با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسنده

دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

واکنش جوانه‌زنی بذر دو گونه چمن فتان قرمز(Festuca rubra L.) و چچم دائمی(Lolium perenne L.) و دو گونه علف هرز غالب آنها هفت بند (Polygonum aviculare L.) و شیر تیغی (Sonchus oleraceus L.) به دماهای 2، 5، 10، 15، 20، 25، 30، 35، 40 و 45 درجه سانتیگراد در ژرمیناتور مورد بررسی قرار گرفت. آزمایش در قالب طرح کاملا تصادفی و با 4 تکرار انجام شد. جهت تعیین دماهای کاردینال (پایه، مطلوب و بیشینه) از مدل‌های رگرسیون غیر خطی (خطوط متقاطع، دندان مانند و چند جمله‌ای درجه 2) بین سرعت جوانه‌زنی و دماهای مختلف استفاده شد. نتایج حاصل از تجزیه واریانس نشان داد که درصد جوانه‌زنی و سرعت جوانه‌زنی در سطح یک درصد تحت تاثیر دما قرار گرفتند. مدل خطوط متقاطع در گونه های چچم دائمی، فتان قرمز و شیرتیغی و مدل دندان مانند در گونه هفت بند به خوبی سرعت جوانه‌زنی را نسبت به دما توصیف نمودند و با توجه به کمترین جذر میانگین مربعات خطاء و بیشترین ضریب تبیین بهترین برازش را برای جوانه‌زنی بذور مورد بررسی نشان دادند. دمای پایه، مطلوب و بیشینیه به ترتیب برای چچم دائمی 12/4، 66/24، 27/43 برای فتان قرمز 0/2، 86/24، 48/43 برای هفت بند 95/2، 94/19- 21/22، 97/44 و برای شیرتیغی 0/2، 77/17، 86/44 درجه سانتیگراد به دست آمد. گونه فتان قرمز به علت پایین‌تر بودن دمای پایه نسبت به چچم دائمی و علف های هرز زودتر جوانه زد بنابراین استفاده از چمن‌های اسپورتی که دارای نسبت بالاتری بذر فتان قرمز می‌باشند موجب می‌شود چمن بتواند سریعتر از گونه‌های هفت بند و شیرتیغی مستقر شده و در رقابت با علف های هرز پیروز باشد. با استفاده از نتایج این تحقیق می‌توان کارایی کنترل علف‌های هرز را در چمن بهبود بخشید.

کلیدواژه‌ها

عنوان مقاله [English]

Determination of Cardinal Temperatures for Cool Season Turfgrass and Two Common Weed Species

نویسنده [English]

  • Marjan Diayanat

Islamic Azad University, Science and Research Branch, Tehran

چکیده [English]

