نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

در بین قارچ‌های خوراکی، قارچ خوراکی تکمه‌ای سفید، رایج‌ترین قارچی است که در سراسر جهان کشت می‌شود. به منظور بررسی سرعت رشد میسیلیوم و عملکرد جدایه‌های قارچ خوراکی دکمه‌ای سفید در محیط کشت جامد، اسپاون و کمپوست، پژوهشی در پژوهشکده قارچ دانشکده کشاورزی دانشگاه فردوسی مشهد، در سال 1393 انجام شد. هجده جدایه قارچ خوراکی دکمه‌ای سفید از لحاظ سرعت رشد میسیلیوم روی محیط-های کشت پوتیتو دکستروز آگار (PDA)، عصاره کمپوست (CYM) و کمپوست، کلاس رشدی و تیپ رشدی میسلیوم و عملکرد مورد مقایسه قرار گرفتند. نتایج نشان داد که تفاوت بسیار معنی‌داری بین جدایه‌های قارچ خوراکی دکمه‌ای از نظر سرعت رشد میسیلیوم در محیط‌های کشت و میزان عملکرد وجود دارد. در محیط کشت PDA، بیشترین سرعت رشد به میزان 9/1 میلی‌متر در روز و قطر نهایی پرگنه 1/8 سانتی‌متر، متعلق به جدایه 2200 بود. همچنین، این جدایه از لحاظ سرعت رشد میسیلیوم در محیط CYM و پوشاندن سطح اسپاون و کمپوست نیز جزء جدایه‌های سریع بود و به همراه جدایه A15a از لحاظ عملکرد نیز از جمله‌ جدایه‌های با عملکرد زیاد بودند (A15a و 2200 به ترتیب 1/22 و 4/19 کیلوگرم در متر مربع). همچنین، بر اساس نتایج به دست آمده، سرعت رشد میسیلیوم با عملکرد همبستگی مثبت و معنی‌داری داشت و جدایه‌های با سرعت رشد میسیلیوم بیشتر عملکرد بیشتری تولید کردند. طبق نتایج به دست آمده، همبستگی مثبت و معنی‌داری بین سرعت رشد میسیلیوم در محیط کشت CYM و سرعت پوشاندن سطح کمپوست توسط میسیلیوم مشاهده شد، که می‌تواند به عنوان محیط کشت مناسب برای مقایسه سرعت رشد میسیلیوم در محیط آزمایشگاهی مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Mycelium Growth Rate and Yield of White Button Mushroom Isolates (Agaricus bisporus) in Iran

نویسندگان [English]

  • Mohammad Javad Ahmadi Lahijani
  • Mohammad Farsi

Ferdowsi University of Mashhad

چکیده [English]

