نوع مقاله : مقالات پژوهشی

نویسندگان

گروه اصلاح نباتات، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

پژوهش حاضر با هدف برآورد اجزای واریانس ژنتیکی و قابلیت‌های ترکیب‌پذیری عمومی و خصوصی برخی صفات کمی در ژنوتیپ‌های گوجه‌فرنگی با استفاده از تجزیه لاین×تستر انجام شد. لاین‌های SC و V به‌عنوان پایه مادری و تسترهای L، R و MZ به‌عنوان والدین پدری با یکدیگر تلاقی یافتند و در سال بعدی شش نتاج هیبرید به‌همراه والدین تلاقی‌ها در آزمایشی به‌صورت طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه دانشگاه علوم کشاورزی و منابع طبیعی ساری کشت شدند. صفات مورد ارزیابی شامل تعداد روز تا اولین‌گل‌دهی، زودرسی (تعداد روز از جوانه‌زنی تا اولین رنگ‌گیری میوه)، تعداد میوه در بوته، وزن میوه در بوته (گرم)، عملکرد میوه (گرم)، طول و عرض میوه (سانتیمتر) بودند. نتایج تجزیه واریانس لاین×تستر نشان داد میانگین مربعات والدین و تسترها برای تمامی صفات به‌جز طول و عرض میوه و میانگین مربعات تلاقی‌ها و لاین‌ها برای تمامی صفات به‌جز طول میوه معنی‌دار بودند. اثر لاین×تستر برای تمامی صفات به‌جز تعداد میوه در بوته و طول میوه معنی‌دار بود. لاین SC برای بهبود صفات تعداد روز تا اولین گلدهی، زودرسی، ارتفاع بوته، وزن میوه در بوته و عرض میوه و لاین V برای بهبود صفت تعداد میوه در بوته ترکیب‌شونده‌های عمومی مناسبی با تسترها بودند. تستر L برای بهبود تمام صفات به‌جز عملکرد و تستر MZ برای بهبود صفت ارتفاع بوته بهترین ترکیب‌شونده‌های عمومی با لاین‌های مادری بودند. در میان تلاقی‌ها، تلاقی SC×L برای بهبود صفات زودرسی و عرض میوه و تلاقی‌های SC×R و V×MZ به‌ترتیب برای بهبود صفات ارتفاع بوته و وزن میوه در بوته ترکیب‌شونده‌های خصوصی مطلوبی بودند. بررسی متوسط وضعیت ژنوتیپ‌ها نشان داد از میان ارقام والدینی، لاین SC و از میان تلاقی‌ها، ژنوتیپ L×SC کم‌ترین میانگین‌ها را برای صفات تعداد روز تا اولین گلدهی و زودرسی داشتند. همچنین لاین SC برای صفت تعداد میوه در بوته و تلاقی L×SC برای صفات وزن میوه در بوته، عملکرد و عرض میوه بیش‌ترین میانگین‌ها را به خود اختصاص دادند. در میان والدین، لاین‌های مادری SC و V به‌ترتیب برای صفات تعداد میوه در بوته و ارتفاع بوته، تستر L برای صفت عملکرد میوه و تستر MZ برای صفات وزن میوه در بوته و عرض میوه بیش‌ترین میانگین‌ها را ثبت کردند. در میان تلاقی‌ها، تلاقی L×SC برای صفات وزن میوه در بوته، عملکرد و عرض میوه، تلاقی L×V برای صفت تعداد میوه در بوته و تلاقی V×MZ برای صفت ارتفاع بوته بیش‌ترین میانگین‌ها را به خود اختصاص دادند. به‌طور کلی، بررسی متوسط وضعیت ژنوتیپ‌ها نشان داد هیبرید L×SC برای صفات تعداد روز تا اولین گلدهی، زودرسی، وزن میوه در بوته، عملکرد میوه و طول و عرض میوه برتر از والدین خود می‌باشد. برآورد واریانس‌های افزایشی و غیرافزایشی نشان داد در صفات ارتفاع بوته و وزن میوه در بوته، واریانس افزایشی نقش اصلی داشته و گزینش از میان نسل‌های درحال تفکیک روش اصلاحی مناسبی برای صفات مذکور است. درحالی‌که برای صفات تعداد روز تا اولین گلدهی، زودرسی و عملکرد سهم واریانس غیرافزایشی بیش‌تر از واریانس افزایشی بود، لذا برای بهبود صفات مذکور تولید هیبرید توصیه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Genetic Variance Components and Combining Abilities of Some Quantitative Traits in Tomato Cultivars Using Line×Tester Analysis

