با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

این مطالعه با هدف ارزیابی اثر تلقیح میکروبی بر عملکرد و اجزای عملکرد بادرشبی و لوبیا قرمز در کشت خالص و مخلوط بصورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با سه تکرار در شرایط گلخانه­ای در دانشگاه ارومیه اجرا گردید. فاکتورها شامل تلقیح میکروبی (باکتری­های PGPR، AMF، تلقیح تلفیقی PGPR + AMF و بدون تلقیح) و الگوهای کشت [(یک ردیف بادرشبی +یک ردیف لوبیا (1:1)، دو ردیف بادرشبی+ دو ردیف لوبیا (2:2)، دو ردیف بادرشبی+ یک ردیف لوبیا (2:1)، یک ردیف بادرشبی+ دو ردیف لوبیا (1:2) و کشت خالص لوبیا و بادرشبی] بودند. صفات مورد بررسی برای لوبیا شامل ارتفاع بوته، تعداد شاخه­های فرعی، تعداد نیام در بوته، تعداد دانه در نیام، وزن هزار دانه، عملکرد دانه و زیست­توده، برای گیاه بادرشبی شامل ارتفاع بوته، تعداد برگ، تعداد شاخه­های فرعی، عملکرد زیست­توده و درصد اسانس بود. نتایج نشان داد که صفات اندازه­گیری شده برای دو گونه تحت تأثیر الگوهای مختلف کشت قرار گرفتند. بیشترین عملکرد زیست­توده و عملکرد دانه لوبیا به­ترتیب با 70/9 و20/3 گرم بوته از کشت خالص لوبیا حاصل شد. اﺛﺮ ﻧﻮع تلقیح میکروبی ﻧﻴﺰ ﺑﺮ صفات مورد بررسی لوبیا و بادرشبی معنی­دار بود. به­طوری­که بیشترین عملکرد دانه لوبیا و بالاترین درصد اسانس (52/0 درصد) بادرشبی در تیمار تلقیح تلفیقی  AMF+PGPR مشاهده گردید. . آنالیز ترکیبات شیمیایی اسانس بادرشبی نشان داد که Geranyl acetate، Geranial، Geraniol و Neral ترکیبات اصلی بودند که در کشت مخلوط تحت کاربرد کودهای زیستی بهبود یافتند. همچنین، نسبت برابری زمین در تمام الگوهای کشت مخلوط بیشتر از یک بود و بالاترین میزان این شاخص (67/1) از تیمار کشت مخلوط 2:2 در شرایط تلقیح با PGPRها حاصل شد که معادل 67 درصد افزایش در بهره­وری استفاده از زمین (نسبت به کشت خالص دو گونه) بود. به نظر می­رسد که این الگو می­تواند در بهبود بهره­وری استفاده از زمین­های کشاورزی، به ویژه در نظام­های تولید گیاهان دارویی، مناسب­تر باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Growth Indices of Common Bean (Phaseolus vulgaris L.) and Moldavian balms (Dracocephalum moldavica) at Different Intercropping Patterns in Presence of Microorganisms

نویسندگان [English]

  • Mina Bagheri 1
  • Mohammad Hassan Rasouli-Sadaghiani 1
  • Esmaeil Rezaei-Chiyaneh 2
  • Mohsen Barin 1

1 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

چکیده [English]

