نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا همدان

2 بوعلی سینا همدان

چکیده

بسیاری از گیاهان برای شکستن خواب زمستانه خود نیاز به سرما دارند. سناریوهای تغییر اقلیم برای آینده افزایش دمای هوا را در فصل زمستان پیش‌بینی می‌کنند. هدف از این پژوهش بررسی اثر بالقوه تغییر اقلیم بر روند تامین نیاز سرمایی گیاهان خزان‌دار در همدان است. این پژوهش بر اساس مدل‌های اقلیمی متفاوت در گزارش چهارم هیئت بین الدول تغییر اقلیم نظیر BCM2، HADCM3، GFCM21 و IPCM4 تحت سناریوهای انتشار حدی (A2 و B1) و توازنی (A1B) انجام شد. جهت ریزمقیاس‌نمایی خروجی مدل‌های گردش عمومی، مدل LARS-WG مورد استفاده قرار گرفت. پس از تولید داده‌های ساعتی فراسنج های هواشناختی، از سه مدل نیاز سرمایی برای برآورد و بررسی روند تامین سرمایی در فصل زمستانِ استان همدان استفاده شد. همچنین از آزمون‌های پارامتری و ناپارامتری برای بررسی تغییرات نیاز سرمایی در دو دوره آینده نزدیک (2030-2011) و آینده دور (2050-2031) نسبت به گذشته (2010-1980) بهره گرفته شد. نتایج این پژوهش حاکی‌ از کاهش نیاز سرمایی گیاهان خران‌دار در همدان می‌باشد. خروجی مدل‌های اقلیمی ریز مقیاس شده برای استان همدان نشان داد، اگرچه روند تغییرات در کل دوره افزایشی بوده اما روند کاهشی در دهه‌ی آخر داده‌های تاریخی و متوسط دو دهه‌ی آینده ادامه می‌‌‌یابد، به‌طوری که در افق زمانی سال‌های 2031 تا 2050 به‌میزان 25 تا 40 درصد از انباشت سرما در فصل زمستان کاسته خواهد شد. این کاهش موجب عدم تامین سرمای کافی برای شکسته شدن خواب گیاه در انتهای فصل زمستان می‌‌‌شود. در نهایت، عدم مدیریت صحیح بدون ملاحظات اقلیمی ممکن است به صدمات جدی به باغات کشور در آینده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Impact of Climate Change on Winter Chilling Trend for Deciduous Fruit Trees (Case Study: Hamadan)

نویسندگان [English]

  • Ali Akbar Sabziparvar 1
  • Reza Norooz Valashedi 2

1 Bu-Ali Sina University, Hamedan

2 Bu-Ali Sina University, Hamedan

چکیده [English]

