نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

استفاده از باکتری‌های حل‌کننده فسفات (PSB) متحمل به شوری از روش‌های مؤثر در افزایش کارایی سنگ فسفات، تأمین فسفر مورد نیاز گیاه و بهبود رشد آن در محیط‎های شور می‌باشد. به‌منظور بررسی نقش PSB در تأمین فسفر مورد نیاز دانهال‌های پسته در شرایط شور، آزمایشی ‌به‌صورت فاکتوریل در قالب طرح کامل تصادفی با سه تکرار در شرایط گلخانه‌ای انجام شد. فاکتورهای آزمایشی شامل PSB در سه سطح [شاهد (PSB0)، باکتری Pseudomonas sp. 1 (PSB1) و باکتری Pseudomonas sp. 2 (PSB2)]، سنگ فسفات در دو سطح (صفر و 30 میلی‎گرم فسفر از منبع سنگ فسفات) و شوری آب آبیاری در سه سطح (صفر، 5 و 10 دسی زیمنس بر متر) بود. نتایج نشان داد که شوری آب موجب کاهش وزن خشک اندام هوایی و ریشه، کلروفیل، کاروتنوئیدها، مقدار نسبی آب و شاخص پایداری غشای برگ و غلظت فسفر اندام هوایی و ریشه دانهال‌های پسته گردید. در مقابل، پرولین، قندهای محلول و سدیم با افزایش شوری آب در برگ دانهال‌ها انباشته شد. با توجه به نتایج، اگرچه کاربرد سنگ فسفات به‌تنهایی تأثیر چندانی بر شاخص‌های مورد مطالعه نشان نداد، امّا کاربرد ‌هم‌زمان آن با باکتری‌ها بیشترین نقش را در بهبود رشد دانهال‌های پسته ‌به‌ویژه در شرایط شور داشت. بیشترین مقدار وزن خشک اندام هوایی (1/89 گرم بر دانهال) و ریشه (1/59 گرم بر دانهال)، کلروفیل b (1/30 میلی‎گرم بر گرم وزن تر)، کاروتنوئیدها (1/35 میلی‎گرم بر گرم وزن تر)، قندهای محلول (59/1 میلی‎گرم بر گرم وزن تر)، پرولین (36/7 میلی‎گرم بر گرم وزن تر)، مقدار نسبی آب برگ (91/0 درصد)، شاخص پایداری غشا (84/0 درصد)، غلظت فسفر اندام هوایی (0/39 درصد) و غلظت فسفر ریشه (0/35 درصد) از کاربرد ‌هم‌زمان سنگ فسفات و باکتری‌ها (‌به‌ویژه سویه PSB2) در شرایط غیرشور ‌به‌دست آمد. از طرفی، تلقیح با PSB (هم ‌به‌صورت مجزا و هم همراه با سنگ فسفات) موجب کاهش تجمع سدیم در اندام هوایی و ریشه دانهال‌های پسته شد. ازاین‌رو، استفاده از باکتری‎های حل‌کننده فسفات با کارایی بالا و خصوصیات محرک رشدی مناسب، می‎تواند علاوه‎بر افزایش کارایی سنگ فسفات و تأمین فسفر مورد نیاز دانهال‌ها موجب بهبود رشد و افزایش مقاومت آن‌ها به تنش شوری گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Phosphate-Solubilizing Bacteria in Availability of Phosphorus from Rock Phosphate and Improving Pistachio (Pistacia vera L.) Seedlings Growth at Different Levels of Irrigation Water Salinity

نویسندگان [English]

  • F. Azarmi-Atajan 1
  • M.H. Sayyari Zahan 1
  • A. Mirzaei 2

1 Department of Soil Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran

چکیده [English]

Introduction
Phosphorus (P) is one of the most important nutritional elements of plants and it is necessary for the development of plant roots. Due to the high cost of chemical fertilizers, it is important to use cheap sources such as rock phosphate (RP) to supply P needed by plants. The efficiency of RP is low and its use alone cannot supply the P required by the plant. One of the ways to increase the efficiency of RP is to use phosphate solubilizing bacteria (PSB). Considering the salinity of soil and irrigation water in many pistachio-growing areas of Iran, the use of salt-resistant PSB can increase their resistance to salt stress in addition to supplying the P required by pistachios.
 
