران

2 گروه علوم باغبانی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران

3 گروه علوم باغبانی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران گروه پژوهشی کشاورزی پایدار و امنیت غذایی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران

چکیده

عروسک پشت پرده یا فیسالیس (Physalis peruviana L.) یکی از اعضای مهم خانواده سیب‌زمینی‌سانان محسوب می‌شود. میوه‌های فیسالیس غنی از مواد معدنی، ویتامین‌ها و ترکیبات فیتوشیمیایی با خواص ضدتوموری و ضدالتهابی هستند و همین امر آن را بسیار مورد علاقه نموده است. فیسالیس میوه‌ای فرازگرا است که دارای عمر پس از برداشت بسیار کوتاه است و معمولاً حداکثر تا پنج روز ماندگاری دارد، بنابراین نیاز به استفاده از تیمارهای ایمن پس از برداشت برای حفظ کیفیت و افزایش عمر ماندگاری آن احساس می‌شود. در پژوهش حاضر، میوه‌های فیسالیس با رنگ نارنجی کامل و کاسبرگ‌های زرد از یک گلخانه تجاری در شهرستان پاسارگاد استان فارس برداشت و پس از ارزیابی ظاهری، با آب دیونیزه شسته و در هوای آزاد خشک شدند. طرح آزمایشی مورد استفاده فاکتوریل در قالب طرح کاملاً تصادفی شامل 12 تیمار با سه تکرار برای هر تیمار (20 میوه در هر تکرار) بود. عوامل آزمایشی شامل غوطه‌وری میوه‌ها به‌مدت پنج دقیقه در چهار سطح غلظت محلول ملاتونین (100، 200، و 300 میکرومولار و آب مقطر به‌عنوان شاهد) و زمان‌ نمونه‌برداری در سه سطح (روزهای 7، 14 و 21 انبارمانی) بود. پس از غوطه­وری، میوه‌های هر گروه به‌مدت ۳۰ دقیقه در هوای آزاد خشک شدند و در کیسه‌های پلی‌اتیلن با نسبت سوراخ سه درصد بسته‌بندی و در دمای ۱۰ درجه سانتی‌گراد و رطوبت نسبی 5 ± 90 درصد به‌مدت ۲۱ روز نگهداری شدند. ارزیابی‌های هفتگی نشان داد که به­طور کلی و نسبت به شاهد، تیمار پس از برداشت ملاتونین منجر به کاهش نرخ تنفس و فعالیت آنزیم پلی‌فنول اکسیداز (PPO) در آب‌میوه شد و همچنین موجب بهبود یا حفظ مقادیر کاروتنوئید پوست، مواد جامد محلول کل (TSS)، اسید قابل تیتر (TA)، اسید آسکوربیک، فنول کل، فعالیت آنزیم فنیل‌آلانین آمونیالیاز (PAL) و فعالیت آنتی‌اکسیدانی کل در آب‌میوه گردید. پس از ۲۱ روز انبارمانی و در پایان آزمایش، ارزیابی مجموع صفات نام‌برده نشان داد که میوه‌های تیمار‌شده با ۳۰۰ میکرومولار ملاتونین، در مقایسه با سایر گروه‌های آزمایشی، از نظر ارزش غذایی، ظاهر، و سازوکارهای مقابله با تنش اکسایشی پس از برداشت برتر بودند. در مورد مواد جامد محلول کل و اسیدیته قابل تیتر، تفاوت معنی‌داری بین میوه‌های تیمار‌شده با غلظت‌های مختلف ملاتونین مشاهده نشد، امّا میوه‌های تیمار‌شده با دو غلظت بالاتر ملاتونین، کمینه نرخ تنفس و بیشینه مقدار اسید آسکوربیک آب‌میوه را داشتند. همچنین، میوه‌های تیمار‌شده با ۳۰۰ میکرومولار ملاتونین، در مقایسه با تمامی گروه‌های آزمایشی دیگر، سطوح بالاتری از فنول کل، فعالیت آنزیم PAL، فعالیت آنتی‌اکسیدانی کل و کاروتنوئید پوست داشتند، و کمترین فعالیت آنزیم PPO نیز در این گروه مشاهده شد. در نهایت چنین نتیجه‌گیری شد که تیمار میوه‌های فیسالیس با ملاتونین خارجی، به‌ویژه در غلظت 300 میکرومولار، می‌تواند با تعدیل فرآیندهای فیزیولوژیکی و بیوشیمیایی مختلف، به‌طور قابل‌توجهی کیفیت پس از برداشت و ماندگاری آن‌ها را بهبود بخشد. این تکنیک، پتانسیل افزایش بازارپسندی و ارزش اقتصادی فیسالیس برداشت‌شده را به‌عنوان یک محصول باغی باارزش بالا دارد.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Exogenous Melatonin Treatment on Nonenzymatic Antioxidant System, Nutritional Value, and Visual Quality of Mature Physalis (Physalis peruviana L.) Fruit