نویسندگان [English]

  • Ghaffar Kiani
  • Sasan Golcheshmeh

Department of Plant Breeding, Faculty of Crops Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran

چکیده [English]

Introduction
Tomato is a self-pollinated crop and has a high potential for heterosis production. Tomato has a wide range of diversity in terms of vegetative and fruit traits. Therefore, learning information about the genetics of the tomato plant and the inheritance of its various traits to the next generation will help plant breeders to use appropriate breeding methods to improve them. One of the methods that is used to know the genetic structure of plants, identify parental lines and determine their combining ability is line × tester analysis. Line × tester analysis provides information about general and specific combining of parents and can be useful in estimating different types of gene effects such as additive and non-additive effects. In most of the developed countries, many researches have been done in relation to hybrid production and combining ability among tomato lines, and sometimes the inferred results are different from each other. In Iran, few studies have been done about crossing cultivars and their hybrids, and most of the seeds used by farmers are imported from other countries. Therefore, this study intends to evaluate genetic variance components, general and specific combining ability of some quantitative traits in a number of tomato lines and testers and their hybrids by using line × tester analysis.
 
Materials and Methods
This research was conducted in Sari Agricultural Sciences and Natural Resources University, Mazandaran Province, Iran in 2022. Two modified cultivars SC and V as lines and three modified cultivars L, R and MZ as testers were crossed with each other to create F1 hybrids. Six F1 genotypes and their parents (11 treatments in total) were cultivated in the farm in a randomized complete block design with three replications. The evaluated traits included the number of days to the first flowering, earliness, number of fruits per plant, fruit weight per plant (g), fruit yield (g), fruit length and width (cm). In order to analyze the variance of the experimental design to search for diversity between treatments, to separate the effects of treatments into their components based on line × tester analysis, to mean comparison with Duncan's test, and also to calculate the general and specific combining ability, R statistical software was used. Also, in order to calculate additive and non-additive variances, Singh and Chaudhary's method was used.
 
Results and Discussion
The results of line × tester variance analysis showed that the mean squares of parents and testers were significant for all traits except fruit length and width, and the mean squares of crosses and lines were significant for all traits except fruit length. The effect of line × tester was significant for all traits except the number of fruits per plant and fruit length. The line of SC to improve the number of days to first flowering, earliness, plant height, fruit weight per plant, and fruit width, and the line of V to improve the number of fruit per plant were the best general combiners with testers. The tester of L for improve all traits except yield, and the tester of MZ for improve plant height were the best general combiners with the maternal lines. Among the crosses, the SC×L cross for improve earliness and fruit width, and the SC×R and V×MZ crosses for improve plant height and fruit weight per plant, respectively, were favorable specific combiners. The mean comparison of the genotypes for some important traits showed that among the parental cultivars, the line of SC and among the crosses, the SC×L genotype had the lowest means for the number of days to first flowering and earliness. Also, the line of SC for the number of fruits per plant and the SC×L genotype for fruit weight per plant, yield and fruit width had the highest means. Also, the estimation of additive and non-additive variances indicated that in plant height and fruit weight per plant traits, additive variance plays the main role. While for the traits of the number of days to first flowering, earliness and yield, the contribution of non-additive variance was more than the additive variance.
 