Materials and Methods
In order to investigate the role of PSB in supplying the required P of pistachio seedlings under saline conditions, a factorial experiment was conducted in the form of a completely randomized design with 3 replications in greenhouse conditions. The factors included PSB at three levels [control (PSB0), Pseudomonas sp. 1 (PSB1) and Pseudomonas sp. 2 (PSB2)], RP at two levels (0 and 30 mg P from rock RP) and irrigation water salinity at three levels (0, 5 and 10 dS/m). The bacteria used in this study were able to produce ACC-deaminase, indole acetic acid and dissolve tricalcium phosphate in vitro. For inoculation, inoculum containing each bacterium with a population of 108 cells/ml was prepared in the nutrient broth medium and each pistachio seed (P. vera L. cv. Badami) was inoculated with 500 µL of bacterial inoculum. The plants were irrigated with non-saline water for four weeks and then with saline water until harvesting based on experimental treatments. During the growth period, the soil moisture of the pots was kept at about 80% of the field capacity by weight method. Finally, shoot and root sampling was performed and various characteristics such as shoot and root dry weight, chlorophyll, carotenoids, proline, soluble sugars, RWC, MSI and phosphorus as well as sodium concentrations were measured. Analysis of variance of traits was performed using SAS software and the means were compared using the LSD method with a probability level of P≤0.05.
 
Results and Discussion
The results showed that water salinity decreased the dry weight of shoot and root, chlorophyll a, chlorophyll b, carotenoids, relative water content (RWC) and membrane stability index (MSI) of leaf and p concentration of shoot and root of pistachio seedlings. Auxin produced by bacteria can directly increase cell division and growth or indirectly increase ACC-deaminase production. On the other hand, proline, soluble sugars and sodium were accumulated in the leaves of seedlings with increasing water salinity. According to the results, although the use of RP alone did not show significant effect on the studied indicators, its simultaneous use with PSB had the greatest role in improving the growth of pistachio seedlings, especially in saline conditions. The highest amount of dry weight of shoot (1.89 g.plant) and root (1.59 g.plant), chlorophyll b (1.30 mg/g fresh weight), carotenoids (1.35 mg/g fresh weight), soluble sugars (59.1 mg/g fresh weight), proline (36.7 mg.g-1 fresh weight), leaf RWC (91 %), leaf MSI (84%) and the P concentration of shoot (0.39 %) and root (0.35 %) was obtained from the simultaneous application of RP and PSB (especially PSB2) in non-saline conditions. The PSB increase soil P availability by reducing of soil pH by release of protons and organic acids and mineralization by production of acid phosphatases. Bacteria, in addition to increasing soil P availability, improve phosphorus uptake and chlorophyll content in plants by affecting root morphology and its development in soil. On the other hand, inoculation with PSB (both separately and together with rock phosphate) reduced sodium accumulation in the aerial parts and roots of pistachio seedlings.
 
Conclusion
Unlike pistachio trees, the tolerance of pistachio seedlings to salt stress is low. According to the results, the salinity symptoms were visible in the pistachio seedling leaves at the water salinity level of 10 dS/m, which caused the drying of the lower leaves and the burning of the edges of the young leaves. On the other hand, although the application of RP alone did not have significant effect on increasing the tolerance of plants to salt stress, the simultaneous use of RP with PSB increased growth, the accumulation of proline and soluble sugars, the concentration of chlorophyll and carotenoids, the amount of RWC and MSI and P concentration of pistachio seedlings, especially in saline conditions. Therefore, the use of PSB can help the growth and establishment of pistachio seedlings under salinity stress conditions and increase the efficiency of RP and supply P needed by the seedlings.

