با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشگاه فردوسی مشهد

چکیده

مدیریت پایدار مصرف آب و کودهای نیتروژن برای حصول تولید بالا حائز اهمیت است. به‌­منظور بررسی سطوح مختلف آبیاری و کود نیتروژن، آزمایشی در دو سال 01-1400 و 02-1401 به­‌صورت اسپلیت­پلات در قالب طرح بلوک‌­های کامل تصادفی با سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد انجام شد. میزان آب آبیاری به­‌عنوان عامل اصلی در سه سطح 75، 100 و 125 درصد نیاز آبی گیاه و عنصر غذایی نیتروژن به­‌عنوان عامل فرعی در چهار سطح صفر (شاهد)، 75 (5/7 گرم در متر مربع)، 150 (15 گرم در متر مربع) و 225 (5/22 گرم در متر مربع) کیلوگرم در هکتار از منبع اوره در نظر گرفته شد. نتایج نشان داد که بیشترین میزان عملکرد (1/65 کیلوگرم در متر مربع) در آبیاری 125 درصد نیاز آبی و کود نیتروژن 225 کیلوگرم در هکتار به‌دست آمد. هرچند، در تیمار شاهد بدون کود، آبیاری 100 و 125 درصد نیاز آبی تفاوت معنی‌­داری در عملکرد نداشتند. در تمام تیمارهای کودی، بیشترین میزان کارایی مصرف آب در تیمار 100 درصد نیاز آبی مشاهده شد و تیمارهای 75 و 125 درصد نیاز آبی به‌‌ترتیب در جایگاه دوم و سوم قرار گرفتند. بیشترین میزان کارایی مصرف آب (285 کیلوگرم بر متر مکعب) در تیمار 100 درصد نیاز آبی و کود نیتروژن 225 کیلوگرم در هکتار به‌دست آمد. بیشترین میزان تجمع نیترات در خوشه ششم (12/6 میلی‌گرم در کیلوگرم) و هفتم (29/6 میلی‌گرم در کیلوگرم) در تیمار آبیاری 75 درصد نیاز آبی و کود نیتروژن 225 کیلوگرم در هکتار و در خوشه هشتم (43/6 میلی‌گرم در کیلوگرم) در تیمار آبیاری به میزان 100 درصد نیاز آبی و مصرف 225 کیلوگرم در هکتار کود نیتروژن به‌دست آمد. به‌­طور کلی، نتایج نشان داد هر چند مصرف زیاد کود نیتروژن باعث افزایش تجمع نیترات در سطوح مختلف آبی شد، ولی افزایش حجم آبیاری علاوه‌بر افزایش خصوصیات عملکردی، میزان تجمع نیترات را در گوجه‌­فرنگی کاهش داد. همچنین، تفاوت عملکرد میوه در آبیاری 125 و 100 درصد نیاز آبی محسوس نبود و با مصرف کمتر آب، مقدار تولید بهینه و کارایی مصرف بهبود یافت. لذا باتوجه‌به نتایج به‌دست‌آمده بهترین تیمار مورد توصیه در شرایط گلخانه‌­ای، آبیاری به میزان 100 درصد نیاز آبی و مصرف 250 کیلوگرم در هکتار کود نیتروژنه می­‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Effect of Nitrogen and Irrigation on Some Physiological, Quantitative and Qualitative Traits of Greenhouse Tomato

نویسندگان [English]

  • Saeed Mohammadzade 1
  • Morteza Goldani 2
  • Fatemeh Yaghobi 1
  • Mohammad Bannayan Aval 3

1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Agriculture and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Ferdowsi University of Mashhad

چکیده [English]

Introduction
Increasing the tolerance to drought and nitrogen stress in tomato cultivars is essential for the sustainable and environmentally friendly production of this product. Also, knowing the morpho-physiological, biochemical and molecular responses to drought and nitrogen stress is important for a comprehensive understanding of plant water tolerance mechanisms and nitrogen limitation conditions in higher plants. Therefore, the purpose of this study was to investigate the effect of different levels of irrigation and nitrogen fertilizer on the quantitative and qualitative characteristics of tomatoes in different Cluster rows under greenhouse conditions.
 
