با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استاد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 دانش آموخته کارشناسی ارشد میوه‌کاری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

تنش کم آبی به خصوص برای درختان جوان محدودیت­هایی را ایجاد می­کند که می­تواند بر روند رشد رویشی گیاه تأثیرگذار باشد. اسید اسکوربیک یکی از ترکیباتی است که تا حدودی مقاومت گیاهان به تنش را بالا می­برد. لذا پژوهشی با هدف بررسی تأثیر غلظت­های مختلف اسید اسکوربیک (صفر، 250، 500 و 750 میلی‌گرم در لیتر) بر نهال­های زیتون رقم ̕باغملک̔ در شرایط کم آبی به صورت آزمایش فاکتوریل در قالب طرح بلوک­های کامل تصادفی در گلخانه دانشکده کشاورزی دانشگاه شهید چمران اهواز انجام گردید. در این آزمایش تیمارهای آبیاری شامل (100، 66 و 33 درصد آب قابل استفاده) بود. نتایج اثر برهمکنش آبیاری و اسید اسکوربیک نشان داد که در غلظت 250 میلی‌گرم در لیتر اسید اسکوربیک و تیمار 33 درصد آب قابل استفاده نسبت به شاهد وزن تر ریشه از 11/36 به 79/57 گرم، وزن خشک ریشه از 16/18 به 29/27 گرم، طول ساقه از 33/62 به 68 سانتی‌متر و سطح برگ از 5958 به 7123 سانتی‌متر مربع افزایش یافت. همچنین در غلظت 250 میلی‌گرم در لیتر اسید اسکوربیک و 66 درصد آب قابل استفاده در مقایسه با شاهد وزن تر ریشه از 66/37 به 49/51 گرم، وزن خشک ریشه از 74/21 به 65/22 گرم، وزن تر ساقه از 47/27 به 04/37 گرم، وزن خشک ساقه از 61/23 به 78/25 گرم، طول ساقه از 61 به 67 سانتی­متر و سطح برگ از 6722 به 7549 سانتی­متر مربع افزایش یافت. اثر متقابل اسید اسکوربیک و تیمار کم آبی نشان داد که غلظت 250 میلی­گرم در لیتر اسید اسکوربیک باعث افزایش محتوی نسبی آب در هر سه تیمار آبی به ترتیب 59، 50 و 54 درصد نسبت به تیمار شاهد (حدود 40 درصد) گردید. همچنین پتانسیل آب ساقه در تیمار آبی 33 درصد تا حدود 3/4- مگاپاسکال کاهش یافت درحالی­که استفاده از غلظت 250 میلی­گرم در لیتر اسید اسکوربیک باعث گردید تا پتانسیل آب ساقه تا حدود 9/3- افزایش یابد. به طور کلی نتایج نشان داد که تیمار اسید اسکوربیک در نهال­های زیتون باعث کاهش اثر منفی تنش کم آبی می­گردد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Ascorbic Acid on Vegetative Growth of Olive Plants cv. ‘Baghmalek’ under Water Deficit Conditions

نویسندگان [English]

