با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 گروه علوم و مهندسی شیلات، دانشگاه لرستان، خرم آباد، ایران

چکیده

امروزه استفاده از محیط‌های کنترل شده و روش­های تولید بدون خاک، به­دلیل قابلیت بالای این روش‌ها در استفاده کارآمد از منابع و قابلیت­های کشت فشرده، در حال افزایش است. به منظور بررسی ارزیابی رشد‌، عملکرد و خصوصیات مورفولوژی، فیزیولوژی و بیوشیمیایی پنج گونه نعناع در سیستم هواکشت، آزمایشی در شرایط گلخانه انجام شد. مطالعه‌ ﺑﻪ‌صورت طرح بلوک‌های کامل تصادفی در سه تکرار در گلخانه‌ داﻧﺸﻜﺪه ﻛﺸﺎورزی و منابع طبیعی دانشگاه لرستان در سال 1398 اجرا گردید و آنالیز داده‌ها به صورت آزﻣﺎیش فاکتوریل در ﻗﺎﻟﺐ طرح کرت‌های خرد شده در زمان انجام شد. گونه‌های نعناع (شامل نعناع آبی Mentha aquatica، نعناع پونه Mentha pulegium، نعناع سبز Mentha spicata، نعناع سیبMentha suaveolens  و نعناع فلفلی Mentha piperita) به‌عنوان فاکتور اصلی و برداشت (چین اول و چین دوم) به‌عنوان فاکتور فرعی در نظر گرفته شدند. نتایج نشان داد که گونه‌های نعناع سیب و نعناع سبز بیش­ترین نسبت برگ به ساقه را به ترتیب به میزان 368/1 و 364/1 داشتند. بیش‎ترین سطح برگ، وزن تر و خشک برگ، وزن تر و خشک ساقه، وزن تر و خشک استولون، وزن تر و خشک اندام هوایی، وزن خشک کل بوته و محتوای نسبی آب مربوط به گونه نعناع آبی و پس از آن گونه نعناع فلفلی بود. علاوه بر این گونه نعناع فلفلی بیش­ترین وزن تر ریشه را دارا بود. بیش­ترین میزان کاروتنوئید و کلروفیل در گونه نعناع فلفلی به دست آمد و بیش­ترین میزان فتوسنتز و دی­اکسیدکربن زیر روزنه نیز مربوط به گونه نعناع پونه بود. در این آزمایش اغلب صفات مرتبط با عملکرد شامل سطح برگ، وزن تر و خشک برگ، وزن تر ریشه، وزن تر اندام هوایی، وزن خشک کل بوته، محتوای نسبی آب و فتوسنتز در چین دوم بالاتر بودند. با توجه به نتایج به­دست آمده در مجموع گونه نعناع آبی نسبت به دیگر گونه‌ها از لحاظ اغلب صفات مورد مطالعه برتری نشان داد. در حالی‌که گونه نعناع فلفلی نیز از رشد و عملکرد قابل توجهی برخوردار بود. بنابراین کشت گونه نعناع فلفلی جهت مصارف دارویی و کشت گونه نعناع آبی جهت مصرف تازه‌خوری در سیستم هواکشت مناسب است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Growth, Yield and Morphological and Physiological Characteristics of Five Mint (Mentha spp.) Species in the Aeroponic System under Greenhouse

نویسندگان [English]

  • Maryam Yaghobvand 1
  • Hassan Mumivand 1
  • Mohammad Reza Raji 1
  • Ashkan Banan 2