Materials and Methods
The experiment was conducted at the research greenhouse of the Faculty of Agriculture, Ferdowsi University of Mashhad, in two years, 2021-02 and 2022-03. The experiment was set up as split-plot layout based on randomized complete block design with three replications. Irrigation levels were considered as the main plot at three levels: 75% (I75), 100% (I100), and 125% (I125) of the crop water requirement. Nitrogen fertilizer was considered as the subplot at four levels: control (no nitrogen), 75 kg ha-1 (7.5 g m-²), 150 kg ha-1 (15 g m-²), and 225 kg ha-1 (22.5 g m-²) from urea as the nitrogen source. Tomato seeds (Newton cultivar) were sown in polyethylene seedling trays with a coco peat and perlite mixture as the substrate. The seedlings were transplanted to the main field at 15 cm height with 3-4 true leaves. In all stages of growth, consistent agricultural practices were applied, including weed control, pest and disease management. Fertilization for tomato plants was based on soil analysis. Initially, after transplanting the seedlings, a complete fertilizer with high phosphorus (NPK 10-52-10) was applied at a ratio of 1.5 kg per thousand plants. In the subsequent stages, complete fertilizers (NPK 20-20-20) and high-potassium fertilizers (NPK 20-20-36) were applied through irrigation. Throughout the plant's growth stages, to prevent potential deficiencies and harm to growth and fruit development, micronutrients were applied as foliar sprays.
 
Results and Discussion
 The results for all three Clusters showed that although nitrate accumulation was higher in the first year compared to the second year, in both years, nitrate accumulation was higher at I75 and 225 kg ha-1 nitrogen compared to the other treatments. The highest nitrate accumulation in the sixth (6.12 mg.kg-1) and seventh (6.29 mg.kg-1) Clusters was observed in I75 and 225 kg ha-1 nitrogen treatment in the first year. In the eighth Cluster, contrary to the sixth and seventh Clusters, the highest nitrate accumulation was obtained in I100 and 225 kg/ha nitrogen (6.43 mg.kg-1) in the first year. Chlorophyll decreased with stress but increased with nitrogen levels. In all four Clusters, the highest chlorophyll a content was obtained in I100 and 225 kg ha-1 nitrogen, with values of 3.75, 3.70, 3.30, and 3.85 mg g-1 fresh weight, respectively. The highest fruit number per square meter was obtained in I125 and 225 kg ha-1 nitrogen treatment in the second year (260 fruits), although there was no significant difference compared to the first year. Furthermore, this treatment produced 11% more fruits than the highest fruit number at 100% moisture. The highest single fruit weight was obtained in I125 and 225 kg ha-1 nitrogen treatment in the first year of the experiment (254 g), although there was no significant difference compared to the second year. Additionally, this treatment showed no significant difference in fruit weight compared to the 225 kg ha-1 nitrogen and I100 treatment in the first year but was 11% higher in the second year. The highest yield (65.1 kg m-²) was obtained at I125 and 225 kg ha-1 nitrogen. However, in the control treatment without fertilizer, there was no significant difference in yield at I100 and I125. Furthermore, the highest water use efficiency was observed at I100, followed by I75. In all fertilizer treatments, I125 treatment had the lowest water use efficiency. The highest water use efficiency (285 kg m-³) was obtained at I100 and 225 kg ha-1 nitrogen.
 
Conclusion
 In general, the results demonstrated that while excessive nitrogen fertilizer increased nitrate accumulation at different irrigation levels, the increased use of irrigation water reduced nitrate accumulation in tomato fruits while improved yield. Moreover, no significant difference in fruit yield was observed between I125 and I100, but optimum yield and favorable water use efficiency were obtained with less water consumption. Based on the results of this experiment, the recommended treatment under greenhouse conditions is irrigation at 100% of the FC and the use of 250 kg ha-1 nitrogen.