نویسندگان [English]

  • L. Taghipour 1
  • P. Hayati 2
  • M. Hosseinifarahi 3
  • P. Assar 1

1 Department of Horticultural Science, College of Agriculture, Jahrom University, Jahrom, Iran

2 Department of Horticultural Science, Yas.C., Islamic Azad University, Yasuj, Iran

3 Department of Horticultural Science, Yas.C., Islamic Azad University, Yasuj, Iran Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran

چکیده [English]

Introduction
Physalis (Physalis peruviana L.), commonly known as Cape gooseberry or ground cherry, is a valuable member of the Solanaceae family. It is cultivated as a perennial crop in tropical regions and as an annual in temperate climates. The fruit is a spherical berry that can be consumed fresh, dried, or processed into jams and desserts. Physalis fruits are rich in minerals, vitamins, and phytochemicals known for their anti-tumor and anti-inflammatory properties, contributing to their reputation as a "superfood." Globally, demand for this crop is increasing due to its health benefits, including in Iran, although comprehensive data on its cultivation within the country remains limited. As a climacteric fruit, Physalis has a very short postharvest shelf life—typically no more than five days—highlighting the need for safe and effective postharvest treatments to preserve quality and extend its marketability. To improve the storability and maintain the postharvest quality of physalis, researchers are exploring natural and safe treatment options. One such promising compound is melatonin, a pleiotropic molecule derived from tryptophan and endogenously synthesized in plant, animal, fungal, and prokaryotic cells. In plants, melatonin functions as a regulatory agent involved in numerous physiological processes, particularly in response to stress. It interacts with plant hormones and reactive species like hydrogen peroxide (HO), nitric oxide (NO), and hydrogen sulfide (HS), contributing to improved antioxidant activity, delayed senescence, and better stress tolerance. Thus, melatonin represents a promising and eco-friendly strategy to improve the shelf life, sensory quality, and marketability of physalis fruit. The aim of the present study was to improve the shelf life and postharvest quality of physalis fruits through melatonin treatment for distribution in local markets.
 
Materials and Methods
Fully orange-colored physalis fruits with completely yellow calyxes were harvested from a commercial greenhouse in Pasargad, Fars province. The fruits were quickly transported to the lab, visually evaluated, washed with deionized water, and air-dried. The experimental design was a factorial arrangement based on a completely randomized design (CRD), consisting of 12 treatments with three replicates per treatment (20 fruits per replicate). The experimental factors included fruit immersion in four levels of melatonin solution concentration (100, 200, and 300 µM, with distilled water as the control) and sampling time at three levels (7, 14, and 21 days of storage). Following the preparation of melatonin solutions at different concentrations, sixty fruits were immersed in each solution for five minutes. The treated fruits were air-dried for 30 minutes, then packaged in polyethylene bags with 3% perforation and stored at 10 °C under 90 ± 5% relative humidity for 21 days. Assessments were carried out at weekly intervals.
 