Conclusion
According to the results obtained from this study, in future projects it is recommended to use parents that have significant general combining ability (GCA) for traits. Because such parents easily transfer the trait to their next generation. In this way, the line of SC was a good general combiner for the number of days to first flowering, earliness, plant height, fruit weight per plant and fruit width, and the line of V was a good general combiner for the number of fruits per plant. Among the testers, the tester of L was a good general combiner for improve the number of days to first flowering, earliness, number of fruits per plant, fruit weight per plant, and fruit width, and the tester of MZ recorded a high GCA for the plant height. Also, for the improvement of earliness and fruit width, the SC×L cross and for plant height and fruit weight per plant, SC×R and V×MZ crosses were favorable specific combiner. Mean comparison of genotypes showed that the SC×L cross is superior to its parents for the number of days to first flowering, earliness, fruit weight per plant, fruit yield, and fruit length and width. The traits of plant height and fruit weight per plant are more affected by additive variance, so the best breeding method to improve plant height and fruit weight per plant is selection from among the segregating population. The traits of number of days to first flowering, earliness and yield were affected by non-additive variance, so hybrid production is recommended to improve the mentioned traits.

کلیدواژه‌ها [English]

  • Additive variance
  • Line
  • Non-additive variance
  • Tester
  • Tomato
  1. Akram, A., Khan, T.N., Minhas, N.M., Nawab, N.N., Javed, A., Rashid, S., Atif, M.J., & Shah, S.U.S. (2019). Line × tester analysis for studying various agronomic and yield related traits in field tomato (Solanum lycopersicum). Pakistan Journal of Botany, 51(5), 1-6.
  2. Arefi, S., Nabipour, A., & Samizadeh, H. (2015). Evaluation of combining ability of Sunflower lines based on Line × Tester analysis under water stress and non-stress conditions. Journal of Crop Breeding, 7(15), 115-125. (In Persian with English abstract)
  3. Arora, H., Jindal, S.K., & Chawla, N. (2022). Combining ability analysis for yield and quality traits in exotic lines of tomato (Solanum lycopersicum). Agricultural Research Journal, 59(3), 394-399.
  4. Behzadi, B., & Rakhshanderoo, M. (2014). Determination of the best planting pattern of drip-tape irrigated tomatoes. Seed and Plant Production Journal, 30(4), 389-400. (In Persian with English abstract)
  5. Burdik, E. (1954). Genetics of heterosis for earliness in tomato. Genetics, 39, 488-505.
  6. Carsono, , Desiana, N., Nurrizqi, F.M., Elfakhriano, I.F., Santika, A., Kusumiyati, S., Ohsawa, R., Shimono, A., & Ezura H. (2022). Evaluation of agronomic and fruit quality traits of miraculin transgenic tomato. Biodiversitas, 23(4), 2004-2009.
  7. Choukan, R. (2008). Methods of Genetical analysis of Quantitative Traits in Plant Breeding. Ministry of Jihad-e-Agriculture, Agricultural Extension, Education and Research Organization Seed and Plant Improvement Institute, Chapter 5. pp: 83-95. (In Persian)
  8. Ene, C.O., Abtew, W.G., Oselebe, H.O., Ozi, F.U., Ogah, O., Okechukwu, E.C., & Chukwudi, U.P. (2023). Hybrid vigor and heritability estimates in tomato crosses involving Solanum lycopersicum × S. pimpinellifolium under cool tropical monsoon climate. International Journal of Agronomy, 2023, 1-17. https://doi.org/10.1155/2023/3003355
