نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه زابل

چکیده

به‌منظور بررسی اثرات تنش خشکی و کودهای آلی (کمپوست و ورمی کمپوست) بر برخی صفات فیزیولوژیکی و بیوشیمیایی گاوزبان آزمایشی به‌صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در دانشگاه زابل اجرا گردید. تیمارها شامل سطوح تنش خشکی به‌صورت شاهد یا 100درصد ظرفیت زراعی، 80 درصد ظرفیت زراعی (تنش ملایم) و 60 درصد ظرفیت زراعی (تنش شدید) به‌عنوان عامل اصلی و مصرف کود آلی شامل شاهد (بدون مصرف کود)، 40 تن کمپوست در هکتار و 4 تن ورمی کمپوست در هکتار به‌عنوان عامل فرعی در نظر گرفته شدند. نتایج نشان داد که با افزایش شدت کم‌آبی از شاخص کلروفیل (SPAD) کاسته و بر میزان فلورسانس کلروفیل افزوده شد. بیش‌ترین میزان کلروفیل a (383/11 میلی‌گرم برگرم) در شرایط عدم تنش و کاربرد کمپوست به‌دست آمد و با افزایش شدت تنش از میزان آن کاسته شد و کم‌ترین آن (763/5) در تنش شدید و عدم کاربرد کود به‌دست آمد. همین روند برای میزان کلروفیل کل نیز مشاهده شد. بیش‌ترین مقدار آنزیم‌های کاتالاز، آسکوربات پراکسیداز و پلی‌فنل اکسیداز در شرایط تنش شدید و عدم کاربرد کود و کم‌ترین آن‌ها در 100 درصد ظرفیت زراعی و کاربرد کمپوست به‌دست آمد. بیش‌ترین مقدار پرولین در تنش شدید و عدم کاربرد کود (213/20 میکرومول بر گرم وزن تر) بود که اختلاف معنی‌داری با سایر ترکیبات تیماری داشت. تنش خشکی وزن خشک در گیاه گاوزبان را متأثر کرده و آن را کاهش داد و بیش‌ترین میزان عملکرد خشک (6/13482کیلوگرم در هکتار) در سطح آبیاری شاهد به‌دست آمد که اختلاف معنی‌داری با سطح تنش ملایم (80 درصد ظرفیت زراعی) نداشت. به‌طورکلی در شرایط تنش خشکی، تولید و میزان پرولین و آنزیم‌های پاک کننده پراکسید هیدروژن و رادیکال‌ها افزایش می‌یابد و با توجه به نتایج به‌دست آمده، جهت داشتن عملکرد خشک قابل قبول از گاو زبان، آبیاری تا 80 درصد ظرفیت زراعی مناسب به‌نظر می‌رسد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Drought Stress and Organic Fertilizer on Activity of Some Antioxidant Enzymes, Photosynthetic Pigments, Proline and Yield of Borage (Borago officinalis )

نویسندگان [English]

  • Rana Gholinegad
  • Alireza Sirousmehr
  • Barat Ali Fakheri

Zabol University

چکیده [English]