Results and Discussion
Overall, postharvest treatment with melatonin led to a reduction in respiration rate and polyphenol oxidase (PPO) activity in the juice, as well as an improvement or maintenance of skin carotenoid content, total soluble solids (TSS), titratable acidity (TA), ascorbic acid, total phenols, phenylalanine ammonia-lyase (PAL) enzyme activity, and total antioxidant activity in the juice. After 21 days of storage and at the end of the experiment, the assessment of all these attributes revealed that fruits treated with 300 μM melatonin were superior in terms of nutritional value, appearance, and postharvest oxidative stress response mechanisms compared to the other experimental groups. There was no significant difference in total soluble solids and titratable acidity among the fruits treated with different concentrations of melatonin; however, fruits treated with the two higher concentrations of melatonin showed the lowest respiration rate and the highest ascorbic acid content in the juice. Furthermore, fruits treated with 300 μM melatonin exhibited higher levels of total phenols, PAL enzyme activity, total antioxidant activity, and skin carotenoids compared to all other experimental groups, while also showing the lowest PPO enzyme activity.
 
Conclusions
Treating physalis fruits with exogenous melatonin, especially at concentration of 300 μM, can significantly enhance their postharvest quality and storability by modulating various physiological and biochemical processes. This approach has the potential to improve the marketability and economic value of harvested physalis as a high-value horticultural crop.
 

کلیدواژه‌ها [English]