1 Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Department of Fisheries and Environmental Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Introduction
The aeroponic system is a promising technique for the future of agriculture, growing plants in an air or mist environment without the use of soil or an aggregate medium. In aeroponic, plants are suspended in a closed or semi-closed environment by spraying the plant's dangling roots and lower stem with an atomized or sprayed, nutrient-rich water solution (30). Increased aeration of nutrient solution delivers more oxygen to plant roots in aeroponic in compare to conventional hydroponic systems, stimulating growth and helping to prevent pathogen formation (1). Cultivation of medicinal plants under controlled conditions of aeroponic and hydroponic systems commercially provides a better result in terms of quality improvement, bioactivity and biomass production (5, 4).
Mint (Mentha) is one of the most important genus of Lamiaceae family. Different species of the genus have high economic value, due to their active and aromatic substances and are used as raw materials in food, cosmetics, health, beverage and pharmaceutical industries. M. piperita, M. spicata and M. suaveolens are the most common and popular species of the genus for cultivation. M. aquatica is also a perennial plant of the genus that is cultivated in Europe, North and Northwest Africa and Southwest Asia (2). Aeroponic system is more cost effective than other systems. Because of the reduced volume of solution throughput, less water and fewer nutrients are needed in the system at any given time compared to other nutrient delivery systems. However, due to lack of research and sufficient technical information, the use of aeroponic system is not common among farmers and greenhouse owners. In addition, many tips are not yet scientifically known about the cultivation of different plant species in this system (4). Despite the benefits of aeroponics, no research has been previously conducted on the cultivation of different species of mint in this system. Therefore, the present study was conducted with the aim of investigation of growth, yield and morpho-physiological characteristics of five mint species in the aeroponic system.
Methods and Methods
This study was conducted in greenhouses of faculty of Agriculture and Natural Resources of Lorestan University in 2020. The experiment was performed as a split plot design. Mentha species (including M. aquatica, M. pulegium, M. spicata, M. suaveolens and M. piperita) were considered as the main plot and harvest time (first and second harvests) was used as sub-plot. In each experimental block, one row (with ten plants) of five mint species was planted. In the early stages of growth, plants were fed with half Hoagland nutrient solution and then with complete Hoagland solution. Finally, morphological and physiological traits and some biochemical characteristics of plants were measured. After harvesting the first batch of plants and in order to better evaluation of species in the aeroponics system, all studied traits were measured about two months after the first harvest. Analysis of variance was performed based on the experimental design using SAS software. The comparison of means was also done with the least significant difference (LSD) test at the level of 5%.
Results and Discussion
The results showed that M. spicata and M. suaveolens had the highest leaf to stem ratio. The highest stem dry weight and plant height were related to M. pulegium. While, the highest leaf area, leaf fresh and dry weight, stem fresh and dry weight, stolon fresh and dry weight, shoot fresh and dry weight, total plant dry weight and relative water content were related to M. aquatic, followed by M. piperita. In addition, M. piperita had shown the highest fresh root weight. The highest amount of carotenoid and chlorophyll, photosynthesis rate and CO2 under the stomata was obtained in M. piperita. In this experiment, most of the yield-attributes traits including leaf area, leaf fresh and dry weight, root fresh weight, shoot fresh weight and total plant dry weight, as well as relative water content and photosynthesis rate were higher in the second harvest than the first one.
Conclusion
All studied species in this experiment were successfully growth in the aeroponic system. Due to high water use efficiency, no need for soil and high crop production, mint cultivation in the aeroponic system can be a healthy and profitable alternative to in soil cultivation approach. According to the results of the present study, M. aquatica has shown higher performance than other species in terms of the yield attributes traits (including leaf number, leaf area, fresh and dry weight of plant, fresh and dry weight of shoots and fresh and dry weight of leaves). Among the other species, the highest shoot dry weight and plant dry weight was obtained by M. piperita. Finally, the high potential of M. aquatica and M. piperita for cultivation in the aeroponic system can be concluded.
 

کلیدواژه‌ها [English]

