نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

2 دانشگاه لرستان

چکیده

به منظور بررسی اثرات افزایش تدریجی غلظت آهن در طی رشد گیاه همیشه بهار (Calendula officinalis)، آزمایشی با سه تیمار آهن و 4 تکرار در پاییز سال 1396 در گلخانه پژوهشی دانشکده کشاورزی دانشگاه لرستان انجام گرفت. تیمارها شامل غلظت ثابت 4 و 35 میکرومولار آهن (کلات آهن (III) – N, N – اتیلن دی آمین دی هیدروکسی فنیل استیک اسید (Fe(III)-EDDHA)) و تیمار سوم رژیم پلکانی بود که گیاهان در ابتدای کشت غلظت 4 میکرومولار آهن را دریافت و هر هفته دو میکرومولار به غلظت آهن دریافتی اضافه می­شد. در نهایت غلظت آهن دریافتی به 26 میکرومولار رسید. نتایج حاکی از آن بود که از نظر صفات حجم ریشه و فعالیت آنزیم پراکسیداز گیاهان تحت تیمار 4 میکرومولار آهن برتری نشان دادند. اما بالاترین  بیوماس مربوط به تیمار 35 میکرومولار آهن و رژیم پلکانی بود. در حالی که بیشترین شاخص کلروفیل a وb ، کلروفیل a+b و کاروتنوئید، وزن خشک ریشه و گل، عمر گل، تعداد گل و وزن تر گل اول در گیاهان تحت رژیم پلکانی آهن ملاحظه شد. به علاوه بالاترین و پایین‌ترین میزان فتوسنتز "در مرحله دوم اندازه‌گیری" (به‌ترتیب، 2/12 و 5/4 میکرومول بر متر مربع برثانیه) و تعرق (به‌ترتیب، 9/1 و 8/0 میلی‌مول بر متر مربع بر ثانیه) مربوط به گیاهان تحت رژیم پلکانی آهن بود. لذا رژیم پلکانی بعنوان روش مناسب جهت تغذیه آهن در گیاه همیشه بهار در کشت بدون خاک قابل توصیه است.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Different Iron Concentrations and StaircaseIron Regime on Some Morphological, Biochemical and Flowering Characteristics of Calendula officinalis

نویسندگان [English]

  • Zeinab Izadi 1
  • Abdolhossein Rezaei nejad 2

1 Faculty of Agriculture, Lorestan University

2 Faculty of Agriculture, Lorestan University

چکیده [English]

Introduction: While Iron (Fe) is the fourth most abundant element in the earth’s crust, it is not easily available for plant roots. Therefore, Fe deficiency is one of the major limiting factors for plant growth and development in calcareous soils worldwide. Fe deficiency are also predominant in many areas of Iran. It is an essential micronutrient for plants that play vital roles in many metabolic processes. Fe is a component of a number of molecules such as Fe-sulfur (Fe-S) and heme Fe proteins, which are required for photosynthesis, respiration and N2 fixation. However, the possibility of using split-type fertilization at different growth stages during development has been explored in other plant species for macronutrients N, P, and K. The aim of this work was to test the hypothesis that it may be feasible to decrease Fe-chelate inputs, by studying the effect of gradually increasing of Fe concentration during Calendula officinalis growing period.
Materials and Methods: In order to study the effect of gradual increase of Fe concentration during Calendula officinalis growing period, an experiment was carried out as a completely randomized design with four replications (pots) at research greenhouse of Faculty of Agriculture, Lorestan University, in 2017. Treatments contained three levels of Fe (Fe-chelate Fe (III)- Ethylenediamine-N, N' –bis ((2-hydroxyphenyl) acetic acid): 4, 20 µM and staircase method. Staircasetreatment included increase of Fe concentration, so that at first week plants received 4 µM Fe then 2 µM was added to Fe concentration weekly, to reach 26 µM. Some morphological, physiological parameters, flower characteristics and gas exchange had measured. Data of all measured parameters were subjected to analysis of variance using the SAS software (9.1.3, SAS Institute Inc.), and means were compared using a Duncan test at P≤ 0.05.
Results and Discussion: Results showed that the application of 4 µM Fe led to higher root volume, and peroxidase activity. Romera et al. (2011) reported that under Fe deficiency, strategy of plants developed morphological changes in their roots and up-regulated the expression of Fe acquisition genes. Under Fe deficiency some phytohormones such as ethylene and auxin will increased. Both hormones play pivotal role in the development of sub-apical root hair and transfer cells. Sepahvand et al (2017) investigated the effect of ascorbic acid on pelagonium graveolens characteristics under Fe deficiency and found that peroxidase activity increased under Fe deficiency. Application of ascorbic acid led to decrease peroxidase activity. Maximum biomass was obtained in plants under 35 µM Fe and staircase treatment. Maximum chl a and b, chl a+b, carotenoids, root dry weight, flower diameter, flower longevity, number of flowers, and first flower fresh weight was observed in the plants under staircase treatment. Fe plays important role in biosynthetic pathway of chlorophyll and carotenoids. In addition, plants under staircase treatment showed the maximum photosynthesis and transpiration rate.  Kong et al. (2014), reported that Fe deficiency led to decrease of δ- aminolevulinic acid and protochlorophyllide as precursors of chlorophyll. Ethylene and ABA are involved in Fe-deficiency signalling in plants, and these compounds may hasten senescence (Satoh, 2011). The short flower lifetime found in the present experiment in the low Fe treatment may be due to the boost in ethylene and ABA synthesis in response to Fe deficiency. On the other hand, plants under staircase regime had higher photosynthetic pigments that led to maximum photosynthesis. Increasing flower quality, quantity and longevity related to higher photosynthesis activity. Iron is a component of a number of proteins and enzymes, such as iron-sulfur (Fe-S) proteins and non-heme iron proteins, which are required during photosynthesis (Chakraborty et al., 2012). Li et al. (2016) investigated the influence and interaction of Cadmium (Cd) and Fe on photosynthesis and reported that Cd inhibits photosynthesis activity, but Fe alleviates the Cd-induced changes in photosynthesis activity. In addition, higher MDA contents were observed in plants under 35 µM Fe and staircase treatment. Li et al. (2012) reported that the high levels of Fe led to maximum MDA contents.
Conclusion: Growing the plants with staircase treatment increased flower yield, quality and longevity. These parameters are the most important factors in growing of ornamentals plants. Whereas Fe fertilizers are so expensive, restricting the use of expensive products such as Fe (III)-chelates at some growth stages can contribute to decrease the cultivation costs and minimize environmental pollution associated to an excess of fertilizer inputs. Therefore, gradually increasing Fe concentrations during production of Calendula officinalis under soilless culture would be recommended.