  • Antioxidant capacity
  • Carotenoid
  • Marketability
  • Phenol
  • Physalis

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Arnao, M.B., & Hernández-Ruiz, J. (2014). Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19(12), 789–797. https://doi.org/10.1016/j.tplants.2014.07.006
  2. Balaguera-López, H.E., Martínez-Cárdenas, C.A., & Herrera-Arévalo, A. (2016). Effect of the maturity stage on the postharvest behavior of cape gooseberry (Physalis peruviana) fruits stored at room temperature. Bioagro, 28(2), 117–124.
  3. Bhardwaj, R., Pareek, S., Mani, S., Domínguez-Ávila, J.A., & González-Aguilar, G.A. (2022). A melatonin treatment delays postharvest senescence, maintains quality, reduces chilling injury, and regulates antioxidant metabolism in mango fruit. Journal of Food Quality, 2022, 2379556. https://doi.org/10.1155/2022/2379556
  4. Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from cape gooseberry (Physalis peruviana) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126
  5. Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W., & Zhenfeng, Y. (2018). Melatonin increases chilling tolerance in post-harvest peach fruit by alleviating oxidative damage. Scientific Reports, 8, 806. https://doi.org/10.1038/s41598-018-19363-5
  6. Cedeño, M.M., & Montenegro, D.M. (2004). Export, logistics and marketing plan for cape gooseberry to the United States market for Frutexpo SCI LTDA (MSc. Thesis). Santo Tomas University. USTA Institutional Repository.
  7. D’Cunha, G.B., Satyanarayan, V., & Madhusudanan Nair, P. (1996). Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochemistry, 42(1), 17–20. https://doi.org/10.1016/0031-9422(95)00914-0
  8. Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H.W., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18(1), 28–31. https://doi.org/10.1111/j.1600-079x.1995.tb00136.x
  9. Falguera, V., Sánchez-Riaño, A.M., Quintero-Cerón, J.P., Rivera-Barrero, C.A., Méndez-Arteaga, J.J., & Ibarz, A. (2012). Characterization of polyphenol oxidase activity in juices from 12 underutilized tropical fruits with high agroindustrial potential. Food Bioprocess Technology, 5, 2921–2927. https://doi.org/10.1007/s11947-011-0521-y
  10. Fan, S., Xiong, T., Lei, Q., Tan, Q., Cai, J., Song, Z., Yang, M., Chen, W., Li, X., & Zhu, X. (2022). Melatonin treatment improves postharvest preservation and resistance of guava fruit (Psidium guajava). Foods, 11(3), 262. https://doi.org/10.3390/foods11030262
  11. Fischer, G., Herrera, A., & Almanza, P.J. (2011). Cape Gooseberry (Physalis peruviana L.). In E. M. Yahia (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing. pp. 374-397e. https://doi.org/10.1533/9780857092762.374
  12. Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659–666. https://doi.org/10.1016/j.foodchem.2017.10.008
  13. Goulart Júnior, R., Mondardo, M., & Waintuch Reiter, J.M. (2017). Relatório sobre a fruticultura catarinense: Fruticultura em números – Safra 2014/15. Epagri Documentos No. 271, 114 pp. Epagri.
  14. Hayati, P., Hosseinifarahi, M., Abdi, G., Radi, M., & Taghipour, L. (2023). Melatonin treatment improves nutritional value and antioxidant enzyme activity of Physalis peruviana fruit during storage. Journal of Food Measurement and Characterization, 17(4), 2782–2791. https://doi.org/10.1007/s11694-023-01819-6
  15. Hiscox, J., & Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Botany, 57(11), 1332–1334.
  16. Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R.J., Tan, D.X., Shi, H., Xu, B., & Jin, Z. (2017). Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. Journal of Agricultural and Food Chemistry, 65(43), 9987–9994. https://doi.org/10.1021/acs.jafc.7b03354
  17. Jannatizadeh, A., Aghdam, M.S., Luo, Z., & Razavi, F. (2019). Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food Bioprocess Technology, 12(5), 741–750. https://doi.org/10.1007/s11947-019-2247-1
  18. Jiang, Y., Duan, X., Joyce, D., Zhang, Z., & Li, J. (2004). Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 88, 443–446. https://doi.org/10.1016/j.foodchem.2004.02.004
  19. Kumar, R., Khurana, A., & Sharma, A.K. (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 65(17), 4561–4575. https://doi.org/10.1093/jxb/eru277
  20. Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
  21. Liu, N., Jin, Z., Wang, S., Gong, B., Wen, D., Wang, X., Wei, M., & Shi, Q. (2015). Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Scientia Horticulturae, 181, 18-25. https://doi.org/10.1016/j.scienta.2014.10.049
  22. LoNDoÑo, J. (Ed.). (2013). Physalis Peruviana: Fruta Andina Para El Mundo: Cultivo, Recurso Genético, Agroindustria, Normativa Y Mercado. Madrid, Spain: Editorial Académica Española.
  23. Lou, J., Wu, C., Wang, H., Cao, S., Wei, Y., Chen, Y., Jiang, S., Shao, X., & Xu, F. (2023). Melatonin treatment delays postharvest senescence of broccoli with regulation of carotenoid metabolism. Food Chemistry, 408, 135185. https://doi.org/10.1016/j.foodchem.2022.135185
  24. Luo, S., Hu, H., Wang, Y., Zhou, H., Zhang, Y., Zhang, L., & Li, P. (2020). The role of melatonin in alleviating the postharvest browning of lotus seeds through energy metabolism and membrane lipid metabolism. Postharvest Biology and Technology, 167, 111243. https://doi.org/10.1016/j.postharvbio.2020.111243