کلیدواژه‌ها [English]

  • PGPR
  • Phosphorus
  • Pistachio
  • Salinity stress
  • Water absorption

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  • Akhkha, A.‚ Boutra, T., & Alhejely, A. (2011). The rates of photosynthesis chlorophyll content, dark respiration, proline and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of Agricultural and Biology, 13, 215-221.
  • Alori, E.T., Glick, B.R. & Babalola, O.O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971
  • Ashraf, M., & Harris, P.J.C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163-190. https://doi.org/10.1007/s11099-013-0021-6
  • Ashraf, M., Hasnain, S., Berge, O., & Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils,40, 157-162. https://doi.org/1007/s00374-004-0766-y
  • Ayeni, L.S., Adeleye, E.O., & Adejumo, J.O. (2012). Comparative effect of organic, organomineral and mineral fertilizers on soil properties, nutrient uptake, growth and yield of maize (Zea mays). International Research Journal of Agricultural Science and Soil Science, 2(11), 493-497. https://doi.org/13140/RG.2.2.15371.18721
  • Azarmi, F., Mozafari, V., Abbaszadeh-Dahaji, P., & Hamidpour, M. (2015). Isolation and evaluation of plant growth promoting indices of Pseudomonas fluorescens isolated from pistachio rhizosphere. Journal of Soil Biology, 2(2), 173-186. https://doi.org/22092/sbj.2015.100867
  • Azarmi, F., Mozafari, V., Abbaszadeh-Dahaji, P., & Hamidpour, M. (2016). Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiologiae Plantarum, 38, 21. https://doi.org/1007/s11738-015-2032-3
  • Behzadi Rad, P., Roozban, M.R., Karimi, S., Ghahremani, R., & Vahdati, K. (2021). Osmolyte accumulation and sodium compartmentation key role in salinity tolerance of pistachios rootstocks. Agriculture, 11, 708. https://doi.org/10.3390/agriculture11080708
  • Cantrell, I.C., & Linderman, R.G. (2001). Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269-281. https://doi.org/1023/A:1010564013601
  • Chapman, H.D., & Pratt, P.F. (1961). Methods of analysis for soils, plants and waters. University of California, Riverside.
  • De-Freitas, J.R., & Germida, J.J. (1990). A root tissue culture system to study winter wheat-rhizobacteria interactions. Applied Microbiology and Biotechnology, 33, 589-595. https://doi.org/10.1007/BF00172557
  • Demir, S. (2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28, 85-90.
  • Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48, 43-49. https://doi.org/10.1016/S0098-8472(02)00008-4
  • Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Lyamlouli, K., & Bargaz, A. (2020). Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and above ground physiology than rhizosphere P solubilization. Frontiers in Plant Science, 11, 979. https://doi.org/10.3389/fpls.2020.00979
  • Eskandari, S., & Mozaffari, V. (2014). Interactive effect of soil salinity and copper application on growth and chemical composition of pistachio seedlings (cv. Badami). Communications in Soil Science and Plant Analysis, 45, 688-702. https://doi.org/10.1080/00103624.2013.874022
  • Fageria, N.K., Filho, M.P., Barbosa Moreira, A., & Guimarães, C.M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064. https://doi.org/10.1080/01904160902872826
  • (2020). Food and agriculture organization of the United Nations. Retrieved from FAOSTAT database. http://ww1.faostat.org/ Accessed on 22 June 2020.
  • Ferguson, L., Poss, J.A., Grattan, S.R., Grieve, G.M., Wang, D., Wilson, C., Donovan, T.J. & Chao, C.T. (2002). Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. Journal of the American Society for Horticultural Science, 127, 194-199. https://doi.org/10.21273/JASHS.127.2.194
  • Glick, B.R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56, 291-312. https://doi.org/1016/S0065-2164(04)56009-4