  • Aeroponics
  • M. piperita
  • M. aquatica
  • M. pulegium
  • Photosynthesis
  • Anon. (2009). Mentha Oil Seasonal Report retrieved from. http://www.karvycommodities.com/downloads/karvySpecialReports/karvysSpecialReports_20111012113231.pdf.
  • Asao, T. (2012). (Ed.), Hydroponics: A Standard Methodology for Plant Biological Researches. BoD Books on Demand.
  • Böhme, M., & Pinker, I. (2013). Asian leafy vegetables and herbs cultivated in substrate culture and aeroponics in greenhouse. In International Symposium on Growing Media and Soilless Cultivation 1034: 155-162. https://doi.org/10.17660/ActaHortic.2014.1034.18.
  • Biddinger, E.J., Liu, C., Joly, R.J., & Raghothama, K.G. (1998). Physiological and molecular responses of aeroponically grown tomato plants to phosphorus deficiency. Journal of the American Society for Horticultural Science123(2): 330-333.
  • Calori, A.H., Factor, T.L., Feltran, J.C., Watanabe, E.Y., Moraes, C.C.D., & Purquerio, L.F.V. (2017). Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring). Bragantia76: 23-32. https://doi.org/10.1590/1678-4499.022.
  • Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., & Khan, I.A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/253875.
  • Chiipanthenga, M., Maliro, M., Demo, P., & Njoloma, J. (2012). Potential of aeroponics system in the production of quality potato (Solanum tuberosum) seed in developing countries. African Journal of Biotechnology 11(17): 3993-3999. https://doi.org/10.5897/AJB10.1138.
  • Dannehl, D., Taylor, Z., Suhl, J., Miranda, L., Fitz-Rodriguez, E., Lopez-Cruz, I., & Schmidt, U. (2017). Sustainable cities: viability of a hybrid aeroponic/nutrient film technique system for cultivation of tomatoes. International Journal of Agricultural and Biosystems Engineering 11(6): 470-477.
  • Dorai, M., Papadopoulos, A., & Gosselin, A. (2001). Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21(4): 367-383. https://doi.org/1051/agro:2001130.
  • Gopinath, P., Vethamoni, P.I., & Gomathi, M. (2017). Aeroponics soilless cultivation system for vegetable crops. Chemical Science Review and Letters 6(22): 838-849.
  • Hayden, A.L. (2006). Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. A Publication of the American Society for Hortcultural Science 41(3): 536-538.
  • Hikosaka, Y., Kanechi, M., Sato, M., & Uno, Y. (2015). Dry-fog aeroponics affects the root growth of leaf lettuce (Lactuca sativa cv. Greenspan) by changing the flow rate of spray fertigation. Environmental Control in Biology 53(4): 181-187. https://doi.org/10.2525/ecb.53.181.
  • Hothem, S.D., Marley, K.A., & Larson, R.A. (2003). Photochemistry in Hoagland's nutrient solution. Journal of Plant Nutrition 26(4): 845-854. https://doi.org/10.1081/PLN-120018569.
  • Jie, H., & Kong, L.S. (1998). Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa) to different rootzone temperatures and growth irradiances under tropical aerial conditions. The Journal of Horticultural Science and Biotechnology 73(2): 173-180. https://doi.org/10.1080/14620316.1998.11510961.
  • Kasrati, A., Jamali, C.A., Bekkouche, K., Wohlmuth, H., Leach, D., & Abbad, A. (2014). Plant growth, mineral nutrition and volatile oil composition of Mentha suaveolens subsp. timija (Briq.) Harley cultivated under salt stress conditions. Industrial Crops and Products 59: 80-84.
  • Kawasaki, Y., Matsuo, S., Kanayama, Y., & Kanahama, K. (2014). Effect of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperatures. Journal of the Japanese Society for Horticultural Science MI-001. https://doi.org/10.2503/jjshs1.MI-001.
  • Kernahan, K. (2016). U.S. Patent Application No. 14/341,781.
  • Kumar, P., Mishra, S., Malik, A., & Satya, S. (2011). Insecticidal properties of Mentha species: a review. Industrial Crops and Products 34(1): 802-817. https://doi.org/10.1016/j.indcrop.2011.02.019.
  • Lakhiar, I.A., Gao, J., Syed, T.N., Chandio, F.A., & Buttar, N.A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. Journal of Plant Interactions 13(1): 338-352. https://doi.org/10.1080/17429145.2018.1472308.
  • Lakhiar, I.A., Gao, J., Syed, T.N., Chandio, F.A., Tunio, M.H., Ahmad, F., & Solangi, K.A. (2020). Overview of the aeroponic agriculture–An emerging technology for global food security. International Journal of Agricultural and Biological Engineering 13(1): 1-10. https://doi.org/10.25165/j.ijabe.20201301.5156.
  • Lightenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1.
  • Luo, H.Y., Lee, S.K., & He, J. (2009). Integrated effects of root-zone temperatures and phosphorus levels on aeroponically-grown lettuce (Lactuca sativa) in the tropics. The Open Horticulture Journal2(1). https://doi.org/10.2174/1874840600902010006.
  • Lynch, J., Marschner, P., & Rengel, Z. (2012). Effect of internal and external factors on root growth and development. In Marschner's mineral nutrition of higher plants (pp. 331-346). Academic Press.