  25. Luo, Z., Zhang, J., Xiang, M., Zeng, J., Chen, J., & Chen, M. (2022). Exogenous melatonin treatment affects ascorbic acid metabolism in postharvest 'Jinyan' kiwifruit. Frontiers in Nutrition, 9, 1081476. https://doi.org/10.3389/fnut.2022.1081476
  26. Miranda, S., Vilches, P., Suazo, M., Pavez, L., García, K., Méndez, M.A., González, M., Meisel, L.A., Defilippi, B.G., & del Pozo, T. (2020). Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry, 319, 126360. https://doi.org/10.1016/j.foodchem.2020.126360
  27. Noctor, G., & Foyer, C.H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.
  28. Onik, J.C., Wai, S.C., Li, A., Lin, Q., Sun, Q., Wang, Z., & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753. https://doi.org/10.1016/j.foodchem.2020.127753
  29. Pennycooke, J.C., Cox, S., & Stushnoff, C. (2005). Relationship of cold acclimation, total phenolic content, and antioxidant capacity with chilling tolerance in petunia (Petunia × hybrida). Environmental and Experimental Botany, 53(3), 225–232. https://doi.org/10.1016/j.envexpbot.2004.04.002
  30. Puerta-Gomez, A.F., & Cisneros-Zevallos, L. (2011). Postharvest studies beyond fresh market eating quality: Phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence. Postharvest Biology and Technology, 60(3), 220–224. https://doi.org/10.1016/j.postharvbio.2011.01.005
  31. Rastegar, S., Hassanzadeh Khankahdani, H., & Rahimzadeh, M. (2020). Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Scientia Horticulturae, 259, 108835. https://doi.org/10.1016/j.scienta.2019.108835
  32. Seifi, H.S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytologist, 199(2), 490–504. https://doi.org/10.1111/nph.12283
  33. Shenstone, E., Lippman, Z., & Van Eck, J. (2020). A review of nutritional properties and health benefits of Physalis Plant Foods for Human Nutrition, 75(3), 316–325. https://doi.org/10.1007/s11130-020-00821-3
  34. Soleimani Aghdam, M., Mukherjee, S., Flores, F.B., Arnao, M.B., Luo, Z., & Corpas, F.J. (2023). Functions of melatonin during postharvest of horticultural crops. Plant & Cell Physiology, 63(12), 1764–1786. https://doi.org/10.1093/pcp/pcab175
  35. Song, L., Wang, J., Shafi, M., Liu, Y., Wang, J., Wu, J., & Wu, A. (2016). Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate-glutathione (AsA-GSH) cycle in postharvest peach fruit. Journal of Agricultural and Food Chemistry64(22), 4665–4674. https://doi.org/10.1021/acs.jafc.6b00623
  36. Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126–145. https://doi.org/10.1111/jipb.12993
  37. Sun, Q., Liu, L., Zhang, L., Lv, H., He, Q., Guo, L., Zhang, X., He, H., Ren, S., Zhang, N., Zhao, B., & Guo, Y.D. (2020). Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science, 298, 110580. https://doi.org/10.1016/j.plantsci.2020.110580
  38. Taghipour, L., & Assar, P. (2022). The effect of postharvest polyamine application on the physicochemical traits, bioactive compounds, and antioxidant activity of sweet lime fruit. Iranian Journal of Horticultural Science and Technology, 23(1), 167–178. (In Persian with English abstract). https://journal-irshs.ir/article-1-589-en.html.
  39. Taghipour, L., Rahemi, M., Assar, P., Mirdehghan, S.H., & Ramezanian, A. (2021). Intermittent warming as an efficient postharvest treatment affects the enzymatic and non-enzymatic responses of pomegranate during cold storage. Journal of Food Measurement and Characterization, 15(1), 12–22. https://doi.org/10.1007/s11694-020-00607-w
  40. Tan, D.X., Chen, L.D., Poeggeler, B., Manchester, L.C., & Reiter, R.J. (1993). Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocrine Journal, 1(1), 57–60.
  41. Tian, S. (2013). Molecular mechanisms of fruit ripening and senescence. Chinese Bulletin of Botany, 48(5), 481. https://doi.org/10.3724/SP.J.1259.2013.00481
  42. Wang, F., Zhang, X., Yang, Q., & Zhao, Q. (2019). Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chemistry, 301, 125311. https://doi.org/10.1016/j.foodchem.2019.125311
  43. Xu, B.Y., Su, W., Liu, J.H., Wang, J.B., & Jin, Z.Q. (2007). Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta, 226(2), 529–539. https://doi.org/10.1007/s00425-007-0502-6
  44. Xu, T., Chen, Y., & Kang, H. (2019). Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Frontiers in Plant Science, 10, 1388. https://doi.org/10.3389/fpls.2019.01388
  45. Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., Ren, S., Zhao, B., & Guo, Y.D. (2016). Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers in Plant Science, 7, 197. https://doi.org/10.3389/fpls.2016.00197
  46. Zhang, Y., Huber, D.J., Hu, M., Jiang, G., Gao, Z., Xu, X., Jiang, Y., & Zhang, Z. (2018). Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66(30), 7475–7484. https://doi.org/10.1021/acs.jafc.8b01922
  47. Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., Cao, K., & Zou, Z. (2016). Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science7, 1814. https://doi.org/10.3389/fpls.2016.01814
  48. Zheng, H., Liu, W., Liu, S., Liu, C., & Zheng, L. (2019). Effects of melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit. Food Chemistry, 299, 125116. https://doi.org/10.1016/j.foodchem.2019.125116

 

CAPTCHA Image