Introduction The presence of broadleaf weeds not only reduces the aesthetic quality of the turfgrass, but more importantly they compete with desired turfgrass for water, nutrients, and light. Weed management after seeding is an important component to successfully establishing a healthy stand of cool season turfgrass. Weed seed germination is a key process because determines both the number of weeds that could potentially emerge and the timing of their appearance in the turfgrass. Temperature is of the most important factor regulating germination of non-dormant seeds in irrigated, annual agroecosystems at the beginning of the growth season where light, nutrients, and moisture are typically not growth limiting. Also prostrate knotweed (Polygonum aviculare L.) and annual sowthistle (Sonchus oleraceus L.) are two annual common broad leaf weeds in cool season turfgrass. Prostrate knotweed is very competitive in infertile and compacted soils and often invades turfgrasses along driveways, sidewalks, and beaten paths across lawns. Annual sowthistle is found in open habitats that include waste areas, turf, and roadsides. The aim of this study was to evaluate different nonlinear regression models to describe response of germination rate to different temperatures in perennial ryegrass (Lolium perenne L.), fescue (Festuca rubra L.), prostrate knotweed and annual sowthistle.
Materials and Methods This experiment was based on completely randomized design with 4 replications at Islamic Azad University in the laboratory of Science Research Branch in 2015. The seeds were treated with different temperatures (2, 5, 10, 15, 20, 25, 30, 35, 40 and 45oC) Twenty five seeds were placed in each petri dish for each species in per replication. Ten milliliters of distilled water were added to each petri dish and the filter papers were regularly moistened to ensure saturation throughout the germination tests. Petri dishes were placed in germinator with 16 hour day, 8 hour night and 60% relative humidity. Seeds were considered germinated when the radicle protruded at least 2 mm from the seed coat. Germinated and rotted seeds were counted and discarded at 24 hour intervals until no germination had occurred over four consecutive days. The germination percentage was obtained by dividing the number of germinated seeds at any time by the total number of seeds germinated multiplied by 100. Data from this experiment were first subjected to analysis of variance and means of treatments were compared using the least significant difference at the 5% level of probability. The following nonlinear regression models were used to quantify the response of the germination rate to temperature and to determine cardinal temperatures.
Results and Discussion The analysis of variance showed that temperature had a significant effect on all seed germination percentage and germination rates. Seed germination percentage and rate increased to a point with increasing the temperature. Germination model based on temperature can be used for the prediction of cardinal temperatures. Cardinal temperatures are required because a portion of the crop model is developed for prediction of the timing of germination. Non-linear regression models have been used to quantitatively describe development rate in many plants. Three regression models (Intersected-lines, Dent-like and Quadratic Polynomial) used to predict germination rate and cardinal temperature. Root mean square of error (RMSE) and R2 adjusted were used to find the appropriate model(s). Intersected-lines model was superior compared to other models in perennial ryegrass, fescue and annual sowthistle and Dent-like model was superior for prostrate knotweed. It was concluded that this model can be used to quantify response of turfgrass and common weeds of turfgrass germination to temperature and to obtain cardinal temperature of germination. Also base, optimum and maximum temperatures were for perennial ryegrass 4.12, 24.66 and 43.27oC; fescue 2.0, 24.86 and 43.48oC ; Prostrate knotweed 2.95, 19.94-22.21 and 44.97oC and annual sowthistle 2.0, 17.77 and 44.86oC, respectively.
Conclusions These results show that fescue germinated earliest among the studied species, because it had the lowest base temperature. In comparison to perennial ryegrass, using turfgrass seed with more fescue seed causes sooner turfgrass establishment and less weed competition. Because of their narrow leaves, young seedlings of prostrate knotweed grow upright and appear at first glance to be grass seedlings. With maturity, most plants grow prostrate, especially with traffic or mowing, so mechanical control of this species in turfgrass is impossible andit could be controlled with pre-emergence herbicide. Pre-emergence herbicides are applied prior to the germination of weeds; thus, predication of timing germination help us in decreasing prostrate knotweed competition with turfgrass and its proper management.

کلیدواژه‌ها [English]