  • Gonzalez, L., & Gonzalez-Vilar, M. (2003). Determination of Relative Water Content. In: M.J. Reigosa (Ed.) Handbook of plantecophysiology techniques. Dordrecht: Kluwer Academic, p. 207-212
  • Grattan, S.R., & Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulture, 78, 127 157. https://doi.org/10.1016/S0304-4238(98)00192-7
  • Iqbal, M., & Ashraf, M. (2013). Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiologiae Plantarum, 35, 1093-1112. https://doi.org/1007/s11738-012-1147-z
  • Irigoyen, J.J., Emerich, D.W., & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84, 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  • Jilani, G., Akram, A., Ali, R.M., Hafeez, F.Y., Shamsi, I.H., Chaudhry, A.N. & Chaudhry, A.G. (2007). Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Annals of Microbiolgy, 57, 177-183. https://doi.org/1007/BF03175204
  • Kang, J., Amoozegar, A., Hesterberg, D., & Osmond, D.L. (2011). Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma, 161, 194-201. https://doi.org/10.1016/j.geoderma.2010.12.019
  • Karimi, S., Rahemi, M., Maftoun, M., Eshghi, S., & Tavallali, V. (2009). Effect of long–term salinity on growth and performance of two pistachio (Pistacia vera ) rootstocks. Australian Journal of Crop Science, 3, 1630-1639.
  • Karlidag, H., Yildirim, E., Turan, M., Pehluvan, M., & Donmez, F. (2013). Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). HortScience, 48(5), 563-567. https://doi.org/10.21273/HORTSCI.48.5.563
  • Katsuhara, M., Otsuka, T. & Ezaki, B. (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science, 169, 369- https://doi.org/10.1016/j.plantsci.2005.03.030
  • Khan, M.S., Zaidi, A., & Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms, Phosphate Solubilizing Microorganisms. Springer, pp. 31-62.
  • Khan, MA., Hamayun, M., Asaf, S., Khan, M., Yun, B.W., Kang, S.M., & Lee, I.J. (2021). Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa Frontiers in Plant Science, 12, 665590. https://doi.org/10.3389/fpls.2021.665590
  • Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591
  • Malhotra, H., Vandana, S., Harma, S., & Pandey, R. (2018). Phosphorus nutrition: Plant growth in response to deficiency and excess” in Plant Nutrients and Abiotic Stress Tolerance. M. Hasanuzzaman M. Fujita H. Oku K. Nahar and B. Hawrylak-Nowak (Eds) (Singapore: Springer Singapore), 171-190.
  • Mane, A.V., Deshpande, T.V., Wagh, V.B., Karadge, B.A., & Samant, J.S. (2011). A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1192-1216.
  • Marathe, R., Phatake, Y., Shaikh, A., Shinde, B., & Gajbhiye, M. (2017). Effect of IAA produced by Pseudomonas aeruginosa 6a (bc4) on seed germination and plant growth of Glycin max. Journal Experimental Biology and Agriculture Sciences, 5, 351-358. https://doi.org/10.18006/2017.5(3).351.358
  • Mayak, S., Tirosh, T., & Glick, B.R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant physiology and Biochemistry, 42(6), 565-572. https://doi.org/1016/j.plaphy.2004.05.009
  • Meloni, D.A., Oliva, M.A., Ruiz, H.A. & Martinez, C.A. (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24, 599- 668. https://doi.org/10.1081/PLN-100104983
  • Mishra, M., Kumar, U., Mishra, P.K., & Prakash, P. (2010). Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum growth and germination under salinity. Advances in Biological Research, 4, 92-96.
  • Mousavi, A., Lessani, H., Babalar, M., Talaei, A.R., & Fallahi, E. (2008). Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. Journal of Plant Nutrition, 31, 1906-1916. https://doi.org/10.1080/01904160802402807
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/1146/annurev.arplant.59.032607.092911
  • Murakeozy, E.P., Nagy, Z., Duhaze, C., Bouchereau, A., & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. Journal of Plant Physiology, 160, 395-401. https://doi.org/10.1078/0176-1617-00790
