با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

استفاده از باکتری‌های محرک رشد گیاه (PGPR) از روش‌های نوین برای افزایش تحمل گیاه به تنش شوری است. به‌منظور بررسی نقش باکتری‎های محرک رشد گیاه بر رشد و برخی ویژگی­های فیزیولوژیکی پاجوش‌های زرشک تحت تنش شوری، مطالعه‌ای بصورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با 3 تکرار در نهالستان اجرا شد. فاکتورهای آزمایش شامل باکتری‎های محرک رشد گیاه در سه سطح (شاهد (بدون تلقیح) و تلقیح با باکتری‎های Pseudomonas sp. P1 و Pseudomonas sp. P2) و شوری آب آبیاری در سه سطح (شاهد، 6 و 12 دسی‌زیمنس بر متر از منبع کلرید سدیم) بود. نتایج نشان داد که شوری آب آبیاری موجب کاهش وزن خشک برگ، غلظت کلروفیل و کاروتنوئید، مقدار نسبی آب و نسبت پتاسیم به سدیم برگ پاجوش‌های زرشک شد. در مقابل با افزایش شوری، مقدار پرولین و قند کل و غلظت عناصر فسفر، سدیم و کلر برگ افزایش یافت. همچنین تلقیح با باکتری‎ها وزن خشک برگ، کلروفیل، کاروتنوئید، غلظت پتاسیم، محتوای نسبی آب و نسبت پتاسیم به سدیم را بویژه در شرایط شور افزایش داد. همچنین در شرایط شور، غلظت سدیم، کلر، فسفر، پرولین و قند کل در برگ پاجوش‌های زرشک تلقیح شده با باکتری‎ها کاهش یافت. بیشترین مقدار وزن خشک برگ (70/0 گرم)، کلروفیل کل (92/0 میلی‎گرم بر گرم وزن تر)، کاروتنوئید (51/0 میلی‎گرم بر گرم وزن تر)، پتاسیم برگ (48/0 درصد) و قند کل برگ ( 7/43 میلی‎گرم بر گرم وزن خشک) از کاربرد باکتری‌های محرک رشد گیاه در شرایط بدون تنش شوری بدست آمد. همچنین کاربرد باکتری‎ها در شرایط شور منجر به کاهش مقدار فسفر و قند کل در برگ شد. باکتری‌های محرک رشد گیاه استفاده شده در این پژوهش با کاهش تجمع سدیم و کلر در برگ، افزایش غلظت کلروفیل و کاروتنوئیدها و افزایش مقدار فسفر و پتاسیم در برگ، موجب بهبود رشد و استقرار پاجوش­های زرشک در شرایط شور شدند. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Response of Growth and Physiological Factors of Barberry (Berberis vulgaris L.) Inoculated With Plant Growth-Promoting Rhizobacteria to Salinity of Irrigation Water

نویسندگان [English]

  • Saeid Daghighi 1
  • Farhad Azarmi-Atajan 2
  • Nasibeh Chopani Aghech 1

1 Horticultural Science Engineering Department, Agricultural College, University of Birjand, Birjand, Iran

2 Soil Science Engineering Department, Agricultural College, University of Birjand., Birjand, Iran

چکیده [English]

