با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی و زراعت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

سرخدار یا سرخدار انگلیسی (Taxus baccata L.) از خانواده سرخداریان (Taxaceae)، یک درختچه زینتی است که در صنایع مختلف کاربرد دارد. ریشه‌زایی قلمه‌های ساقه و رشد گیاه سرخدار کند است، از این‌رو، خطر انقراض، این گیاه را تهدید می­کند. تحریک ریشه­زایی در قلمه­ها، باعث ازدیاد سریع­تر این گیاه می‌شود. پلی‌آمین‌ها گروهی از تنظیم‌کننده‌های رشد گیاهی هستند که نقش‌های مختلفی از جمله تمایز سلولی، نمو و تحریک تولید ریشه نابجا دارند. به­منظور بررسی اثر غلظت­‌های مختلف پوتریسین، آزمایشی بر پایه طرح بلوک کامل تصادفی در 4 تکرار انجام شد. تیمارها شامل غلظت صفر (به­‌عنوان شاهد)، 500، 1000، 2000، 3000، 4000 و 5000 میلی­‌گرم در لیتر از پوتریسین بودند. در آبان ماه، حدود 25 سانتی­‌متری انتهای شاخه­ گیاهان مادری 5 ساله بریده شد و به‌­عنوان قلمه برگدار چوب­سخت ساقه مورد استفاده قرار گرفت. انتهای تحتانی قلمه­‌های سرشاخه به­‌مدت 10 ثانیه در غلظت­‌های مختلف پوتریسین نگهداری شدند و سپس در بستر کاشت قرار گرفتند. در این تحقیق درصد ریشه‌زایی، تعداد ریشه، طول ریشه، طول ساقه، تعداد شاخه و تعداد برگ قلمه‌ها اندازه‌­گیری شدند. نتایج تجزیه واریانس داده‌­ها نشان داد که غلظت‌­های مختلف پوتریسین روی همه صفات در سطح احتمال یک درصد معنی­‌دار بودند. بیشترین تعداد ریشه (50/6 عدد در گیاهچه) و بالاترین طول ریشه (70/7 سانتی­‌متر در گیاهچه)، در قلمه‌­های تیمارشده با 500 میلی­گرم در لیتر پوتریسین مشاهده شد. بیشترین تعداد شاخه (50/5 عدد در گیاهچه) و بالاترین درصد ریشه‌زایی (50/97 درصد) در قلمه‌های تیمارشده با 2000 میلی­‌گرم در لیتر پوتریسین به دست آمد. بیشترین تعداد برگ (25/41 عدد در گیاهچه) در قلمه­‌های تیمارشده با 3000 میلی­گرم در لیتر پوتریسین شمارش شد. در مجموع، غلظت 500 میلی­گرم در لیتر پوتریسین برای ریشه‌زایی قلمه برگدار ساقه سرخدار مناسب‌تر از بقیه‌ غلظت‌ها بود که اهمیت اقتصادی نیز دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Putrescine on Rooting of Yew Cuttings, an Ornamental Shrub in Danger of Extinction

نویسندگان [English]

  • Ali Sahari Moghaddam 1
  • Behzad Kaviani 2
  • Ali Mohammadi Torkashvand 1
  • Vahid Abdossi 1
  • Ali Reza Eslami 2

1 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran

چکیده [English]

Introduction
Yew or English yew (Taxus baccata L.) from the family of Taxaceae is an ornamental shrub that is used in various industries. Root induction and formation process at the base of stem cuttings of yew is slow. This species is in danger of extinction. Stimulation of rooting in cuttings causes the plant to grow faster. Polyamines are a group of plant growth regulators that play a variety of roles, including cellular differentiation and development and stimulation of adventitious root production. Some yew habitats have been destroyed because of neglect, destruction, livestock and ineffective exploitation. The yew is propagated by seeds or through cutting and grafting. Propagation of yew through seed is difficult and obtained plants show non-uniformity. Therefore, vegetative propagation is used to produce plants similar to the mother plant. The proliferation of the plant through leafy stem cutting is one of the most famous and the best propagation methods due to the preservation of the genetic structure and uniformity. Increasing the rooting capacity of trees and shrub cuttings is being carried out with a variety of plant growth regulators around the world. Putrescine has shown a better response in compare with other polyamines. The stimulation effect of exogenous application of polyamines, especially putrescine, was shown on the rooting of several plants’ cutting. Literature evaluation showed that there is not any study on the effect of polyamines on the rooting of the yew stem cuttings. Therefore, the aim of this research was to improve the rooting conditions of difficult-to-root cuttings with different concentrations of putrescine (a type of polyamine).
 
Materials and Methods
In order to investigate the effect of different concentrations of putrescine, an experiment was performed based on a completely randomized block design with 4 replications. Treatments included 0 (as a control), 500, 1000, 2000, 3000, 4000 and 5000 mg.l–1 of putrescine concentrations. In October, 25 cm of the end of the shoot of 5-years-old mother plants were cut and used as hardwood cuttings. The cuttings diameter was 2.5-3 mm. The lower ends of the shoot cuttings were kept at different concentrations of putrescine for 10 seconds and then placed in the cultivation bed. In this study, root percentage, number of roots, root length, stem length, shoot number, leaf number and survival percentage of cuttings were measured. Cuttings cultivation bed was perlite, cocopeat and peat moss. To prevent possible contamination, the bottom of the cuttings were immersed in a 2/1000 fungicide solution of Berdofix a week befor cutting preparation.
 