In order to study the effects of drought stress and organic fertilizers (compost and vermicompost) on some physiological and biochemical characteristics of borage, an experiment with complete randomized block design in split plot arrangement with three replications was conducted in Zabol University, Zabol, Iran. The treatments included 3 levels of stress as a witness or 100% of field capacity, 80%field capacity(mild stress) and 60% field capacity (tension) as the main factor and use organic fertilizers, including control (nofertilizer), consuming 40 tons of compost per ha, and consumes 4 ton of vermicompost per ha, were considered as minor. Results showed that chlorophyll index (SPAD) decreased with increasing severity of dehydration and the amount of chlorophyll fluorescence were added. The highest chlorophyll a (11.383 mg/g) in conditions stress and application of compost obtained and it was reduced with increasing stress intensity level and the lowest (5.763mg/g) in severe stress and lack of fertilizer application, respectively. The same trend was observed for total chlorophyll content. Most of the enzymes catalase, ascorbate peroxidase and polyphenol oxidase in conditions of severe stress and lack of application and at least 100% of field capacity and compost application, respectively. Proline at 60% field capacity and no application of any fertilizer (20.213 mmol/g wet weight) was a significant difference with other compounds treatments. Drought stress affected the dry weight of the borage plant and cut it and dry yield (6.134826 kg/per ha) in the water level control was not a significant difference with mild stress (80% field capacity). Overall production in drought conditions and the amount of enzyme scavengers, hydrogen peroxide and free radicals increases , then, in order to have acceptable performance of dry borage, crop irrigation to 80% capacity seems appropriate.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Chlorophyll
  • Compost
  • Drought stress
  • Vermicompost
1- بابایی ک.، امینی م.، مدرس ثانوی ع. و جباری ر. 1389. اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول در (Thymus vulgaris L.) آویشن. فصلنامة علمی-پژوهشی تحقیقات گیاهان دارویی و معطر ایران، 26)2).
2- حیدری شریف‌آباد، ح. 1379. گیاه، خشکی و خشکسالی، انتشارات موسسه تحقیقات جنگلها و مراتع، تهران، صفحه 200.
3- ربیعی و. 1382. واکنش‌های فیزیولوژیکی و مورفولوژیکی برخی ارقام انگور به تنش خشکی. رساله دکتری رشته علوم باغبانی. دانشگاه تهران، صفحه 125.
4- زرگری ع. 1375. گیاهان دارویی. انشارات دانشگاه تهران. جلد سوم. چاپ ششم. صفحه 511.
5- کافی م.، برزوئی ا.، صالحی م.، کمندی ع.، معصومی ع. و نباتی ج. 1388. فیزیولوژی تنش‌های محیطی در گیاهان. انتشارات جهاد دانشگاهی مشهد.
6- هاشمی‌مجد ک. 1389. تولید کمپوست و ورمی کمپوست از ضایعات آلی. انتشارات آییژ.
7- Abraham C.P., Viswagith V., Prabha S., Sundhar K., and Malliga P. 2007. Effect of coir pith based cyanobacterial basal and foliar biofertilizer on Baseella rubra L. Acta Agriculturae Slovenica. pp: 59-63.Academy of Science, 91: 11-17.
8- Apel K., and Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55: 373-399.
9- Arora A., Sairam R.K., and Sriuastava G.C. 2002. Oxidative stress and antioxidative system in plants. Annual Review of Current Science, 82: 1227–1238.
10- Atiyeh R.M., Arancon N., Edwards C.A., and Metzger J.D., 2002. Incorporation of earthwormprocessed organic wastes into greenhouse container media for production of marigolds. Bioresource Technology, 81(2):103-108.
11- Ayala S., and Prakasa Rao E.V.S. 2002. Perspective of soil fertility management with a focus on fertilizer use for crop productivity, Current Science, 82(7):797-807.
12- Barker D.J., Sulivan C.Y., and Moser R.C. 1993. Water deficit effects on osmotic potential , cell wall elasticity, and proline in five forage grasses. Agronomy Journal, 85:270-275.
13- Bates L. S., Waldren S. P., and Teare I. D. 1973. Rapid determination of free proline for water–stress studies. Plant and Soil, 39: 205-207.
14- Beers G.R., and Sizer I.V. 1952. A spectrophotometric method for measuring the break down of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195: 133-140.
15- Boyer J.S. 1987. Plant productivity and environment potential for increasing crop plant productivity, genotypic selection. Science, 218: 443–448.
16- Cho U., and Seo N. 2005. Oxidative stress in Arabidopsis thalina exposed to cadmium is due to hydrogen proxide accumulation. Plant Science, 168:113-120.
