Document Type : Research Article
Authors
1 West Azarbaijan Agriculture and Natural Resources Research Center, AREEO, Urmia
2 Zanjan Agriculture and Natural Resources Research Center, AREEO, Zanjan
3 Jehade Agriculture Management Tekab
Abstract
Introduction: Grapevine (Vitis vinifera L.) is one of the oldest and most important perennial crops in the world. Several native grapevine genotypes, highly appreciated for their organoleptic characteristics and commercial potential are still cultivated in Iran. Developing viticulture requires the conservation of autochthonous varieties that have evolved several mechanisms enabling them to cope with the local bioclimatic and edaphic conditions. Nutrition is a key component of vineyard management that has the potential to influence various factors in vine production that includes fruit set and quality. To develop suitable nutrient plant growers need to have an understanding of the factors such as cultivars, rootstocks, soil type, irrigation type and nutrients that they are applying in the vineyard. The uptake of nutrients from the soil depends on different factors namely; their soluble content in it, soil pH, plant growth stage, plant genetics and types of soil and fertilizers. Plant species have a variety of capacities in removing and accumulating elements. Vigorous genotypes are more capable of finding the necessary nutrients from the surrounding soil environment. This indicates that it does not require as much nutrient as poor vigor genotypes. So, for sustainable viticulture, it is important to know the interactive influences of cultivars, soil characters, climatic conditions, and irrigation type on vine productivity.
Materials and Methods: To evaluate and compare the amount of macronutrient elements (N, P, K, Mg and Ca) and micronutrient elements (B, Zn and Mn) in petiole of some Iranian grapevine cultivars including Bidanesefid Qazvin- Peikany Kashmar- Khalili Shiraz-Rasha and four foreign cultivars Thompson seedless, Flame seedless, Perlette and Black seedless,This study was carried out as –randomized complete blocks design -with-four replications in the Kahriz Horticulture Research station -.A total of 30 adult leaves per cultivar were taken from lower, middle and upper regions of the vines bulked together and transported directly to the laboratory. They were oven-dried for 48 h at 70 °C and grounded to pass through a 1 mm diameter sieve. The concentrations of the -mineral elements were determined using an atomic absorption and spectrophotometer.
Results and Discussion: The results showed there was significant difference among study cultivars in respect of elements concentration in petiole-. Among 8 cultivars, the highest and the lowest petiole N concentration were recorded in Flame seedless-and Peikany and Rasha cultivars respectively. P -concentration in Bidane sefid Qazvin was significantly higher than all tested cultivars. The highest and the lowest Mg amounts were measured in Peikany and Bidanesefid Qazvin, respectively. In petiole of cultivars B concentration was in the range of toxicity except Rasha that had the concentration less than -other cultivars. Iranian cultivars had lesscap ability to absorb Zn than abroad cultivars. The highest and lowest Zn were recorded in petioles of Thompson seedless and Peikany cultivars, respectively. It was reported that the mineral content of a grapevine is a combined result of the root systems ability to absorb, trans locate and accumulate the different nutrients. Previous investigations had clearly stated the differences in nutrients uptake and content of many grape cultivars. Furthermore, grape cultivars have shown differences in their nutrients uptake and distribution. These differences may be explained in different ways. First, cultivar may have different absorption capability or tendency for some specific minerals. Second, differences exist in translocation and distribution of nutrients and third, hormone synthesis of cultivar roots and their translocation is done. Finally, some nutrients might be assimilated mostly by roots; thus reducing the amount translocated to the shoots. In addition, some grape varieties may alter soil chemical characters and play a role in improving nutrients uptake. The rootstocks of V. labruscaand scions grafted on them achieve a higher ability in uptaking iron, even in markedly alkaline soils. Such tolerant varieties can mobilize iron by reducing soil pH at root level, thanks to their ability to emit H+ and/or organic acids.In the latter case, iron is absorbed and transferred as a complex. Roots of some cultivars can also reduce Fe3+ to Fe2 + encouraging its migration from roots to leaves.
Conclusion: The studied grapevine cultivars displayed a considerable level of variability based on mineral content analysis. The results suggested that significant differences existed in the leaf petioles elemental concentrations among the grapevine cultivars analysis that might be in due part to the ability of the cultivar to accumulate metals. This study could be also used as a reference for grape growers to help them decide the best varieties that might grow under their soil conditions giving the best growth and yield productivity.
Keywords
Send comment about this article