Introduction: Among edible mushrooms, white button mushroom is the most cultivated one around the world. Mono-spores diversity in terms of growth rate, colony type, yield and etc. is used for intra strain genetic improvement. High yielding isolates with filamentous mycelium type are screened and used for spawn production (Farsi and Gordan, 2002). Success in mushroom production largely depends on the quality of spawn produced in sterile conditions (Sanchez, 2010). Farsi and Gordan, (2004) reported that colony shape and mycelium growth type are very important factors in screening isolates in terms of mycelium growth rate and yield. To screen isolates based on their mycelium growth, solid media are among the most suitable ones (Griffin, 1994). In a study conducted to evaluate mycelium growth rate of six Morchella species on different media, PDA and MEA were known as the best ones (Kalmis and Kalyoncu, 2008). The present study was conducted in order to evaluate mycelium growth rate and yield of white button mushroom isolates in solid medium, spawn and compost media.
Materials and methods: Eighteen isolates of white button mushroom were compared on PDA (Potato Dextrose Agar), CYM (Complete Yeast Medium), spawn and compost media based on mycelium growth rate, type and class growth and yield at the mushroom research center of Faculty of Agriculture, Ferdowsi University of Mashhad, in 2014. A piece of mycelium of each isolate was placed in the center of each petri dish and was kept in 23±1°C, and the radial growth rate of mycelium was measured as two perpendicular diameters in three consecutive weeks. Mycelium growth rate on spawn and compost media was measured based on the percentage of surface coverage during the 15 consecutive days. Yield of each isolate was measured by daily harvesting of mushrooms during 35 days of experiment. Analysis of variance and means comparison of the variables were carried out using SAS software. Means analysis was performed using LSD test at 5% significance level.
Results and discussion: There were significant differences among isolates based on mycelium growth rate and yield. In PDA medium, 2200 isolate showed the fastest mycelium growth rate with 1.9 mm.day-1 and final colony diameter of 8.1 cm. were This isolate also showed the fastest mycelium growth rate on CYM medium and covering the spawn and compost media surfaces, and produced the highest yield along with A15a isolate (A15a and 2200 with 22.1 and 19.4 kg.m-2, respectively). Magnum d with mycelium growth rate of 0.7 mm.day-1 and final colony diameter of 3.1 cm showed the slowest mycelium growth rate. On average, 75% of isolates were grouped in slow mycelium growth rate class and 25% were placed in fast mycelium growth rate class. Isolates A15a, 2200, A15, M7219 and F64d showed fast mycelium growth rate. All of the isolates showed filamentous mycelium growth type and no abnormal mycelium growth type was observed. Isolate A15a with 50% coverage of compost surface during the first 5 days and 90% during the 15 days showed the fastest mycelium growth rate on this medium, followed by isolates F64d, 2200 and A15a. Normal mycelium growth rate on compost medium varied from 6-8 to sometimes 10-12 mm.day-1 (Farsi and Pooyanfar, 2011). There was a high positive correlation between mycelium growth rate and the yield component, so that isolates with faster mycelium growth rate produced higher yield. Farsi and Gordan, (2001) also reported significant positive correlation between filamentous mycelium type and yield, so that isolates with filamentous mycelium growth type and high mycelium growth rate produced higher yield. Faster mycelium growth rate is considered as a desire characteristic in mushroom cultivation due to the reduction of contamination risk of other micro-organisms (Oie, 2003).
Conclusion: There was a high significant difference among white button mushroom isolates in terms of mycelium growth rate and yield. Isolates with faster mycelium growth rate on solid medium produced higher yield. A high positive correlation was observed between mycelium growth rate on CYM and compost media, so it could be used as an appropriate medium for comparison of mycelium growth rate in vitro. As comparison of strain yield is time consuming and difficult, screening based on their growth rate on CYM is recommended.

کلیدواژه‌ها [English]