17- Davis W.J., and Volkenburg E. 1995. The influence of water deficit on the factors controlling the daily pattern of growth of Bean. Journal of Experimental Botany, 54: 987-999.
18- Dufault R.J., Rushing J., Hassal R., Shepard B.M., Mc Cotcheon G., and Ward B. 2003. Infloence of fertilizer on growth and marker compound of field grown Echinacea species and feverfew. Scientia Horticulture, 98: 61-69.
19- Evan R.D., Black R.A., Loesher W.H., and Fellows R.J. 1992. Osmotic relations of the drought-tolerant shrub Artimisia tridentata in response to water stress. Plant Cell, and Environment,15: 49-59.
20- Follows R.J., and Boyer J.S. 1996. Structure and activity of chloroplasts of sunflower leaves having various water potentials. Planta, 132: 229-239.
21- Garratt L.C., Janagoudar B.S., Lowe K.C., Anthony P., Bower J.B., and Devey M.R. 2002. Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine, 33:502-511.
22- Giardi M.T., Cona A., Geiken D., Kucera T., Masojidek J., and Mattao A.K. 1996. Long-term drought stress induced structural and functional reorganization of photosystem II. Planta, 199:118-125.
23- Gzik A. 1996. Accumulation of prolin and pattern of α- amino acids in sugar beet plants in response to osmotic, water and salt strees. Environmental and experimental botany, 36(1): 29-38.
24- Habibi D., Mashdi Akbar Boojar M., Mahmoudi A., Ardakani M.R., and Taleghani D. 2004. Antioxidative enzyme in sunflower subjected to drought stress. 4th International Crop Science Congress, pp:1-4.
25- Heber U., Tyankova L., and Santarius K.A. 1971. Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim Biophys Acta, 241 (2); 578-592.
26- Jiang Y., and Huang N. 2001. Drought and heat sress injury to two cool-season turfgrasses in relation to antiaxdant metabolism and lipid peroxidation. Crop Science, 41: 436-442.
27- Kar M., and Mishra D. 1976. Catalase, proxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiology, 57: 315 - 9.
28- Kuznetsov W., and Shevyankova N.L. 1997. Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum, 100: 320-326.
29- Lalande R., Gagnon B., Simard R.R., and Cote D. 2000. Soil microbial biomass and enzyme activity following liquid hog manure in a long term field trial. Canadian Journal of Soil Sciences, 80: 263-269.
30- Monakhova O.F., and Chernyadev I.I. 2002. Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied and Environmental Microbiology, 38: 373–380.
31- Nakano Y., and Asada K. 1981. Hydrogen peroxide is scavenged by ascarbate specific peroxidases in spinach Chloroplasts. Plant cell physiology, 22: 867-880.
32- Nayyar H., and Gupta D. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58:106–113.
33- Orozco F.H., Cegarra J., Trujillo L.M., and Roig A. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils, 22: 162-166.
34- Paleg L.G., and Spinall D. 1981. The Physiology and Biochemistry of Drought Resistance in Plant. Academic Press. New York, pp240.
35- Rangana S. 1979. Mannual for analysis of fruit and vegetable products. Tata McGraw Hill Co. Pvt.Ltd., New Delhi., pp. 73-76.
36- Resende M.L.V., Nojosa G.B.A., Aguilar M.A.G., Silva L.H.C., Perez J.O., Andrade G.C.G., Carvalho G.A., and Castro R.M. 2002. Induction of resistance in cocoa against Crinipellis perniciose and Verticillium dahliae by Acibenzolar-smethyl (BION). Plant Pathology. 51:621-628.
37- Sairam R.K., Deshmukh P.S., and Saxena D.C. 1998. Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia Plantarum, 41(3): 387-394.
38- Schutz M., and Fangmeir E. 2001. Growth and yield responses of spring wheat (Triticum aestivum L. cv.Minaret) to elevated CO2 and water limitation. Environmental Pollution, 114:187-194.
39- Sharma A.K. 2004. Biofertilizers for sustainable Agriculture .Agrobios,India.351pp.
40- Tas S., and Tas B. 2007. Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World Journal of Agricultural Sciences, 3: 178–183.
41- Urbanek H., Kuzniak-Gebarowska E., and Herka K. 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polyglacturonase. Acta Physiol. Plant, 13: 43-50.
42- Wise R.R., and Naylor A.W. 1989. Chillingenhanced photo-oxidation, the peoxidative destruction of lipids during chilling injury to photosynthesis and ultrasracture. Plant Physiology, 83: 278-282.
43- Xu Y.C., Zhang J.B., Jiang Q.A., Zhou L.Y., and Miao H.B., 2006. Effects of water stress on the growth of Lonicera japonica and quality of honeysuckle. Zhong Yao Cai., 29(5): 420-423.
44- Yordanov I., and Tsonev T. 2003. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology ,Special issue: 189- 206.
CAPTCHA Image