Introduction
 The use of intercropping and the potential of microorganisms such as Arbuscular mycorrhizal fungi (AMF) and Plant growth promoting rhizobacteria (PGPR) is one of the important strategies in sustainable agriculture. Intercropping is multiple cropping systems, in which two or more crop species planted simultaneously in a field during a growing season. Of course, this does not mean that in the intercropping, plants can be planted at a time together, but is the purpose that two or more crops are together in one place, during their growing season or at least in a time frame. Therefore, it is possible that plants are different in terms of planting date, and a plant is planted after the other plant. Potential benefits of intercropping are such as high productivity and profitability, improvement of soil fertility, efficient use of resources, reduction in the damages caused by pests and weeds, better lodging resistance and yield stability. On the other hand, the use of AMF and PGPR as biofertilizers can play a role in improving plant nutrition, plant growth and product quality. The aim of this study was to study the effect of AMF and PGPR inoculation on plant growth indices in bean-Moldavian balm intercropping.
Materials and Methods
 This experiment was conducted in the Agricultural Research Greenhouse of Urmia University, Located in 11 kilometers Sero road of the city of Urmia, Iran (latitude 36° 57′ N, longitude 45° 24′ E and 1321 m elevation) in 2017. The climate of the area is a Hot-summer Mediterranean climate bordering continental climate with cold winters, mild springs, hot dry summers, and warm autumns. This experiment was carried out in a factorial based on a randomized complete block design with three replications. The factors including microbial inoculation {(AMF, PGPR, AMF+PGPR and without microbial inoculation) and planting patterns (Sole cropping of Moldavian balms and bean, 1 row bean+ 1 row Moldavian balms (1:1), 2 rows bean+ 1 row Moldavian balms (2:1), 1 row bean+ 2 rows Moldavian balms (1:2) and 2 rows bean+ 2 row Moldavian balms (2:2)}. For this purpose, soil samples were prepared from Naqhadeh city in West Azerbaijan Province in Iran. In order to greenhouse tests, the soils added to the pots (in each pot containing 45 kg of soil). In treatments, soil used with microbial inoculation. Microbial strains were used for microbial inoculation including PGPR (P. aeruginosa, P.fluorescens and P. putida) and AMF (Funneliformis mosseae, Rhizophagus irregularis and Claroideoglomus etunicatum). For plant cultivation, been (Phaseolus vulgaris L.) and moldavian balms (Dracocephalum moldavica) seeds cultivar were grown in pots. At the end of the growth period, the characteristics of the agronomic traits in the bean plant were including plant height, number of seeds per pod, 1000 seed weight, biomass yield and Seed yield, and in Moldavian Balm were including, plant height, biomass yield and essential oil percentage were determined. In addition, the land equivalent ratio (LER) was calculated to determine the advantages of intercropping. The analysis of variance for the obtained data was done by statistical analysis system (SAS 9.4) software. The mean comparison was done using the Duncan test at the 5% probability level.
Results and Discussion
 The results showed that the different intercropping and microbial inoculation had a significant effect on all traits, in Moldavian balms and common beans. All the plant growth indices in common bean-Moldavian balm intercropping were the highest in the combined treatment of AMF +PGPR, compared to another treatment. The highest and the lowest seed and biomass yield of bean were achieved in sole cropping with 3.20 and 9.70 g and 1:1 with 1.57 and 4.41 g, respectively. The maximum biomass yield and other traits of Moldavian balm obtained under sole cropping, while essential oil percentage was higher in all intercropping patterns than in sole cropping patterns. The main constituents of Moldavian balms essential oil were Geranyl acetate, Geranial, Geraniol and Neral. The highest LER value (1.67) was obtained from 2:2 intercropping in PGPR inoculation.
Conclusion
 In general, the results showed that all of the plant growth indices of Moldavian balms and bean in sole cropping were higher than other intercropping patterns; however higher LER was observed in intercropping with microbial inoculation. This shows more exploitation of unit area in intercropping. In addition, the greater amount of LER in replacement intercropping than additive intercropping highlights the necessity of appropriate density of plants per unit area in the intercropping. It can be concluded that application of intercropping with combined application of AMF and PGPR leads to improvement on yield and yield components of plant.

کلیدواژه‌ها [English]