Introduction
 Barberry is one of the important agricultural products of Iran and has an important role in the economy of farmers, especially in South Khorasan province. Salinity as abiotic stress can cause an ionic or osmotic imbalance in plant cells. Salt stress also restricts plant growth and development by affecting water reducing availability and affecting plant production. Despite the relatively high tolerance of barberry to environmental stresses, increasing soil salinity and irrigation water in barberry growing areas, the growth, and yield of this agricultural product have decreased. The use of plant growth-promoting rhizobacteria (PGPR) is a new method that has been shown to increase the tolerance of various plants to salinity stress.
Materials and Methods
 Due to the lack of information about the effect of salinity on the growth and establishment of barberry off-shoot and the role of beneficial soil bacteria in increasing the tolerance of this plant to salinity stress, this study aimed to investigate the role of bacteria on growth, physiological and biochemical properties and uptake of nutrients by barberry off-shoot at different levels of irrigation water salinity. For this purpose, a factorial study was conducted in a randomized complete block design with 3 replications. Experimental factors included plant growth-stimulating bacteria at three levels (control (Without inoculation) and inoculation with Pseudomonas sp. P1 and Pseudomonas sp. P2) and salinity of irrigation water at three levels (control, 6 and 12 dS/m from sodium chloride source). The bacteria used in this study were able to produce indole acetic acid, siderophore, ACC deaminase enzyme, and dissolve insoluble phosphate (tricalcium phosphate) in vitro. For inoculation, inoculum containing each bacterium with a population of 108 cells/ml was prepared in the Nutrient Broth medium and added to the root medium. The plants were irrigated with non-saline water for one month and then with saline water for two months based on experimental treatments. Finally, leaf sampling was performed and various characteristics such as leaf dry weight, chlorophyll, proline, total sugar, RWC and phosphorus, potassium, sodium, and chloride concentrations were measured. Analysis of variance of traits was performed using SAS software and the means were compared using the LSD method with a probability level of P≤0.05.
Results and Discussion
 The results showed that the salinity of irrigation water reduced leaf dry weight, chlorophyll and carotenoid concentration, relative water content, and potassium to sodium ratio of barberry leaves. Decreased photosynthetic pigments under salinity may be due to decreased synthesis of the main chlorophyll pigment complex, oxidative damage to chloroplast lipids, pigments, and proteins, or increased chlorophyllase activity. In contrast, with increasing salinity, the amount of proline and total sugar and the concentration of phosphorus, sodium, and chlorine in leaves increased. Bacterial inoculation also increased leaf dry weight, chlorophyll, carotenoids, potassium concentration, relative water content, and potassium to sodium ratio, especially in saline conditions. Also in saline conditions, the concentrations of sodium, chlorine, phosphorus, proline, and total sugar in the leaves of barberry off-shoot inoculated with bacteria decreased. It seems that PGPR plays a significant role in the regulation of cellular osmolites, including proline and soluble sugars, by producing various metabolites and increasing the absorption of water and nutrients. The highest amount of leaf dry weight (0.70 g), total chlorophyll (0.92 mg g-1 fresh weight), carotenoids (0.51 mg g-1 fresh weight), leaf potassium (0.48 %), and total leaf sugar (43.7 mg g-1 dry weight) was obtained from the application of PGPR in conditions without salinity stress. Also, the use of bacteria in saline conditions decreased the amount of phosphorus and total sugar and in non-saline conditions increased the amount of these parameters. PGPR through various mechanisms such as the production of auxin, organic and mineral acids, and secretion of proton and phosphatase enzymes increase the availability of phosphorus for the plant, root growth, and absorption of water and nutrients. Increased absorption of water and nutrients has led to increased leaf growth and development and therefore reduced phosphorus concentration (dilution effect).
Conclusion
 According to the results, PGPR by increasing the absorption of water and nutrients such as phosphorus and potassium caused osmotic regulation in the plant and thus increased the tolerance of barberry off-shoot to salinity stress of irrigation water. The ability of these bacteria to improve plant growth in saline conditions could be due to the production of auxin, siderophore, dissolution of tricalcium phosphate, and especially the production of the enzyme ACC-deaminase (as observed in vitro). Therefore, these bacteria can be used to improve the nutrition growth and establishment of barberry off-shoot.

کلیدواژه‌ها [English]