Introduction :Higher temperature as the result of climate change are likely to affect horticultural production. Deciduous fruit trees need winter chilling to break winter dormancy. Climate plays an important role in the successful production of deciduous fruit. Winter dormancy is one of the key factors of the annual cycle of deciduous fruit and nut trees along with the following breaking of the dormant state. This state is maintained through the winter period each year to protect against damaging cold temperatures. To be released from dormancy, trees require exposure to a predetermined quantity of cold temperatures in a process known as winter chilling or vernalization. Insufficient chilling can lead to sporadic and light bud break, poor fruit development, small fruit size and uneven ripening times. The main objective of this study is to investigate climate change effect on the winter chilling requirement (WCR) in Hamadan.
Materials and Methods:This research was performed based on the General Circulation Models (BCM2, HADCM3,GFCM2 and IPCM4) and different emission scenarios (A2, B1, A1B), as recommended by the Forth Report of the IPCC. The output of the GCMs was downscaled by LARS-WG model. The hourly weather data were generated as the inputs of three different Chilling Requirement Models (CRMs), and the winter chilling trend of deciduous fruit trees were predicted for Hamadan. The projected daily temperature time series were then converted into hourly temperatures. The projected hourly temperature data were run through each of the three chill models for all four GCMs in different scenarios.
Three chill models [the 0.0–7.2°C (CH), the Utah (UT), and the Utah Positive (UTPos) models] were used to investigate changes in chill accumulation in Hamadan, according to localized temperature change related to increases in global average temperatures. In addition, the winter chilling requirement time series were divided into two periods: baseline and future time. Historical daily minimum and maximum data from 1980 to 2010 were used from the Hamadan airport synoptic station. Future time horizon splittedinto early (2011-2030) and late (2031-2050) periods. For evaluating the long-term future changes in the chilling requirement, we used parametric and non-parametric tests.
Results and Discussion: The model results showed a decreasing WCR trend during the recent decade. In general, the outputs of downscaled climate models predicted a decreasing WCR trend for the study site. For the time horizon of 2031-2050, this dramatic reduction in the WCR varied rom 25 percent to 40 percent. Future chill profiles differentiated between the WCR models as demonstrated through Hamadan global average temperature, causing a small decline in accumulated chill unit, with further warming causing greater decreases. This decrease in the UT models can be due to the negative effect of high temperature during this period. The study result which showed the WCR mean during early time horizon 2011-2030, was not significant but further time horizon 2031-2050 had a very significant change, as compared to the baseline. The aim of this study was to assess changes in the WCR rather than completing a model skill analysis. Through using previous climate model performance studies a justification of the addition of GCMs was described. Such defenses for model selection are recommended in all climate change impact studies. Test of model output in other scenarios and different GCMs showed an insignificant versatility between them.
Conclusions: This research represents a significant update to the previous climate impact analysis of chill in cold semi-arid climate of Hamadan. It also highlights that sensitivity studies as a useful method for impact assessments. The severity and rate of decline of winter chilling requirement, depends on which chill model was used. The general trend showed decreasing of the winter chilling requirement against the winter temperature trend. Therefore, in the context of global warming, the earlier flowering dates of many deciduous tree species is likely leads to increased risk of damage during the late spring frost. For future fruit farm management, decisions can be implemented with deliberation of the likely changes in the winter chilling requirement reported here. There might be some adaptation, at least to some degree, being essential for most production areas in Hamadan and other similar climate conditions within the next 40 years. Reduction in winter chilling, prevents breaking winter dormancy, which finally may lead to serious damage to deciduous fruits.

کلیدواژه‌ها [English]