Results and Discussion
The results of analysis of variance showed that different concentrations of putrescine on all traits were significant at 1% probability levels. The results of mean comparison showed that the largest number of roots (6.50 per plantlet) and the highest root length (7.70 cm per plantlet) were observed in cuttings treated with 500 mg.l–1 putrescine. The highest number of shoots (5.50 per plantlet) and the highest rooting percentage (97.50) were obtained in cuttings treated with 2000 mg.l–1 of putrecine. The maximum number of leaves (41.25 per plantlet) was counted in cuttings treated with 3000 mg.l–1 of putrescine. Yew can be propagated successfully by stem cuttings. Natural conditions propagation and in vitro propagation beside cryopreservation are effective approaches to conserve plants particularly those putted in the red list. Plant growth regulators have an effective role in increasing the rooting of difficult-to-root cuttings of trees and shrubs. The exogenous use of polyamines as a new group of hormones stimulated root production in some cuttings. Peach × almond hybrid cuttings treated with 2 mM putrescine for 5 min showed the highest rooting percentage, root number and root length with the best quality. Putrescine is capable to influences on other plant growth regulators and has less toxicity than most of them. Polyamines stimulate cellular division in dissection place cells of cuttings such as cambium and phloem. The exogenous application of these compounds, especially putrescine during the root formation phase resulted in an increase in endogenous putrescine, endogenous auxin and peroxidase enzyme activity. In the cutting of the leafy stem of Corylus avellana L., the use of putrescine stimulated rooting. The study, like the present study, confirmed that putrescine can be useful for increasing rooting percentage and root quality. Putrescine had an effective role in the rooting of the stem cuttings. The present study revealed that the lowest root number was counted in cuttings that were not treated by putrescine (control). Polyamines (spermine, spermidine and putrescine) increased rooting percentage and root growth by stimulating root cell division (increased mitotic index of tip root cells) in regenerated pine (Pinus virginiana Mill.) seedlings. Polyamine biosynthesis and antioxidant enzymes activity were increased during root induction and formation. The exogenous application of spermidine in the apple (Malus prunifolia) stem cutting stimulated rooting by changing the concentration of some hormones. Spermidine regulated the expression of genes involved in the production of auxins. The study aimed to investigate the cellular-molecular effect of polyamines on the structure and development of roots in Arabidopsis showed that these organic compounds adjusted the size of the root meristematic zone during the effect on both symptomatic accumulations of hormones and reactive oxygen species (ROS). The same and different results are presented with the present findings by some other researchers. The main cause of these different results is the difference in the amount and balance of endogenous hormones, including polyamines in different species. Plant genotype, type of cuttings, cutting age, environmental factors, nutritional status especially type and amount of carbohydrates in the plant, the transfer rate of these carbohydrates from leaves to roots, the presence and the amount of phenolic compounds, nitrogen compounds, phonological stages and cutting season also play an effective role in these differences.

کلیدواژه‌ها [English]

  • English yew
  • Ornamental plants
  • Plant growth regulators
  • Polyamines
  • Tree propagation