  • Barberry
  • Beneficial soil microorganisms
  • Nutrients
  • Osmotic regulation
  • Salinity stress
  1. Ansari F.A., Ahmad I., and Pichtel J. 2019. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology 143: 45-54. https://doi.org/10.1016/j.apsoil.2019.05.023.
  2. Arnon A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23: 112-121.
  3. Aseri G.K., Jain N., Panwar J., Rao A.V., and Meghwal P.R. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, and metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum) in Indian Thar Desert. Scientia Horticulturae 117: 130-135. https://doi.org/10.1016/j.scienta.2008.03.014.
  4. Azadi A., Mardi M., Majidi Harvan E., Mohammadi S.A., and Moradi F. 2017. QTL Analysis for sodium and potassium concentration and potassium to sodium ratio in wheat under salt-stress condition. Crop Biotechnology 6(16): 61-73. (In Persian with English abstract)
  5. Azarmi F., Mozafari V., Abbaszadeh-Dahaji P., and Hamidpour M. 2016. Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum 38: 21. https://doi.org/1007/s11738-015-2032-3.
  6. Azarmi F., Mozafari V., Abbaszadeh-Dahaji P., and Hamidpour M. 2015. Isolation and evaluation of plant growth promoting indices of Pseudomonas fluorescens isolated from pistachio rhizosphere. Journal of Soil Biology 2(2): 173-186. https://doi.org/22092/sbj.2015.100867.
  7. Azarmi-Atajan F., and Sayyari-Zohan M.H. 2022. Effect of phosphate solubilizing bacteria and triple superphosphate on the growth, physiological parameters and phosphorus uptake of pistachio seedlings. Journal of Horticulture and Postharvest Research 5(1): 69-71. https://doi.org/22077/JHPR.2022.4917.1260.
  8. Bates L.S., Walderen R.P., and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207. http://dx.doi.org/10.1007/BF00018060.
  9. Chapman H.D., and Pratt P.F. 1961. Methods of analysis for soils, plants and waters, The University of California’s Division of Agriculture Sciences, Davis, Calif, USA.
  10. Chaves M.M., Flexas J., and Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551-560. https://doi.org/10.1093/aob/mcn125.
  11. Egamberdieva D., and Kucharova Z. 2009. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soil 45: 563-571. https://doi.org/1007/s00374-009-0366-y.
  12. Egert M., and Tevini M. 2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany 48: 43-49. https://doi.org/10.1016/S0098-8472(02)00008-4.
  13. Feng G., Zhang F.S., Xl L., Tian C.Y., Tang C., and Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185-190. https://doi.org/1007/s00572-002-0170-0.
  14. Glick B.R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology 56: 291-312. https://doi.org/1016/S0065-2164(04)56009-4.
  15. Grattan S.R., and Grieve C.M. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulture 78: 127-157. https://doi.org/10.1016/S0304-4238(98)00192-7.
  16. Iqbal M., and Ashraf M. 2013. Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiologiae Plantarum 35: 1093-1112. https://doi.org/1007/s11738-012-1147-z.
  17. Jimenez-Mejia R., Medina-Estrada R.I., Carballar-Hernández S., del Carmen Orozco-Mosqueda M., Santoyo G., and Loeza-Lara P.D. 2022. Teamwork to survive in hostile soils: use of plant growth-promoting bacteria to ameliorate soil salinity stress in crops. Microorganisms 10: 150. https://doi.org/3390/microorganisms10010150.
  18. Kafi M., and Balandari A. 2004. Berberis (Production and Processing). Ferdowsi University Press, Mashhad, Iran, p. 210
  19. Karlidag H., Yildirim E., Turan M., Pehluvan M., and Donmez F. 2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). HortScience 48(5): 563-567. https://doi.org/10.21273/HORTSCI.48.5.563.
  20. Kong W., Wei J., Abidi P., Lin M., Inaba S., Li C., and Pan H. 2004. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nature Medicine 10(12): 1344-1351. https://doi.org/1038/nm1135.
  21. Maggio A., Miyazaki S., Veronese P., Fujita T., Ibeas J.I., Damsz B., Narasimhan M.L., Hasegawa P.M., Joly R.J., and Bressan R.A. 2002. Does proline accumulation play an active role in stress-induced growth reduction. Plant Journal 31: 699-712. https://doi.org/1046/j.1365-313x.2002.01389.x.
  22. Mahajan S., and Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444(2): 139-158. https://doi.org/1016/j.abb.2005.10.018.