  • Fescue
  • Germination rate
  • Perenialrygrass
  • Regression Models
  • Seed germination percentage
1- Ajam Norouzi, H., Soltani, A., Majidi, E. and Homaei, M., 2007. Modeling response of emergence to temperature in faba bean under field condition. Journal of Agricultural Sciences and Natural Resources, 14(4): 100-111.
2- Akram-Ghaderi, F. 2008. The study of seed quality development, germination, longevity and deterioration in some medicinal plants: medicinal pumpkin (Cucurbita pepo. Convar.var. styriaca), cumin blank (Nigella sativa L.) and borago (Borago officinalis L.). Ph.D. Thesis, Gorgan. Univer. Agric. Sci. Natur. Resour. 180p. (In Persian)
3- Amiri Nasab, K., Ghasemnezhad, M., Zakizadeh, H. and Biglouei, M.H. 2013. The Aplication of drought pre-conditioning is a method to increase deficit irrigation tolerance in two turfgrass species, tall fescue (Festuca arundinacea) and creeping bentgrass (Agrostis stolonifera). Plant Physiology and Biochemistry, 47(2):132- 138. (in Persion with English abstract)
4- Anderson, R.L. and Nielsen, D.C. 1996. Emergence pattern of five weeds in the Central Great Plains. Weed Technology, 10:744–749.
5- Balbaki, R.Z., Zurayk, R.A., Blelk, M.M. and Tahouk, S.N. 1999. Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Science Technology, 27: 291-302.
6- Bannayan, M., Nadjafi, F., Rastgoo, M. and Tabrizi, L. 2006. Germination properties of some wild medicinal plants from Iran. Journal of Seed Technology, 28:80-86.
7- Barbosa, O.,Tratalos, J.A., Armsworth, P.R., Davies, R.G., Fuller, R.A., Johnson, P. and Gaston, K.J. 2007. Who benefits from access to green space? A case study from Sheffield, UK Olga Barbosa .Landscape and Urban Planning, 83:187–195.
8- Baskin, J.M. and Baskin, C.C. 1990. The role of light and alternating temperatures on germination of Polygonum aviculare seeds exhumed on various dates. Weed Research, 30:397-402.
9- Buhler, D.D., Liebman, M. and Obrycki, J. J. 2000. Theoretical and practice challenges to an IPM approach to weed management. Weed Science, 48:274–280.
10- Garcia-huidobro, J., Monteith, J.L. and Squaire, G.R. 1982. Time, temperature and germination of pearl millet (Pennisetum thyphoides S. and H.) I. Constant temperature. Journal of Experimental Botany, 33: 288–296.
11- Hardegree, S., 2006. Predicting germination response to temperature. I. Cardinal temperature models and subpopulationspecific regression. Annals of Botany, 97: 1115- 1125.
12- Hoseini M., Mojab, M. and Zamani, Gh., 2012. Evaluation wild barley (Hordeum spontaneum Koch.) barley grass (H.murinum L.) and hoary cress (Cardaria draba L.) germination in different temperatures. p. 108. In proceeding 4th Iranian Weed Science Congress, 6-7 February, 2004. Ahvaz, Iran.
13- Jame, Y.W., and Cutforth, H.W. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124: 207-218.
14- Jeffrey, D.W., Timothym C.M. and John, T.R. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. Journal of Chemical Ecology, 13: 1424–1426.
15- Kamkar, B., Ahmadi, M., Soltani, A., and Zeinali, E. 2008. Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Science Technology, 2: 53-57.
16- Kamkar, B., Jami Al-Ahmadi, M., and Mahdavi-Damghani, A. 2011. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds germinate using non-linear regression models. Indian Crop Production, 35: 192-198.
17- Kazeruni monfared, A., Rezvani Moghadam, P., Nasiri Mahalati, M. and Tokasi, S., 2012. Investigation on the cardinal temperatures for germination of Solanum nigrum. p. 122. In proceeding of 4th Iranian Weed Science Congress, 6-7 February. 2004, Ahvaz, Iran.
18- Nerson, H., 2007. Seed production and germinability of cucurbit crops. Seed Science Biotechnolgy, 1: 1-10.
19- Page, E.R., Gallagher, R.S., Kemanian, A.R., Zhang, H. and Fuerst, E.P., 2006. Modeling site-specific wild oat (Avena fatua) emergence across a variable landscape. Weed Science, 54:838-846.
20- Shafii, B., and Price, W.J. 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agriculture Biology Environment Statistics, 6: 356-366.
21- Shen, J.B., Xu, L.Y., Jin, X.Q., Chen J.H. and Lu, H.F. 2008. Effect of temperature regime on germination of seed of perennial ryegrass (Lolium perenne).Grass and Forage Science, 63:249–256.
22- Soltani, A., Zeinali. E., Galeshi, S., and Latifi, N. 2001. Genetic variation for and interrelationships among seed vigor traits in wheat from the caspian sea coast of Iran. Seed Science Technology, 29: 653-662.
23- Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M., and Sarparast, R. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agriculture Forest Meteorology, 138: 156-167.
24- Soltani, E., Akram-Ghaderi, F., and Soltani, A. 2008a. Applications of germination modeling on the response to temperature and water potential in seed Science Research. 1st National Conference of Seed Sciences and Technology in Iran. Gorgan, Iran. 445p.
25- Soltani, A., Ghaderi-Far, F. and Soltani, E. 2008b. Application of germination in response to temperature and water potential in seed Science Research the 1st National Conference Sciences and Technology of seeds. 12-13 November. 2008. Gorgan, Iran,
26- Soltani, A. and Maddah, V. 2010. Simple Applied Programs for Education and research in Agronomy. Issa Press, Iran. 80p.
27- Steinmaus, S.J., Prather, T.S. and Holt, J.S. 2000. Estimation of base temperature for nine weed species. Journal of Experimental Botany, 51: 275-286.
28- Tabrizi, L., Nasiri Mahallati, M. and Koocheki, A. 2004. Investigation on the cardinal temperature for germination on Plantago ovata and Plantago psyllium. Journal of Iranian Field Crops Research. 2: 143-150.
29- Thygerson, T., Harris, J.M., Smith, B.N., Hansen, L.D., Pendleton, R.L. and Booth, D.T. 2002. Metabolic response to temperature for six populations of winter fat (Eurotia lanata). Thermochimica Acta, 394: 211-217.
30- Torabi, B., 2004. Prediction of physiological development stages in chickpea. MS.c. Thesis. Gorgan University, Gorgan, Iran.
31- Yousefi-Daz, M., Soltani, A., ghaderi-far, F. and Sarparast, R., 2006. Evaluation of non-linear regression models to describe response of emergence rate to temperature in chickpea. Agriculture. Science and Technolgy, 20: 93-102.
32- Zeinali, E., Soltani, A., Galeshi, S., and Sadati, S.J. 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Journal of Plant Production, 3(3): 23-42.
CAPTCHA Image