کلیدواژه‌ها [English]

  • Carotenoids
  • Crop water requirement
  • Nitrate accumulation
  • Water requirement

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. AL-Aghabary, K., Zhujun, Z., & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101–2115. https://doi.org/10.1081/PLN-200034641
  2. Amini, Z., & Haddad, R. (2013). The role of photosynthetic pigments and antioxidant enzymes against oxidative stress. Journal of Cell and Molecular Research, 26(3), 251–265. (In Persian with English abstract).
  3. Amiri, M.J., Abedi-Koupai, , &Eslamian, S.S. (2011). Evaluation of the performance of evaporation pans in greenhouse environment. Journal of Soil and Plant Interactions, 2(1), 63-73. (In Persian with English abstract).
  4. Arnon, A.N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
  5. Ayala-Zavala, J.F., Wang, S.H.Y., & Gonzalez-Aguilar, G.A. (2007). High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology, 452, 166-173.
  6. Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., & Cheng R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9(6), 732. https://doi.org/10.3390/foods9060732
  7. Chen, J., Kang, S., Du, T., Qiu, R., Guo, P., & Chen, R. (2013). Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 129, 152162. https://doi.org/10.1016/j.agwat.2013.07.011
  8. Cui, J., Shao, G., Lu, J., Keabetswe, L., & Hoogenboom, G. (2020). Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Scientia Agricola, 77(2), e20180390. https://doi.org/10.1590/1678-992x-2018-0390
  9. Dalal, V., & Tripathy, B.C. (2012). Modulation of chlorophyll iosynthesis by water stress inrice seedlings during hloroplast biogenesis. Plant, Cell & Environment, 35, 1685–1703. https://doi.org/10.1111/j.1365-3040.2012.02520.x
  10. Du, Y., Cao, H., Liu, S., Gu, X., & Cao, Y. (2017). Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. Journal of Integrative Agriculture, 16(5), 11531161. https://doi.org/10.1016/s2095-3119(16)61371-0
  11. Duan, Y., Yang, H., Wei, Z., Yang, H., Fan, S., Wu, W., Lyu, L., & Li, W. (2023). Effects of different nitrogen forms on blackberry fruit quality. Foods12, 2318. https://doi.org/10.3390/foods12122318
  12. Elia, A., & Conversa, G. (2012). Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, 40, 6474. https://doi.org/10.1016/j.eja.2012.02.001
  13. FAO, (2015). Climate change and food systems: Global assessments and implications for food security and trade. Available from: http://www.fao.org/3/a-i4332e.pdf (accessed 20.09.2020.).
  14. FAO, (2020). Statistical database: Production statistics. Available online: Available from: http://www.fao.org/faostat/en/#data/QC/visualize (accessed 20.09.2020.).
  15. Farooq, M.A., Wahid, N., Kobayashi, D., & Basra, S.M.A. (2009). Plant drought stress effects, mechanisms and management. Sustainable Agriculture, 153-188. https://doi.org/10.1007/978-90-481-2666-8_12
  16. Farzamnia, M., Miranzadeh, M., & Jahadakbar, M.R. (2015). Irrigation scheduling for greenhouse tomato production using class A pan evaporation. Journal of Soil and Plant Interactions Isfahan University of Technology, 6(1): 15-29. (In Persian)
  17. Fatima, T., Teasdale, J.R., Bunce, J., & Mattoo, A.K. (2012). Tomato response to legume cover ´ crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression. Functional Plant Biology, 39(3), 246. https://doi.org/10.1071/fp11240
  18. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45, 105–114. https://doi.org/10.1016/S0098-8472(00)00084-8
  19. Gatta, G., Libutti, A., Gagliardi, A., Beneduce, L., Brusetti, L., Borruso, L., Disciglio, G., & Tarantino E. (2015). Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agricultural Water Management, 149, 33-43. https://doi.org/10.1016/j.agwat.2014.10.016
  20. Ghorbani, M., Kiani, Sh., Moharrery, A., & Fallah, S. (2023). The effect of ionic composition of the nutrient solutions on growth, macronutrients concentration and yield of two fodder maize (Zea mays) cultivars in soilless culture. Journal of Soil and Plant Interactions, 14(1), 31-51. (In Persian)