  23. Mayak S., Tirosh T., and Glick B.R. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant physiology and Biochemistry 42(6): 565-572. https://doi.org/1016/j.plaphy.2004.05.009.
  24. Mc Cready R., Guggolz J., Silviera V., and Owens H. 1950. Determination of starch and amylose in vegetables, application to peas. Analytical Chemistry 22: 1156-1158. https://doi.org/10.1021/ac60045a016.
  25. Mishra P., Mishra J., and Arora N.K. 2021. Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review. Microbiological Resarrch 252: 126861. https://doi.org/1016/j.micres.2021.126861.
  26. Moradinezhad F., Hassanpour S., and Sayyari MH. 2018. Influence of preharvest spray of calcium chlorideand salicylic acid on physicochemical and quality properties of fresh seedless barberry fruit. Journal of Horticultural Science 32(1): 61-74. (In Persian with English abstract). https://doi.org/22067/JHORTS4.V32I1.60331.
  27. Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist 167: 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x.
  28. Munns R., and Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681. https://doi.org/1146/annurev.arplant.59.032607.092911.
  29. Nadeem S.M., Zahir Z.A., Naveed M., and Arshad M. 2009. Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology 55(11): 1302-1309. https://doi.org/1139/w09-092.
  30. Parihar P., Singh S., Singh R., Singh V.P., and Prasad S.M. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research 22(6): 4056-4075. https://doi.org/1007/s11356-014-3739-1.
  31. Paul D., and Nair S. 2008. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology 48:1-7. https://doi.org/1002/jobm.200700365.
  32. Sabet Teimouri M., Kafi M., Avarseji Z., and Orooji K. 2010. Effect of drought stress, corm size and corm tunic on morphoecophysiological characteristics of saffron (Crocus sativus) in greenhouse conditions. Journal of Agroecology 2(2): 323-334. (In Persian with English abstract). https://doi.org/10.22067/jag.v2i2.7639.
  33. Salehi M., Kochaki A.R. and Nasiri Mahallati M. 2003. Nitrogen and chlorophyll content as an indicator of drought stress of wheat. Iranian Field Crop Research 1(2): 199-204. https://doi.org/1001.1.20081472.1382.1.2.7.5.
  34. Shabala S., Bamurina O., and Newman L. 2000. Ion-specific mechanisms of osmoregulation in been mesophyll cells. Journal of Biology Sciences 331: 215-225. https://doi.org/10.1093/jexbot/51.348.1243.
  35. Sziderics A.H., Rasche F., Trognitz F., Wilhelm E., and Sessitsch A. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum). Canadian Journal of Microbiology 53: 1195-1202. https://doi.org/10.1139/W07-082.
  36. Tester M., and Davenport R. 2003. Na tolerance and Na transport in higher plants. Annals of Botany 91(5): 503-527. https://doi.org/10.1093/aob/mcg058.
  37. Vives-Peris V., Gomez-Cadenas A., and Perez-Clemente R.M. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putidaand Novosphingobium Plant Cell Reports 37: 1557-1569. https://doi.org/10.1007/s00299-018-2328-z.
  38. Warrence N., Pearson K.E., and Bavder J.W. 2002. The basic of salinity and sodicity effect on soil physical properties. Journal of Plant Physiology 25: 64-70.
  39. Xu G., Magen H., Tarchitzky J., and Kafkaki U. 2000. Advances in chloride nutrition. Advances in Agronomy 68: 96-150. https://doi.org/10.1016/S0065-2113(08)60844-5.
  40. Zabihi H.R., Savagebi G.R., Khavazi K., and Ganjali A. 2009. Effect of application of Pseudomonas fluorescents on yield and yield components of wheat under different soil salinity levels. Journal of Water and Soil 23(1): 199-208. (In Persian with English abstract). https://doi.org/22067/JSW.V0I0.1551.
  41. Zakar T., Laczko-Dobos H., Toth T.N., and Gombos Z. 2016. Carotenoids assist in cyanobacterial photosystem II assembly and function. Frontiers in Plant Science 7: 295. https://doi.org/3389/fpls.2016.00295.
  42. Zeinali bafghi M., Gholamnezhad J., Esmailzadeh-Hosseini S.A., Shirmardi M., and Jafari A. 2020. Influence of growth promoting bacteria on growth and physiological traits of pistachio in saline soils. Horticultural Plants Nutrition 2(2): 107-129. (In Persian with English abstract). https://doi.org/22070/HPN.2020.4548.1030.
  43. Zhang M., Fang Y., Ji Y., Jiang Z., and Wang L. 2013. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany 85: 1-9.‏ https://doi.org/10.1016/j.sajb.2012.11.005.
CAPTCHA Image