  • Essential oil
  • Intercropping
  • Land equivalent ratio
  • Microbial inoculation
  • Sustainable agriculture
  1. Alizadeh K., Rezaei-Chiyaneh E., Amirnia R., and Barin M. 2019. The Effect of Combined Application of PGPR and Mycorrhizal Fungi in Intercropping of Linseed (Linum usitatissimum) and Faba bean (Vicia faba L.) on Growth Characteristics and Seed Yield. Iranian Journal of Field Crops Research 17(1): 123-140. (In Persian). https://doi.org/10.22067/GSC.V17I1.71955.
  2. Amani Machiani M., Javanmard A., Morshedloo M.R., and Maggi F. 2018. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Industrial Crops and Products 111: 743–754. https://doi.org/10.1016/j.indcrop.2017.11.052.
  3. Amani Machiani M., Javanmard A., Morshedloo M.R., and Maggi F. 2018. Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita) intercropped with faba bean (Vicia faba L.). Journal of Cleaner Production 171: 529–537. https://doi.org/10.1016/j.jclepro.2017.10.062.
  4. Amani Machiani M., Rezaei-Chiyaneh E., Javanmard A., Maggi F., and Morshedloo M.R. 2019. Evaluation of common bean (Phaseolus vulgaris) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. Journal of Cleaner Production 235: 112-122. https://doi.org/10.1016/j.jclepro.2019.06.241.
  5. Banchio E., Xie X., Zhang H., and Pare P.W. 2009. Soil bacteria elevate essential oil accumulation and emissions in sweet basil. Journal of Agricultural and Food Chemistry 57: 653-657. https://doi.org/10.1021/jf8020305.
  6. Clevenger J.F. 1928. Apparatus for determination of essential oil. Journal of the American Pharmacists Association 17: 346-349. https://doi.org/10.1002/jps.3080170407.
  7. Daneshnia F., Amini A., and Chaich M.R. 2015. Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant. Agriculture Water Management 164: 331-339. https://doi.org/10.1016/j.agwat.2015.10.036.
  8. Hamzei J., and Sedighi Kamel J. 2020. Effect of Green Bean (Phaseolus vulgaris L.) Additive iIntercropping on Growth, Potato (Solanum tuberosum L.) Equivalent Yield and Land Use Efficiency under Different Levels of N Fertilizer. Journal of Agroecology 11(4): 1409-1422. (In Persian). https://doi.org/22067/JAG.V11I4.70706.
  9. Hasanzadeh Aval F., Kocheki A.R., Khazaei Nassiri H.R., and Mahallati M. 2010. Effect of density on yield and agronomic characteristics of savory and Persian clover intercropping. Iranian Journal of Field Crop Research 8(6): 920-929. (In Persian). https://doi.org/22067/GSC.V8I6.8038.
  10. Hashemzadeh F., Mirshekari B., Yarnia M., Rahimzadeh Khoei F., and Tarinejhad A. 2014. Effect of bio and chemical fertilizers on yield, yield components and mycorrhizal colonization percent on common dill (Anethum graveolens). Iranian Journal Crop Ecophysiology 31(3): 257-270. (In Persian). https://doi.org/10.22067/JAG.V10I3.30996.
  11. Hirpa T. 2014. Effect of intercrop row arrangement on maize and haricot bean productivity and the residual soil. World Journal of Agricultural Sciences 4: 69-77. ID: 55222743.
  12. Ilbas A.I., and Sahin S. 2007. Glomus fasiculatum inoculation improves soybean production. Acta Agric. Soil and Plant 55: 287-292. https://doi.org/10.1080/09064710500218761.
  13. Katebi R., Khalili Mahalle J., Khwarazmi K., Valilo R., and Pirzad A. 2016. Effect of plant density on some agronomical traits of corn in intercropping with cowpea. Journal of Agricultural Science and Sustainable Production 26(1): 1-18. (In Persian)
  14. Khorramdel S., Koocheki A., Nassiri Mahallati M., and Ghorbani R. 2011. Effect of biofertilizers on the yield and yield components of black cumin (Nigella sativa L.). Iranian Journal of Field Crops Research, 8(5): 758-766. (In Persian). https://doi.org/10.22067/GSC.V8I5.8017.
  15. Koocheki A., Fallahpour F., and Aminghafouri A. 2020. Determining the best width of strip in row intercropping of sesame (Sesamum indicum) and flax (Linum usitatissimum L.) and its effect on yield, yield components and weed density. Journal of Agroecology 11(4): 1483-1496. (In Persian). https://doi.org/10.22067/jag.v11i4.29585.
  16. Mohammadi H., and Rezaei-Chiyaneh 2019. Effect of vermicompost application on seed yield and quality in fababean (Vicia faba L.) and fennel (Foeniculum vulgare L.) intercropping. Iranian Journal of Crop Sciences 21(2): 139-154. (In Persian). https://doi.org/10.29252/abj.21.2.139.
  17. Nagananda G.S., Das A., Bhattacharya S., and Kalpana T. 2010. In vitro studies on the effects of bio-fertilizers (Azotobacter and Rhizobium) on seed germination and development of (Trigonella foenum-graecum) using a novel glass marble containing liquid medium. International Journal of Botany 6: 394-403. https://doi.org/10.3923/ijb.2010.394.403.
  18. Raei Y., Shariati J., and Weisany W. 2015. Effect of Biological Fertilizers on Seed Oil, Yield and Yield Components of Safflower (Carthamus tinctorius ) at Different Irrigation Levels. Journal of Agricultural Science and Sustainable Production 25(1): 65-84. (In Persian)
  19. Rahimzadeh S., Sohrabi Y., Heidari G.H., and Pirzad A. 2012. Effect of biofertilizers application on some morphological characteristics and yield of dragonhead (Dracocephalum moldavica). Iranian Journal of Horticulture Science 25(3): 335-343. (In Persian). https://doi.org/10.22067/jhorts4.v1390i0.11378.