  • Naeem, A., Akhtar, M. & Ahmad, W. (2013). Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm. The Scientific World Journal 2013, 680257. http://dx.doi.org/10.1155/2013/680257
  • Niu, S., Wu, M., Han, Y.I., Xia, J., Zhang, Z., Yang, H. & Wan, S. (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 16, 144-155. https://doi.org/10.1111/j.1365-2486.2009.01894.x
  • Paquin, R., & Lechasseur, P. (1979). Observations on measurement method of free proline in extracts from plants. Canadian Journal of Botany, 57, 1851-1854. https://doi.org/10.1139/b79-233
  • Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology Environmental Safety, 60, 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Patel, D., Jha, C.K., Tank, N., & Saraf, M. (2012). Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 31, 53-62. https://doi.org/10.1007/s00344-011-9219-7
  • Patten, C.L., & Glick, B.R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied Environmental Microbiology, 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  • Paul, D., & Nair, S. (2008). Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology, 48, 1-7. https://doi.org/1002/jobm.200700365
  • Porra, R.J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73, 149-156. https://doi.org/10.1007/1-4020-3324-9-56
  • Razaq, M., Zhang, P., Shen, H., & Salahuddin (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. Plos One, 12(2), e0171321. https://doi.org/10.1371/journal
  • Saadatmand A.R., Banihashemi Z., Maftoun M. & Sepaskhah, A.R. (2007). Interactive effect of soil salinity and water stress on growth and chemical compositions of pistachio nut tree. Journal of Plant Nutrition, 30, 2037-2050. https://doi.org/10.1080/01904160701700483
  • Sairam, R.K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 584-593.
  • Sarcheshmehpour, M., Besharati, H., & Savaghebi, G.R. (2015). Increasing the efficiency of rock phosphate by some indigenous microorganisms of pistachio orchards to improve growth and nutrition of pistachio seedlings under salt stress. Iranian Journal of Soil Research, 29(3), 371-381. https://doi.org/22092/IJSR.2015.103511
  • Selvaraj, T., & Chellappan, P. (2006). Arbuscular mycorrhizae: A diverse personality. Journal of Central European Agriculture, 7, 349-358.
  • Shaharroona, B., Arshad, M., Zahir, Z.A., & Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC-Deaminase for improving growth and yield of maize (Zea mays) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry, 38, 2971-2975. https://doi.org/10.1016/j.soilbio.2006.03.024
  • Shahbazi, K., & Besharati, H. (2013). Overview of agricultural soil fertility status of Iran. Journal of Land Management, 1, 1-15. https://doi.org/22092/LMJ.2013.100072
  • Shahriaripour, R., Tajabadi Pour, A., & Mozaffari, V. (2011). Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis, 42, 144-158. https://doi.org/10.1080/00103624.2011.535065
  • Sziderics, A.H., Rasche, F., Trognitz, F., Wilhelm, E. & Sessitsch, A. (2007). Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum). Canadian Journal of Microbiology, 53, 1195-1202. https://doi.org/10.1139/W07-082
  • Tavallali, V., Rahemi, M., & Kholdebarin, B. (2009). Ameliorative effect of zinc on pistachio (Pistacia vera ) growth under salt-affected soil condition. Research Journal of Environmental Science, 3, 656-666. https://doi.org/10.3923/rjes.2009.656.666
  • Vives-Peris, V., Gomez-Cadenas, A., & Perez-Clemente, R.M. (2018). Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putidaand NovosphingobiumPlant Cell Reports, 37, 1557-1569. https://doi.org/10.1007/s00299-018-2328-z
  • Zeinali Bafghi, M., Gholamnezhad, J., Esmailzadeh-Hosseini, S.A., Shirmardi, M., & Jafari, A. (2020). Influence of growth promoting bacteria on growth and physiological traits of pistachio in saline soils. Horticultural Plants Nutrition, 2(2), 107-129. (In Persian with English abstract). https://doi.org/22070/HPN.2020.4548.1030

 

CAPTCHA Image