  9. Farsi, M., & Bagheri, A. (2013). Principles of Plant Breeding. Iranian Student Book Agency, Mashhad, Iran, Chapter 10. pp: 160-166. (In Persian)
  10. GolCheshmeh, S., Kiani, G., KazemiTabar, S.K., & Navabpour, S. (2022). Investigation of morphological diversity and evaluation of tomato lines yield using multivariate statistical analysis. Journal of Horticultural Science, 36(1), 415-427. (In Persian with English abstract). https://doi.org/10.22067/JHS.2021.70173.1048
  11. Gowthami, K.J., Raut, N., Jawadagi, R.S., Chittapur, R., & Haveri, N. (2022). Assessment of combining ability in tomato genotypes (Solanum lycopersicum) for quality traits. Emergent Life Sciences Research, 8(1), 63-69. https://doi.org/10.31783/elsr.2022.816369
  12. Hasan, M.J., Kulsum, M.U., Ullah, M.Z., Rahmana, A.H.M.A., & Eleyash-Mahmuds, M. (2014). Combining ability analysis for yield and yield contributing traits in Tomato (Solanum lycopersicum). Annals of Bangladesh Agriculture, 18(l), 27-36.
  13. Hosseini, S.F., Choukan, R., Bihamta, M.R., & Mohammadi, A. (2013). Estimation of combining ability and gene effect in maize lines using line × tester analysis under drought stress conditions. Iranian Journal of Crop Sciences, 15(1), 60-70. (In Persian with English abstract)
  14. Izzo, A.M., Khojah, H., & Murie, A.M. (2022). Combining ability and heterosis for yield and some fruit traits of tomato. DYSONA Applied Science, 3, 15-23. https://doi.org/10.30493/DAS.2021.295501
  15. Javed, A., Nawab, N.N., Gohar, S., Akram, A., Javed, K., Sarwar, M., Tabassum, M.I., Ahmad, N., & Mallhi, A.R. (2022). Genetic analysis and heterotic studies in tomato (Solanum lycopersicum) hybrids for fruit yield and its related traits. Journal of Breeding and Genetics, 54(3), 492-501. http://doi.org/10.54910/sabrao2022.54.3.3
  16. Kayak, N., Kiymaci, G., Kal, U., Dal, Y., & Turkmen, O. (2022). Determination of morphological characteristics of some prominent tomato genotypes. Selcuk Journal of Agriculture and Food Sciences, 36(1), 106-113.
  17. Kempthorne, O. (1975). An Introduction to Genetic Statistics. John Wiley and Nordskoy, Inc, London, Chapman and Hall, Ltd, pp: 231.
  18. Kiani, G., Nematzadeh, G.A., Kazemitabar, S.K., & Alishah, O. (2007). Combining ability in cotton cultivars for agronomic traits. International Journal of Agriculture and Biology, 9(3), 521-522.
  19. Kimura, S., & Sinha, N. (2008). Crossing tomato plants. Cold Spring Harbor Protocols, 3(11), 1-19. https://doi.org/10.1101/pdb.prot5082
  20. Kumar, K., Sharma, D., Singh, J., Sharma, T.K., Kurrey, V.K., & Minz, R.R. (2018). Combining ability analysis for yield and quality traits in tomato (Solanum lycopersicum). Journal of Pharmacognosy and Phytochemistry, 7(6), 1002-1005.
  21. Kumar, S., & Ramanjini-Gowda, P.H. (2016). Estimation of heterosis and combining ability in tomato for fruit shelf life and yield component traits using Line × Tester method. International Journal of Agronomy and Agricultural Research, 9(3), 10-19.
  22. Lone, S., Hussain, K., Malik, A., Masoodi, K.Z., Dar, Z.A., Nazir, N., Zahed, Z., & Ali, G. (2022). Combining ability studies in cherry tomato for yield and yield attributing traits in open and protected conditions. The Pharma Innovation Journal, 11(3), 782-793.
  23. Mirshamsi-Kakhki, A., Farsi, M., Shahriari-Ahmadi, F., & Nemati, H. (2008). Use of random amplified polymorphic DNA markers to estimate heterosis and combining ability in tomato hybrids. Pakistan Journal of Biological Sciences, 11, 499-507. https://doi.org/10.3923/pjbs.2008.499.507