  20. Raza M.A., Feng L.Y., Van Der Werf W., Cai G.R., Khalid M.H.B., Iqbal N., and Khan I. 2019. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food and Energy Security 8(3): 170. https://doi.org/10.1002/fes3.170.
  21. Rezaei-Chiyaneh E., and Dabbagh Mohammadi Nasab A. 2014. Evaluation of integrated application of biofertilizers on quantitative and qualitative yield of ajowan in strip intercropping with of fenugreek. Journal of Agroecology 3(6): 582-594. (In Persian). https://doi.org/22067/jag.v6i3.25814.
  22. Rezaei-Chiyaneh E., and Gholinezhad E. 2015. Agronomic characteristics of intercropping of additive series of chickpea (Cicer arietinum) and black cumin (Nigella sativa L.). Journal of Agroecology 7(3): 381-396. (In Persian). https://doi.org/10.22067/JAG.V7I3.35858.
  23. Rezaei-Chiyaneh E., Rasouli Y., Jalilian J., and Ghodsi M. 2019. Evaluation of quantitative and qualitative yield of chickpea (Cicer arietinum L.) and barley (Hordeum vulgare L.) in intercropping affected by biological and chemical fertilizers in supplemental irrigation condition. Journal of Agroecology 11(1):69-85. (In Persian). https://doi.org/22067/jag.v11i1.71201.
  24. Rezaei-Chiyaneh E., Amani Machiani M., Javanmard A., Maggi F., and Morshedloo M.R. 2020. Vermicompost application in different intercropping patterns improves the mineral nutrient uptake and essential oil compositions of sweet basil (Ocimum basilicum). Journal of Soil Science and Plant Nutrition 21(1): 450-466. https://doi.org/10.1007/s42729-020-00373-0.
  25. Rezaei-Chiyaneh E., Amirniaa R., Amani Machiani M., Javanmard A., Maggi F., and Morshedloo M.R. 2020. Intercropping fennel (Foeniculum vulgare) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Scientia Horticulturae Journal 261: 1-11. https://doi.org/10.1016/j.scienta.2019.108951.
  26. Rezaei-Chiyaneh E., Mahdavikia H., Battaglia M.L., Thomason W.E., and Caruso G. 2021. Intercropping and fertilizer type impact seed productivity and secondary metabolites of dragon’s head and fenugreek. Scientia Horticulturae 287: 110277. https://doi.org/10.1016/j.scienta.2021.110277.
  27. Salahi T., Yadavi A., Salehi A., and Balouchi H. 2019. The effect of mycorrhiza biofertilizer on yield and yield components of linseed (Linum usitatissimum ) and fenugreek (Trigonella foenum-graecum L.) in intercropping. Journal of Agricultural Science and Sustainable Production 29(4): 1-17. (In Persian)
  28. Shokrani F., Jalilian J., Pirzad A., and Rezaei-Chiyaneh E. 2017. Effect of phosphate solubilizing bacteria inoculation on yield's characteristics of dragon's head (Lallemantia iberica) and chickpea (Cicer aritinum) in monoculture and intercropping conditions. Iranian Journal of Rainfed Agriculture 6(2): 228-209. (In Persian). https://doi.org/10.22092/IDAJ.2018.116307.
  29. Singh M., Singh A., Singh R.S., Tripathi A.K., Singh D., and Patra D. 2010. Cowpea (Vigna unguiculata Walp.) as a green manure to improve the productivity of menthol mint (Mentha arvensis L.) intercropping system. Industrial Crops and Products 31: 289–293. https://doi.org/10.1016/j.indcrop.2009.11.004.
  30. Sokhangoy S.H., Ansari K.H., and Eradatmand Asli D. 2012. Effect of bio- fertilizers on performance of dill (Anethum graveolnes L.). Iranian Journal of Plant Physiology 4(2): 547-552. (In Persian). https://doi.org/20.1001.1.22285458.1394.5.19.7.9.
  31. Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., and Sumner M.E. 1996. Methods of soil analysis Part 3- Chemical methods. p. 5-1390. Soil Science Society of America Book Ser.Madison, Wiscons in, USA. https://doi.org/2136/sssabookser5.3.
  32. Vafadar-Yengeje L., Amini R., and Dabbagh Mohammadi Nasab A. 2019. Chemical compositions and yield of essential oil of Moldavian balm (Dracocephalum moldavica) in intercropping with faba bean (Vicia faba L.) under different fertilizers application. Journal of Cleaner Production 239: 118033. https://doi.org/10.1016/j.jclepro.2019.118033.
  33. Vahedi R., Rasouli-Sadaghiani M.H., and Barin M. 2018. The effect of rhizosphere on availability of soil elements in the presence of biochar and compost pruning waste and mycorrhizal inoculation. Journal of Soil Management and Sustainable Production 8(1): 107-124. (In Persian). https://doi.org/22069/EJSMS.2018.14022.1775.
  34. Verma R.K., Chauhan A., Verma R.S., Rahman L., and Bisht A. 2013. Improving production potential and resourses use efficiency of peppermint (Mentha piperita ) intercropped with geranium (Pelargonium graveolens L. Herit ex Ait) under different plant density. Industrial Crops and Products 44: 577-582. https://doi.org/10.1016/j.indcrop.2012.09.019.
  35. Weisany W., Raei Y., Zehtab- Salmasi S., and Sohrabi Y. 2016. Effect of arbuscular mycorrhiza fungi on yield and yield components of common bean (Phaseolus vulgaris ) and dill (Anethum graveolens L.) in mono and intercropping system. Journal of Agricultural Science and Sustainable Production 26(3): 1-19. (In Persian)

 

CAPTCHA Image