  • Norollah Moallemi 1
  • Esmaeil Khaleghi 2
  • Zeinab Jafari zadeh 3

1 Professor, Department of Horticultural Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Graduate Student in Pomplogy, Department of Horticultural Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Introduction: Plant establishment is difficult in some arid and semi-arid regions of Iran because of lacking rainfall and inadequate distribution and extreme heat. Previous studies stated that plant water parameters and growth characteristics such as plant height, fresh and dry weight of root, stem and leaf, which is known as the first reaction of plants, were decreased under drought stress. Therefor it is necessary to use practices with objectives to decease the effects of drought stress on plants and increasing water use efficiency. Several studies showed that various morphological and physiological characteristics in plants were influenced by ascorbic acid. In fact, ascorbic acid increased plant resistance to drought stress. The purpose of this research was to investigate the effect of ascorbic acid application on growth traits of ‘Baghmalek’ olive under 100%, 66% and 33% ETcrop < /sub> by analyzing growth traits and relative water content, stem water potential and stomata resistance.
Material and Methods: This research was carried out in order to assess the effects of three levels of water deficit (100, 66 and 33 percent of evapotranspiration (ETcrop < /sub>)) and four concentrations of ascorbic acid (0, 250, 500 and 750 mg l-1) on some growth and physiological parameters of young olive plants cv. ‘Baghmalek’as a factorial experiment based on a randomized complete block design with three replications. Fresh and dry root, stem and leaf weight, leaf number, leaf area, stem diameter, relative water content, stem water potential and stomata resistance were measured in this research. Two years old olive trees (Olea europaea cv. ‘Baghmelak’) were used. Seventy two plants were grown in 10 L pots, containing a mixture of field soil: sand: manure (1:1:1). Plants were sprayed with four concentrations of ascorbic acid and irrigated every 10 days, based on the amount of evapotranspiration of plant (ETcrop < /sub>). Parameters such as relative water content, stem water potential and stomata resistance were measured at last week of the experiment and the other parameters were measured every week. Data analysis were performed using MSTATC software and means comparison were carried out by Duncan's multiple range test (DMRT) at 5% and 1% of probability levels.
Results and Discussion: The results indicated the growth quality was better in plants treated with 250 mg l-1 ascorbic acid under water stress. Fresh and dry weight of root, stem and leaf growth, stem diameter, leaf number, leaf area were higher in plants treated with 250 mgl-1 ascorbic acid than untreated plants. Interaction between water deficit stress ×ascorbic acid revealed information in plant characters such as fresh and dry weight, stem diameter and leaf area simply declined as sources of water (from 100 to 66 and 33 percent) become limited, in particular in the trees which not receiving ascorbic acid treatments. However, application of 250 and 500 mg l-1 ascorbic acid enhanced the amount of relative content of leaf and water potential of stem in trees under water deficit stress. While stomata resistance was decreased in trees receiving ascorbic acid treatments. Some researcher declared that limitation of photosynthesis could be one of the most important factors for decreasing growth under water deficit stress. In addition, relative water content, cell turgor potential, reduced cell division, cell enlargement and growth plant could be affected by water deficit stress. Also the results indicated that leaf area (5952 cm), leaf number (151.7), stem diameter (6.49 mm), stem length (63.33 cm), root dry weight (18.16 g) and leaf fresh weight (9.35 g) were obtained in irrigated plants with 33% ETcrop < /sub> and untreated with ascorbic acid. Our results showed leaf number (158.7), stem length (74 cm), root fresh weight (78.08 g), stem fresh and dry weight (46.45 and 28.43 g, respectively) and leaf fresh and dry weight (13.35 and 8.45 g, respectively) were highest in irrigated plants with 100% ETcrop < /sub> and treated with 250 mg l-1 ascorbic acid.
Conclusion: Water deficit stress could affect directly on relative water content, cell turgor potential and reduce cell division, cell enlargement, plants photosynthesis and plant growth. The use of ascorbic acid could effect on plants resistance to drought. In addition, various morphological and physiological traits could be influence by ascorbic acid. The results of this research indicated that 250 mg l-1 ascorbic acid concentration had more effects on water deficit and it seems ascorbic acid can be used to reducing the negative effects of drought in some regions that rainfall shortage and drought is important problems.

کلیدواژه‌ها [English]