  • Air Temperature
  • Dormancy
  • GCMs
  • Emission Scenarios
  • Global warming
  • LARS-WG
1- Albuquerque N., Garcia-Montiel F., Carrillo A., Burgos L. 2008. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 64: 162-170.
2- Bennett J. 1950. Temperature and bud rest period: Effect of temperature and exposure on the rest period of deciduous plant leaf buds investigated. California Agriculture, 4: 11-16.
3- Cesaraccio C., Spano D., Snyder R.L., Duce P. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology, 126: 1-13.
4- Corder G.W., Foreman D.I. 2009. Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley.com.
5- Darbyshire R., Webb L., Goodwin I., Barlow S. 2011. Winter chilling trends for deciduous fruit trees in Australia. Agricultural and Forest Meteorology, 151: 1074-1085.
6- Dennis F.G. 1994. Dormancy: what we know (and don't know). HortScience, 29: 1249-1254.
7- Esmaeili R., Ataei H. and Fallah Ghalhary G. 2011. Assessment of climate change impact on the future development of apricot and almond species. (Case study: khorasan razavi province). Journal of Sustainable Agriculture and Production Science, 2(1): 145-162. (in Persian with English abstract).
8- Fishman S., Erez A., Couvillon G. 1987. The temperature dependence of dormancy breaking in plants: computer simulation of processes studied under controlled temperatures. Journal of Theoretical Biology, 126: 309-321.
9- Fox D. 1981. Judging air quality model performance: A summary of the AMS workshop on dispersion models performance. Bulletin of the American Meteorological Society, 62: 599-609.
10- Garajian M. and Eshghi S. 2013. Investigation of joinery grapes chilling requirement in Fars proviance. Journal of Horticultural Science, 26(4): 394-401. (in Persian)
11- Harrington C.A., Gould P.J., St Clair J.B. 2010. Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management, 259: 798-808.
12- Hennessy K.J., Clayton-Greene K. 1995. Greenhouse warming and vernalisation of high-chill fruit in southern Australia. Climatic Change, 30: 327-348.
13- IPCC, 2007. Climate change 2007: synthesis report, A. in Allali, et al., Editors. p. 23-73.
14- Karimi Kakhaki M. and Sepehri A. 2010. Climate change trends of two period in Hamedan and Tabriz. Journal of Science in Water and Soil, 20.1(4): 143-155. (in Persian).
15- Koocheki A., Nassiri M., Alizadeh A. and Ganjeali A. 2009. Modelling the impact of climate change on flowering behaviour of Saffron (Crocus sativus L.). Journal of Iranian Field Crop Research, 7(2): 583-594. (in Persian with English abstract).
16- Linvill D.E. 1990. Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience, 25: 14-16.
17- Luedeling E., Zhang M., Luedeling V., Girvetz E.H. 2009a. Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California's Central Valley. Agriculture, Ecosystems & Environment, 133: 23-31.
18- Luedeling E., Zhang M., McGranahan G., Leslie C. 2009b. Validation of winter chill models using historic records of walnut phenology. Agricultural and Forest Meteorology, 149: 1854-1864.
19- Luedeling E., Brown P.H. 2011. A global analysis of the comparability of winter chill models for fruit and nut trees. International Journal of Biometeorology, 55: 411-421.
20- Luedeling E., Girvetz E.H., Semenov M.A., Brown P.H. 2011. Climate change affects winter chill for temperate fruit and nut trees. PLoS One, 6(5): e20155.
21- Oukabli A., Bartolini S., Viti R. 2003. Anatomical and morphological study of apple (Malus X domestica Borkh.) flower buds growing under inadequate winter chilling. Journal of Horticultural Science & Biotechnology, 78: 580-585.
22- Petri J.L., Leite G.B. 2003. Consequences of insufficient winter chilling on apple tree bud-break. VII International Symposium on Temperate Zone Fruits in the Tropics and Subtropics. 662, pp. 53-60.
23- Racsko P., Szeidl L., Semenov M. 1991. A serial approach to local stochastic weather models. Ecological Modeling, 57: 27-41.
24- Richardson C.W. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17: 182-190.
25- Richardson C.W., Wright D.A. 1984. WGEN: A model for generating daily weather variables. ARS.
26- Richardson E.A., S.S., Walker D. 1974. A model for estimating the completion of rest for Red haven and Elbert peach tree. HortScience, 9: 331-332.
27- Saure M. 1985. Dormancy release in deciduous fruit trees. Horticultural Reviews. 7: 239-300.
28- Semenov M.A., Barrow E.M. 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic change, 35: 397-414.
29- Semenov M.A., Barrow E.M. 2002. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies. User Manual.
30- Semenov M.A., Brooks R.J., Barrow E.M., Richardson C.W. 1997. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10: 95-107.
31- Srikanthan R., McMahon T. 1999. Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences, 5: 653-670.
32- Susan S. 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press.
33- Viti R., Andreini L., Ruiz D., Egea J., Bartolini S., Iacona C., Campoy J. 2010. Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Scientia Horticulturae, 124: 217-224.
34- Walnut Strategy in Iran. 2012. Report of the Center for Coordination Science and walnut industry. 88p.
35- Watterson I.G. 2012. Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices. Climatic Change, 111: 903-922.
36- Weinberger J. 1950. Chilling requirements of peach varieties. Proceedings. American Society for Horticultural Science, pp. 122-128.
CAPTCHA Image