  • Mateus-Rodríguez, J., De Haan, S., Barker, I., Chuquillanqui, C., & Rodríguez-Delfín, A. (2011). Response of three potato cultivars grown in a novel aeroponics system for mini-tuber seed production. In II International Symposium on Soilless Culture and Hydroponics 947: 361-367.
  • Movahedi, Z., & Rostami, M. (2020). Production of some medicinal plants in aeroponic system. Journal of Medicinal plants and By-product 9(1): 91-99. https://doi.org/22092/JMPB.2020.122079.
  • Movahedi, Z., Moieni, A., & Soroushzadeh, A. (2012). Comparison of aeroponics and conventional soil systems for potato minitubers production and evaluation of their quality characters. Journal of Plant Physiology and Breeding 2(2): 13-21. (In Persian)
  • Molitor, H., & Fischer, M. (1997). Effect of several parameters on the growth of chrysanthemum stock plants in aeroponics. In International Symposium on Growing Media and Hydroponics 481: 179-186.
  • Mumivand, H., Aghemiri, A., Aghemiri, A., Morshedloo, M.R., & Nikoumanesh, K. (2019). Ferulago angulata and Tetrataenium lasiopetalum: Essential oils composition and antibacterial activity of the oils and extracts. Biocatalysis and Agricultural Biotechnology 22: 101407.
  • Mumivand, H., Babalar, M., Hadian, J., & Tabatabaei, S.M.F. (2010). Influence of nitrogen and calcium carbonate application rates on the minerals content of summer savory (Satureja hortensis) leaves. Horticulture environment and biotechnology, 51(3), 173-177.
  • Mumivand, H., Ebrahimi, A., Morshedloo, M.R., & Shayganfar, A. (2021). Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus). Industrial Crops and Products 164: 113381. https://doi.org/10.1016/j.indcrop.2021.113381.
  • Newall, C.A., Anderson, L.A., & Phillipson, J.D. (1996). Herbal medicines. A guide for health-care professionals. The pharmaceutical press.
  • Nezami, , Nemati, H., Arooei, H., & Bagheri, A.R. (2016). Effect of soil moisture regimes under controlled conditions on growth and biomass in mentha species. Journal of Plant Production 23(2): 51-72. (In Persian)
  • Nooshkam, A., Mumivand, H., Hadian, J., Alemardan, A., & Morshedloo, M.R. (2017). Drug yield and essential oil and carvacrol contents of two species of Satureja ( khuzistanica Jamzad and S. rechingeri Jamzad) cultivated in two different locations. Journal of Applied Research on Medicinal and Aromatic Plants 6: 126-130.
  • Ortiz, E.L. (1992). Encyclopedia of herbs, spices, and flavorings. Dorling Kindersley.
  • Otazu, V. (2010). Manual on quality seed potato production using aeroponics. International Potato Center. https://doi.org/10.4160/9789290603924.
  • Pagliarulo, C.L., Hayden, A.L., & Giacomelli, G.A. (2004). Potential for greenhouse aeroponic cultivation of Urtica dioica. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition 659: 61-66. https://doi.org/10.17660/ActaHortic.2004.659.6.
  • Quattrocchi, U. (1974). CRC World dictionary of plant names: Common names, Scientific Names, Eponyms, Sonyonyms, and Etymology. III MQ.
  • Rakocy, J.E., Bailey, D.S., Shultz, R.C., & Thoman, E.S. (2004). Update on tilapia and vegetable production in the UVI aquaponic system. In New dimensions on farmed Tilapia: proceedings of the sixth international symposium on Tilapia in Aquaculture, held September (pp. 12-16).
  • Ritchie, S.W., Nguyen, H.T., & Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Journal of Crop Science 30(1): 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x.
  • Ritter, E., Angulo, B., Riga, P., Herran, C., Relloso, J., & San Jose, M. (2001). Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Journal of the European Association for Potato Research 44(2): 127-135. https://doi.org/10.1007/BF02410099.
  • Rostami, M., & Movahedi, Z. (2016). Evaluating the effects of Naphthalene acetic acid (NAA) on morpho-physiological traits of valerian (Valeriana officinalis) in aeroponic system. Iranian Journal of Plant Physiology 6(3): 1751-1759.
  • Saha, S., Monroe, A., & Day, M.R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum) under soilless agricultural systems. Annals of Agricultural Sciences 61(2): 181-186. https://doi.org/10.1016/j.aoas.2016.10.001.
  • Spinoff, N.A.S.A. (2006). Innovative partnership program. Publications and graphics department NASA Center for Aerospace Information (CASI).
  • Taheri-Garavand, A., Mumivand, H., Fanourakis, D., Fatahi, S., & Taghipour, S. (2021). An artificial neural network approach for non-invasive estimation of essential oil content and composition through considering drying processing factors: A case study in Mentha aquatica. Industrial Crops and Products 171: 113985. https://doi.org/10.1016/j.indcrop.2021.113985.
  • Tiwari, S. (2008). Plants: a rich source of herbal medicine. Journal of Natural Products 1(0): 27-35.
  • Yang, T., & Kim, H.J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae 256: 108619. https://doi.org/10.1016/j.scienta.2019.108619.
  • Zargari, A. (2014). Medicinal plants. Publisher of Tehran University. Third edition, p. 567. (In Persian)

 

 

CAPTCHA Image