  • Growth traits
  • Relative water content
  • Stem water potential
1-       Ahmadi A., and Biker A.D. 2000. Stomatal and non stomatal limitation of photosynthesis under water stress conditions in wheat plant. Iranian Journal of Agriculture Science 31(4): 813-825. (In Persian with English abstract)
2-       Arji I. 2003. Effects of drought stress on physiological characteristics, morphological and biochemical some of olive varieties. PhD thesis. Faculty of Agriculture Tarbiat Modares University, 213 p. (In Persian)
3-       Arzani K., and Argi I. 2000. The effect of water stress and deficit irrigation on young potted olive cv. “Local-Roghani Roodbar”. Acta Horticulture 537(2): 879-875.             
4-       Arzani K., and Argi I. 2002. The response of young potted olive plants cv. `Zard' to water stress and deficit irrigation.  Acta Horticulture 586: 419-422.
5-       Barzegar A., and Moallemi N. 2014. Soil-Water and Plant Relationship. Shahid Chamran university of Ahvaz press. 233 p.
6-       Basaga H.S. 1989. Biochemical aspects of free radicals. Journal of Biochemistry & Cell Biology 68: 989-998.
7-       Beck E.H., Fettig S., Knake C., Hartig K., and Bhattarai T. 2007. Specific and nonspecific responses of plants to cold and drought stress. Journal of Biosciences 32: 501-510.
8-       Cameron R.W.F, Harrison-Murray R.S., and Seott M.A. 1999. The use of controlled water stress to manipulate growth of container- grown Rhododendron cv. Happy. The Journal of Horticultural Science and Biotechnology 47: 161-169.
9-       Chartzoulakis K., Bosabalidis A.M., Patakas A., and Vemmos S. 2000. Effect of water stress on water relation gas exchange and leaf structure of olive tree. Acta Horticulture 537: 241-247
10-   Chen W.P., Li P.H., and Chen T.H.H. 2000. Glycin Betaine increases chilling tolerance controlled water stress to manipulate growth of container-grown Rhododendron cv. Happy. The Journal of Horticultural Science and Biotechnology 47: 161-169.
11-   Conklin P.L., and Barth C. 2004. Ascorbic acid, a familiar small molecule interwined in the response of plants to ozon, pathogens, and the onset of senescence. Plant and Cell and Environment 27: 959-971.
12-   EL- Banna E.N., Ashour S.A., and Abd Al Salam H.Z. 2006. Effect of foliar application with organic compounds on growth yield and tubers quality of potato (Solanum tubersoum L.). Journal of Agricultural Science, Monsoura University 31(2): 1165-1173.
13-   El Sayed M.A., El-Gammal O.H.M., Salama A.S.M. 2014. Effect of ascorbic acid, proline and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Scientia Horticulture 176: 32–37.
14-   Fateh M., Barzegar T., and Razavi F. 2019. The effect of foliar application of ascorbic acid and calcium lactate of growth, yield and fruit quality of sweet pepper. Journal of Horticultural Science 33(1): 79-87. (In Persian with English abstract)
15-   Hossain A.B.S., Sears R.G., Cox T.S., and Paulses G.M. 1990. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science 30(3): 622-627.
16-   Hubick K.T., Drakeford D.R., and Reid D.M. 1986. The effect of drought on levels of ABA, cytokinine, giberline and ethylene in aeroponically grown sunflower plants. Journal of Plant Growth Regulation 4: 139-151.
17-   Jiang M., and Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiology 42 (11): 1265-1273.
18-   Khaleghi E. 2012. Response of yang olive plants cv. Dezful to kaolin and water stress and mature olive trees cv. Zard to kaolin nuder specific environmental conditions of Fesa city. PhD thesis. Faculty of Agriculture Tarbiat Modares University, Iran. (In Persian)
19-   Khaleghi E., Arzani K., Moallemi N., and Barzegar M. 2014. Studying the effect of kaolin on fluorescence and chlorophyll content in leaves of olive plants (Olea europaea L. cv. Dezful) under water deficit stress. Plant Production 37(2): 127-139. (In Persian with English abstract)
20-   Lawlor D.W. 2002. Limitation to photosynthesis in Water stressed leaves Stomata metabolism and the role of ATP. Annals of Botany 89(7): 871-885.
21-   Lawlor D.W., and Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25(2): 275-294.
22-   Levitt J. 1980. Responses of plants to environment stresses. Water, Radiation, salt and other stresses. Academic Press. New York. 2. 607 PP.
23-   Lobato A.K.S., Oliveira Neto C.F., Santos Filho B.G., Costa R.C.L., Cruz F.J.R., Neves H.K.B., and Lopes M.J.S. 2008. Physiological and biochemical behavior in soybean (Glycine max) plants under water deficit. Australian Journal Crop Science 2(1): 25-32.
24-   Magliulo V., d'Andria R., Morelli G., and Fragnito F. 1999. Growth traits of five young olive cultivars, grown under different irrigation regimes. Acta Horticulture 474: 395-398.
25-   Maksoud M.A., Saleh M.A., El-Shamma M.S., and Fouad A.A. 2009. The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. World Journal of Agricultural Sciences 5(3): 350–352.
26-   Michelakis N. 1995. Effect of water availability on the growth and yield of olive trees. Olivia 56: 29-39.
27-   Moriana A. Orgaz F. Pastor M. and Fereres E. 2003. Yield responses of a mature olive orchard to water deficits. Journal of the American Society for Horticultural Science 128: 425-431.
28-   Mossavi S.M., Falahatkar S., and Farajzadeh M. 2018. Concentration in Changes of Co2 and Ch4 Greenhouse Gases Relation to Environmental Variable in Iran. Iranian Journal of Applied Ecology 6(4): 65-79. (In Persian with English abstract)
29-   Pignocchi C., and Foyer C.H. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Current Opinion in Plant Biology 6: 379-387.
30-   Porghasemi D., Rezaeinejad A., and Chehrazi M. 2015. Effect of salinity stress on some quantitative and qualitative characteristics of Alternanthera repens genotypes:"Entine leaf "and "Undulate leaf. Plant Production 38(2): 65-76. (In Persian with English abstract)
31-   Ritchie S.W., and Hanson A.D.1990. Leaf water content and gas exchanges of wheat genotypes differing in drought resistance. Crop Science 30: 105-111.
32-   Shalata A., and Neumann P.M. 2001. Exogenous ascorbic acid (Vitamin C) increase resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany 52: 2207-2228.
33-   Shigeoka S., Ishikawa T., Tami M., and Miyagawa Y. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53(372): 1305-1319.
34-   Smirnoff N. 1998. Plant resistance to environmental stress. Current Opinion in Biotechnology 9: 214-219.
35-   Wassel A.H., EL-Hameed M.A., Gobara A., and Attia M. 2007. Effect of micronutrients, gibberellic acid and ascorbic acid on growth, yield and quality of white Banaty seedless grapevines. African Crop Science Conference Proceeding 8: 547-553.
36-   Yin C., Peng Y., Zang R., Zhu Y., and Li C. 2005. Adaptive responses of populous kangdigensis to drought stress. Physiologia Plantarum 123(4): 445-451.
37-   Zhu J.K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124: 941-948.
CAPTCHA Image