کلیدواژه‌ها [English]

  • Ornamental plants
  • Photosynthesis parameters
  • Photosynthesis pigments
1. Abadia J., Vazquez S., Rellan-Alvarez R., El-Jendoubi H., Abadia A., Alvarez-FernAndez A., and Lopez-Millan A.F. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry, 49:471-482.
2. Adamski J.M., Danieloski R., Deuner S., Braga E.J., de Castro L.A., and Peters J.A. 2012. Responses to excess iron in sweet potato: impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologiae Plantarum, 34:1827-1836.
3. Buege J.A., and Aust S.D. 1978. Microsomal lipid peroxidation. Methods Enzyme, 52:302-310.
4. Chakraborty B., Singh P.N., Shukla A., and Mishra D.S. 2012. Physiological and biochemical adjustment of iron chlorosis affected low-chill peach cultivars supplied with different iron sources. Physiology and Molecular Biology of Plants, 18:141-148.
5. El-Jendoubi H., Vazquez S., Calatayud A., Vavpetic P., Vogel-Mikus K., Pelicon P., Abadia J., Abadia A., and Morales F. 2014. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Frontiers in Plant Science, 5:1-16.
6. Kabir A.H., Rahman M.M., Haider S.A., and Paul N.K. 2015. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environmental and Experimental Botany, 112:16-26.
7. Kong J., Dong Y., Xu L., Liu S., and Bai X. 2014. Role of exogenous nitric oxide in alleviating iron deficiency induced peanut chlorosis on calcareous soil. Journal of Plant Interactions, 9: 450-459.
8. Li D., Wang C., Liu W., Peng Z., Huang S., Huang J. and Chen S. 2016. Estimation of litchi (Litchi chinensis Sonn.) leaf nitrogen content at different growth stages using canopy reflectance spectra. European Journal of Agronomy, 80:182-194.
9. Li X., Ma H., Jia P., Wang J., Jia L., Zhang T., Yang Y., Chen H., and Wei, X. 2012. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicology and Environment Safety, 86:47-53.
10. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148:350-382.
11. Lu Y., Yang X., Li R., Li S., and Tong Y. 2015. Effects of different potassium fertilizer application periods on the yield and quality of Fuji apple. Ying Yong Sheng Tai Xue Bao= The journal of Applied Ecology, 26:1179-1185.
12. MacAdam J.W., Nelson C.J., and Sharp R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99:872-878.
13. Najafi-Ghiri M., Ghasemi-Fasaei R., and Farrokhnejad E. 2013. Factors affecting micronutrient availability in calcareous soils of Southern Iran. Arid Land Research and Management, 27:203-215.
14. Pang W., Crow W., Luc J., McSorley R., Giblin-Davis R., Kenworthy K., and Kruse J. 2011. Comparison of water displacement and WinRHIZO software for plant root parameter assessment. Plant Disease, 95:1308-1310.
15. Pavlovic J., Samardzic J., Maksimović V., Timotijevic G., Stevic N., Laursen K.H., Hansen T.H., Husted S., Schjoerring J.K., and Liang Y. 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198:1096-1107.
16. Pirzad A., and Shokrani F.2012. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Applied Sciences Journal, 18:1203-1208.
17. Romera F.J., Garcia M.J., Alcantara E., and Perez-Vicente R. 2011. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. Plant Signaling & Behavior, 6:167-170.
18. Roosta H.R., Jalali M., and Ali Vakili Shahrbabaki S.M. 2015. Effect of nano Fe-chelate, Fe-Eddha and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (lactuca Sativa L.) in NFT system. Journal of Plant Nutrition, 38:2176-2184.
19. Santos C.S., Roriz M., Carvalho S.M., and Vasconcelos M.W. 2015. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). Frontiers in Plant Science, 6:1-12.
20. Satoh S. 2011. Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. Journal of The Japanese Society for Horticultural Science, 192:127-135.
21. Sepahvand K., Rezaei Nejad A., and Hosseini S. 2017. Effect of ascorbic acid on some morphological and physiological characteristics of Pelargonium graveolens under iron deficiency. Iranian Journal of Horticultural Science, 48:545-554. (in Persian)
22. Shaiful I.M., Hasanuzzaman M., Rokonuzzaman M., and Nahar K. 2009. Effect of split application of nitrogen fertilizer on morphophysiological parameters of rice genotypes. International Journal of Plant Production, 3:51-62.
23. Vigani G., Zocchi G., Bashir K., Philippar K., and Briat J-F. 2013. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in plant science 18: 305-311.
24. Yang G., Li J., Liu W., Yu Z., Shi Y., Lv B., Wang B., and Han D. 2015. Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Scientia Horticulturae, 183: 77-86.
CAPTCHA Image