  24. Narasimhamurthy, K., & Ramanjini-Gowda, P.H. (2013). Line × Tester analysis in tomato (Solanum lycopersicum L.) identification of superior parents for fruit quality and yield-attributing traits. International Journal of Plant Breeding, 7(1), 50-54.
  25. Noori, M., Motallebi-Azar, A., Saidi, M., Panahandeh, J., Zare-Hghi, D., & Rasuli-Azar, S. (2020). Combining ability estimates for yield some traits in tomato (Lycopersicon esculentum) by Line×Tester. Journal of Crop Breeding, 11(32), 22-32. (In Persian with English abstract). https://doi.org/10.29252/jcb.11.32.22
  26. Pattnaik, P., Singh, A.K., Kumar, B., Mishra, D., Singh, B.K., Barman, K., & Pal, A.K. (2020). Analysis of heterotic pattern of F1’s in tomato (Solanum lycopersicum) for the improvement of yield and quality traits. International Journal of Chemical Studies, 8(4), 3160-3165.
  27. Rachman, F., Trikoesoemaningtyas, T., Wirnas, D., & Reflinur, R. (2022). Estimation of genetic parameters and heterosis through line × tester crosses of national sorghum varieties and local Indonesian cultivars. Biodiversitas, 23(3), 1588-1597. https://doi.org/10.13057/biodiv/d230349.
  28. Rehanaa, S., Harun-Or-Rashid, M., Zebac, N., Ullahd, M.Z., Narzisc, N., Husnac, A., & Siddique, A.B. (2022). Study on combining ability for yield and yield contributing traits in water stress tolerant genotypes of tomato (Solanum lycopersicum). Big Data in Agriculture, 4(1), 28-31. http://doi.org/10.26480/bda.01.2022.28.31
  29. Saeed, A., Hassan, N., Shakeel, A., Saleem, M.F., Khan, N.H., Ziaf, K., Manzoor-Khan, R.A., & Saeed, N. (2014). Genetic analysis to find suitable parents for development of tomato hybrids. Life Science Journal, 11(12), 30-35. https://doi.org/10.7537/marslsj1112s14.06
  30. Saidi, M., Warade, S.D., & Prabu, T. (2008). Combining ability estimates for yield and its contributing traits in tomato (Lycopersicon esculentum). International Journal of Agriculture and Biology 10(2): 238-240.
  31. Saleem, M.Y., Akhtar, K.P., Iqbal, Q., Asghar, M., & Shoaib, M. (2015). Development of high yielding and blight resistant hybrids of tomato. Pakistan Journal of Agricultural Sciences, 52(2), 293-295.
  32. Saleem, M.Y., Asghar, M., Haq, M.A., Rafique, T., Kamran, A., & Khan, A.A. (2009). Genetic analysis to identify suitable parents for hybrid seed production in tomato (Lycopersicon esculentum). Pakistan Journal of Botany, 41(3), 1107-1116.
  33. Sankhala, P.M., Patil, S.S., & Abhishek, D. (2022). Combining ability analysis of fruit yield and quality traits in tomato (Solanum lycopersicum). Journal of Agriculture Research and Technology, 47(2), 178-182.
  34. Singh, R.K., & Chaudhary, B.D. (1979). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India. pp: 276-286.
  35. Singh, S., Singh, A.K., Singh, B.K., Singh, V., & Shikha, K. (2021). Line × tester analysis for yield and component traits in tomato (Solanum lycopersicum). Journal of Pharmacognosy and Phytochemistry, 10(1), 2044-2049.
  36. Solieman, T.H.I., El-Gabry, M.A.H., & Abido, A.I. (2013). Heterosis, potence ratio and correlation of some important characters in tomato (Solanum lycopersicum). Scientia Horticulturae, 150(4), 25–30. https://doi.org/10.1016/j.scienta.2012.10.024
  37. Tamta, S., & Sing, J.P. (2017). Heterosis in tomato for growth and yield traits. International Journal of Vegetable Science, 24(2), 169-179. https://doi.org/10.1080/19315260.2017.1407857
  38. Zengin, S., Kabaş, A., Oğuz, A., Eren, A., & Polat, E. (2015). Determining of general combining ability for yield, quality and some other traits of tomato (Solanum lycopersicum) inbred lines. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 28(1), 1-4.

 

CAPTCHA Image