  21. Ghosh, U.K., Islam, M.N., Siddiqui, M.N., & Khan, M.A.R. (2021). Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. Plant Signaling & Behavior, 16(8), 1913306. https://doi.org/10.1080/15592324.2021.1913306
  22. Hajiboland, R., Radpur, E., & Pasbani, B. (2015). Influence of phosphorus deficiency on drought stress tolerance in two tomato (Solanum lycopersum) cultivars. Journal of Plant Research (Iranian Journal of Biology)27(5), 788-803. (In Persian)
  23. Hao, S.X., Cao, H.X., Wang, H.B., & Pan, X.Y. (2019). Effects of water stress at different growth stages on comprehensive fruit quality and yield in different bunches of tomatoes in greenhouses. International Journal of Agricultural and Biological Engineering, 12(3), 6776. https://doi.org/10.25165/j. ijabe.20191203.4468
  24. Hernandez-Espinoza, L.H., & Barrios-Masias, F.H. (2020). Physiological and anatomical changes in tomato roots in response to low water stress. Scientia Horticulturae, 265, 109208. https://doi.org/10.1016/j.scienta.2020.109208
  25. Heuvelink, E., Okello, R.C.O., Peet, M., Giovannoni, J.J., & Dorais, M. (2020). Tomato. In: Wien, H. C., Stützel, H. (Eds.), The Physiology of Vegetable Crops. CABI, United Kingdom, p. 512.
  26. Hooshmand, M., Boroumand, S., Albaji, M., & Alamzadeh Ansari, N. (2019). Effect of different management methods of low-irrigation on yield, yield components and water use efficiency of tomato in hydroponic culture. Iranian Journal of Water Researches, 13(3), 78–91. (In Persian)
  27. Iranian Ministry of Agriculture, (2023). Statistics of agricultural products in 2017–2018. http://www.maj.ir Accessed 2 April 2023.
  28. Joleini, M., Karimi, M., Zolfagharan, A., & Fazeli Kakhki, S.F. (2021). Investigation on soil nitrate pollution and nitrate accumulation in potato and tomato of farmers’ fields in Mashhad Plain. Iranian Journal of Soil Research, 35(2), 155-172. (In Persian). https://doi.org/10.22092/ijsr.2021.351417.543
  29. Khapte, P.S., Kumar, P., Burman, U., & Kumar, P. (2019). Deficit irrigation in tomato: agronomical and physio-biochemical implications. Scientia Horticulturae, 248, 256264. https://doi.org/10.1016/j.scienta.2019.01.006
  30. Li, Y., Wang, Q., Fu, T., Qiao, Y., Hao, L., & Qi, T. (2023) Leaf photosynthetic pigment as a predictor of leaf maximum carboxylation rate in a farmland ecosystem. Frontiers in Plant Science14, 1225295. https://doi.org/10.3389/fpls.2023.1225295
  31. Liang, L., Ridoutt, B.G., Lal, R., Wang, D., Wu, W., & Peng, P. (2019). Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. Journal of Cleaner Production, 208, 285296. https://doi.org/10.1016/j.jclepro.2018.10.149
  32. Luo, X., Keenan, T.F., & Chen, J.M. (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications12, 4866 (2021). https://doi.org/10.1038/s41467-021-25163-9
  33. Machado, J., Fernandes, A.P.G., Fernandes, T.R., Heuvelink, E., Vasconcelos, M.W., & Carvalho, S.M.P. (2021). Drought and nitrogen stress effects and tolerance mechanisms in tomato: A review. Plant Nutrition and Food Security in the Era of Climate Change, 315-359.
  34. Madrid, R., Barba, E.M., Sanchez, A., & Garcıa, A.L. (2009). Effects of organic fertilis- ers and irrigation level on physical and chemical quality of industrial tomato fruit (cv. Nautilus). Journal of the Science of Food and Agriculture, 89, 26082615. https://doi.org/10.1002/jsfa.3763
  35. Mahmoodnia, M., Farsi, M., Marashi, S.H., & Ebadi, P. (2013). Physiological responses to drought stress in four species of tomato. Journal of Horticultural Science, 26(4), 409-4016. (In Persian with English abstract). https://doi.org/10.22067/JHORTS4.V0I0.18252
  36. Millones-Chaname´, C.E., Souza de Oliveiras, A.M., Castro, E.M., & Maluf, W.R. (2019). Inheritance of blossom end rot resistance induced by drought stress and of associated stomatal densities in tomatoes. Euphytica, 215, 120. https://doi.org/10.1007/s10681-019-2444-z
  37. Mousapour, H., & Asgharipour, M.R. (2015). Effects of drought stress and its interaction with silicon on the antioxidant system and lipid peroxidation rate in fennel (Foeniculum vulgar). Plant Process Function, 5(16), 71–85.