©2022 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aslmoshtaghi, E., Shahsavar, A.R., & Taslimpour, M.R. (2014). Effects of IBA and Putrescine on root formation of olive cuttings. Agriculture Conspectus Science, 79(3), 191–
  2. Babalar, M., Asgarpour, A., & Asgari, M. (2014). The effect of pre and postharvest treatment of salicylic acid and putrescine on some fruit quality of Granny Smith apple. Journal of Horticultural Science, 28(4), 479– (In Persian). https://doi.org/10.22067/JHORTS4.V0I0.45084
  3. Badihi, L., Gerami, M., Akbarinodeh, D., Shokrzadeh, M., & Ramezani, M. (2021). Physio-chemical responses of exogenous calcium nanoparticle and putrescine polyamine in saffron (Crocus sativus). Physiology and Molecular Biology of Plants, 27(1), 119–133. https://doi.org/10.1007/s12298-020-00923-x
  4. Brickell, C., & Zuk, J.D. (1997). A-Z Encyclopedia of Garden Plants. DK Publishing, Inc. New York, USA. 1095 p.
  5. Cristofori, V., Rouphael, Y., & Rugini, E. (2010). Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana cuttings. Scientia Horticulturae, 124(2), 189–194. https://doi.org/10.1016/j.scienta.2009.12.034
  6. Dargahi, D. (2000). Ecology of yew forests in East Alborz. Project Report, Gorgan University of Agricultural Sciences and Natural Resources, 127 p. (In Persian)
  7. Fei, Y., Xiao, B., Yang, M., Ding, Q., & Tang, W. (2016). MicroRNAs, polyamines, and the activities antioxidant enzymes are associated with in vitro rooting in white pine (Pinus strobus). SpringerPlus, 6(5), 416. https://doi.org/10.1186/s40064-016-2080-1
  8. Galston, A.W., Kour-Sawhney, R., Altabella, T., & Tiburcio, A.F. (1997). Plant polyamines in reproductive activity and response to abiotic stress. Botany Acta, 110, 197–207.
  9. Hartmann, H.T., Kester, D.E., Davie, F.T., & Geneve, R.L. (2002). Plant propagation, principles and practices. Pearson Education, Inc., Upper Saddle River, NJ, USA, 880 p.
  10. Hashem, A.M., Moore, S., Chen, S., Hu, C., Zhao, Q., Elesawi, I.E., Feng, Y., Topping, J.F., Liu, J., Lindsey, K., & Chen, C. (2021). Putrescine depletion affects arabidopsis root meristem size by modulating auxin and cytokinin signaling and ROS accumulation. International Journal of Molecular Science, 22, 4094. https://doi.org/3390/ijms22084094
  11. Karimi, S., & Yadollahi, A. (2012). Using putrescine to increase the rooting ability of hardwood cuttings of the peach × almond hybrid GF677. Journal of Agrobiology, 29(2), 63– https://doi.org/10.2478/v10146-012-0010-6
  12. Khanjani Shiraz, B., Ghodratkhah, R., & Hemmati, A. (2008). Impact of cutting and soil on vegetative propagation of yew (Taxus baccata). Iranian Journal of Forestry and Poplar Research, 16(2), 169–175 (In Persian)
  13. Liu, J.H., Honda, C., & Moriguchi, T. (2006). Involvement of polyamine in floral and fruit development. Japanese International Research of Cen. Agricultural Science, 40, 51–58. https://doi.org/6090/jarq.40.51
  14. Matam, P., & Parvatam, G. (2017). Putrescine and polyamine inhibitors in culture medium alter in vitro rooting response of Decalepis hamiltonii Wight & Arn. Plant Cell, Tissue and Organ Culture, 128, 273– https://doi.org/10.1007/s11240-016-1108-0
  15. Muilu-Makela, R., Vuosku, J., Haggman, H., & Sarjala, T. (2021). Polyamine metabolism in scot pine embryogenic cells under potassium deficiency. Cells, 10(5), 1244. https://doi.org/103390/cells10051244
  16. Nag, S., Saha, K., & Choudhuri, M.A. (2001). Role of auxin and polyamines in adventitious root formation in relation to change in compounds involved in rooting. Journal of Plant Growth Regulators, 20, 182– https://doi.org/10.1007/s003440010016
  17. Pio, R., Costabastos, D., & Berti, A.J. (2005). Rooting of different types of olive tree cutting using indol butyric acid. Agrotechnology Lavras, 29, 562–567.
  18. Razi, S.A., Hashemabadi, D., & Kaviani, B. (2023). Effect of different concentrations and application methods of putrescine application on vase life, some physiological parameters and enzymatic activity of carnation (Dianthus caryophyllus) flowers. Journal of Horticultural Science, 37(3), 599–614. (In Persian). https://doi.org/10.22067/JHS.2021.71518.1075
  19. Rugini, E., Di Francesco, G., Muganu, M., Astolfi, S., & Caricato, G. (1997). The effects of polyamines and hydrogen peroxide on root formation in olive and the role of polyamines as an early marker for rooting ability. In: Altman, S. and Waisel, D. (eds.): Biology of Root Formation and Development. Plenum Publishing Co., New York, pp. 65–73.
  20. Sun, X., Yuan, Z., Wang, B., Zheng, L., & Tan, J. (2021). Exogenous putrescine activates the arginine-polyamine pathway and inhibits the decomposition of endogenous polyamine in Anthurium andraeanum under chilling stress. Scientia Horticulturae, 282, 110047. https://doi.org/1016/j.scienta.2021.110047
  21. Tang, W., & Newton, R. (2005). Polyamines promote root elongation and growth by increasing root cell division in regenerated Virgina pine plantlets. Plant Cell Reports, 24, 581–
  22. Tsafouros, A., & Roussos, P. A. (2020). The possible bottleneck effect of polyamines’ catabolic enzymes in efficient adventitious rooting of two stone fruit rootstocks. Journal of Plant Physiology, 224, 152999. https://doi.org/101016/j.jplph.2019.152999
  23. Wang, H., Mobeen Tahir, M., Azher Nawaz, M., Mao, J., Li, K., Wei, Y., Ma, D., Lu, X., Zhao, C., & Zhang, D. (2020). Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae, 266, 109310. https://doi.org/18632/oncotarget.13582
  24. Wu, Q.S., Zou, Y.N., & He, X.H. (2010). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. International Journal of Agriculture and Biology, 12, 576–580. https://doi.org/10–093/MFA/2010/12–4–576–580
  25. Yu, Y., Jin, C., Sun, C., Wang, J., Ye, Y., Zhou, W., Lu, L., & Lin, X. (2016). Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Science Reports, 6, 18888. https://doi.org/10.1038/srep18888
CAPTCHA Image