  38. Naiemi, T., Fahmide, L., & Fakheri, B. (2018). The effect of drought stress on the antioxidant enzyme activity, proline content, and carbohydrates in seedling stage of Triticum turgidum in some genotypes of durum wheat. Jcb, 10(26), 22–30.
  39. Nawab, A., & Anjum, M. M. (2017) Effect of different nitrogen rates on growth, yield and quality of maize. Middle East Journal of Agriculture, 6(1), 107-112.
  40. Quemada, M., & Gabriel, J.L. (2016). Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security, 9, 29-35. https://doi.org/10.1016/j.gfs.2016.05.004
  41. Raja, V., Qadir, S.U., Alyemeni, M.N., & Ahmad, P. (2020). Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. Biotech, 10(5), 208. https://doi.org/10.1007/s13205-020-02206-4
  42. Rawat, K.S., Singh, S.K., & Gautam, S.K. (2018). Assessment of groundwater quality for irrigation use: a peninsular case study. Applied Water Science, 8, 233. https://doi.org/10.1007/s13201-018-0866-8
  43. Salehi-Lisar, S.Y., Rahman, I.M., Hossain, M.M., & Motafakkerazad, R. (2012). Water stress in plants: causes, effects and responses. Available from https://www.intechopen.com/books/water-stress/water-stress-in-plants-causes-effects-and-responses.
  44. Shahien, M.M., Abuarab, M.A., & Hassan, A.M. (2012). Effects of regulated deficit irrigation and phosphorus fertilizers on water use efficiency, yield and total soluble of tomato. American-Eurasian Journal of Agricultural and Environmental Sciences, 12(10), 1295–1304. https://doi.org/10.13031/aim.20131559786
  45. Shariatpanahi, S.N., Hoodaji, M., Mahmoudi, M., Alizadeh Navaei, R., & Talebi Atooe, M. (2021). Evaluation of nitrate status in drinking water and vegetables of savadkuh and simorgh counties and its relationship with the prevalence of gastrointestinal cancers. Journal of Environmental Studies, 47(4), 445-460. https://doi.org/10.22059/jes.2021.332547.1008239
  46. Singh, P., Choudhary, K.K., Chaudhary, N., Gupta, S., Sahu, M., Tejaswini, B., & Sarkar, S. (2022). Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science, 26(13), 1006617. https://doi.org/10.3389/fpls.2022.1006617
  47. Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum). Advances in Horticultural Science, 30, 311. https://doi.org/10.13128/ahs-18696
  48. Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., & Arena, S. (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum). BMC Plant Biology, 17(40), 114. https://doi.org/10.1186/s12870-017-0971-0
  49. Wan, S., Kang, Y., Wang, D., Liu, S.P., & Feng, L.P. (2007). Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum) yield and water use in semi-humid area. Agricultural Water Management, 90(1-2), 63-74. https://doi.org/10.1016/j.agwat.2007.02.011
  50. Wang, F., Kang, S., Du, T., Li, F., & Qiu, R. (2011). Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98, 12281238. https://doi.org/10.1016/j.agwat.2011.03.004
  51. Wang, S., Guan, K., Wang, Z., Ainsworth E.A., Zheng, T., Townsend, P.A., Li, K., Moller, C., Wu, G., & Jiang, C. (2021). Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy. Journal of Experimental Botany, 72(2), 341-354. https://doi.org/10.1093/jxb/eraa432
  52. Wang, Z., Zhang, W., Beebout, S., Zhang, H., Liu, L., Yang, J., & Zhang, J. (2016). Grain yield, water and nitrogen use efficiencies of rice as influencedby irrigation regimes and their interaction with nitrogen rate. Field Crops Research, 193, 54–69. https://doi.org/10.1016/j.fcr.2016.03.006
  53. Xia, H., Xu, T., Zhang, J., Shen, K., Li, Z., & Liu, J. (2020). Drought-induced responses of nitrogen metabolism in Ipomoea batatasPlants9, 1341. https://doi.org/10.3390/plants9101341
  54. Zeinali Pour, N., Aghebati, F., & Nejhad Shahrokh Abadi, B. (2024). Study the effects of salicylic acid and γ-aminobutyric acid on some physiological characteristics of seedling and yield of Lycopersicum esculentum Seyran. Journal of Horticultural Science, 37(4), 949-962. (In Persian with English abstract). https://doi.org/10.22067/JHS.2023.79509.1208
CAPTCHA Image