  • Colony diameter
  • Mycelium growth type
  • Mycelium growth class
  • Spawn
1- Aneja K.R. 2001. Experiment in microbiology plant pathology tissue culture and mushroom production technology. New Age International Limited.
2- Bastide P., Anton Y., Sonnenberg S.M., Van Griensven L., James J.L., Anderson D. Andpaul B. and Horgen A. 1997. Mitochondrial Haplotype Influences Mycelial Growth of Agaricus bisporus Heterokaryons. Applied and Environmental Microniology. 63:3426-3431.
3- Chang S.T. and Miles P.G. 1989. Edible mushrooms and their cultivation, CRC Press Inc, Boca Raton.
4- Diehle D.A. and Royse D.J. 1986. Shiitake cultivation on sawdust: evaluation of selected genotypes for biological efficiency and mushroom size. Mycologia. 78:929-933.
5- Eisenhut R. Fritz D. Medizinisch nutzbare W. and Inhaltsstoffe von S. 1991. Gartenbauwissenschaft, 56:266-270. (in German).
6- Emam Y. 2011. Cereal Production. 2th ed. Shiraz University Press.
7- FAO. 2012. Food and Agriculture Organization of the United Nation Quaterly bulletion of Statistucs, Rome, Italy.
8- Farsi M. and Gordan H.R. 2002. Hybrid spawn production in white button mushroom (Agaricus bisporous) in order to increasing yield. Agricultural Sciences and Technology Journal. 16:125-132. (in Persian).
9- Farsi M. and Poorianfar H. 2011. Cultivation and Breeding of the White Button Mushroom. 2th ed. Jahad Daneshgahi Mashhad Perss.
10- Farsi M., Taheri P., and Kordiani A. 2008. Evaluation of thermophile fungi in compost of white button mushroom. Journal of Horticultural Science, 24:265-275. (In Persian).
11- Gea F.J., Santos M., Dianez F., Tello J.C., and Navarro M.J. 2012. Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus). World Journal of Microbiology and Biotechnology. 28:2765–2769.
12- Gordan H.R., and Farsi M. 2004. Selection of pure isolates and multi spore cultures for breeding the white button mushroom. Journal of Agricultural Sciences and Natural Resources. 11:65-77. (in Persian).
13- Gordan H.R., Khatami Raad M., Zolala J. and Farsi M. 2007. Introduction and registration of three modified button mushroom (Agaricus bisporous). Journal of Agricultural Science. 17:171-188. (in Persian).
14- Goyal R., Grewal R.B. and Goyal R.K. 2006. Nutritional attributes of Agaricus bisporus and Pleutorus sajor caju mushrooms. Nutrition and health. 18:179-184.
15- Griffin D.H. 1994. Growth, In: Fungal Physiology. 2ed. Wiley - Liss, New York.
16- Hassegawa R.H. Kasuya M.C.M. and vanetti M.C.D. 2005. Growth and antibacterial activity of lentinula edodes in liquid media supplemented with agricultural wastes. Electronic journal of biotechnology. 8:212-217.
17- Kalberer P.P. 1995. An investigation of the incubation phase of a shiitake (Lentinus edodes) culture. Mushroom Science. 14:375-383.
18- Kalmis E. and Kalyoncu F. 2008. Mycelial Growth Rate of Some Morels (Morchella spp.) In Four Different Microbiological Media. American-Eurasian Journal of Agricultural and Environmental Science. 3:861-864.
19- Kalmis E., and Kalyoncu F. 2008. The effects of some environmental parameters on mycelial growth of two ectomycorrhizal fungi, Tricholoma caligatum and Morchella angusticeps. Mycologia Balcanica. 5:115-118.
20- Kerrigan R.W., Royer J.C., Bailer L.M., Horgen P.A., and Anderson J.B. 1992. Stretegies for the efficient recovery of Agaricus bisporus homoharions. Mycologia. 84:575-579.
21- Khush R.V., Wach M.P., and Horgen P.A. 1995. Molecular strategies for Agaricus breeding. In: Kuck U. ed. The mycota. Vol. 3. Genetics and biotechnology. 2:321-337.
22- Lambert. J., Sapek A., and Sapek B. 1983. Lithium content in the grassland vegetation p. 32–38. In: Anke M., Baumann W. and Braunlich H. Eds. Lithium. 4th Spurenelement symposium. Jena. Friedrich Schiller Universitat, Germany. (http://eurekamag.com/research/001/219/001219146.php 2016).
23- Montini R.M.C., Passos J.R.S. and Eira A.F. 2006. Digital Monitoring of mycelium growth kinetics and vigor of shiitake (Lentinula edodes (Berk.) Pegler on agar medium. Brazilian Journal of Microbiology. 37:90-95.
24- Oei P. 2003. Mushroom cultivation, appropriate technology for mushroom growers. Leiden, Netherlands.
25- Pathak V.N., Yada N., and Maneesha G. 1998. Mushroom Production and Processing Technology. Agro Botanica, India.
26- Pawlak R., Siwulski M., and Salwin M. 2003. Effect of substrate type on the mycelium growth of four Hericium erinaceus (Bull. ex Fr.) Pers. Strains, Folia Horticulturae. 15:43-48.
27- Pokhrel C.P., Yadav. R.K.P. and Ohga S. 2009. Effects of physical factors and synthetic media on mycelia growth of Lyophyllum decastes. Journal of Ecobiotechnology. 1:46-50.
28- Przybylowicz P. and Donoghue J. 1990. Shiitake Growers Handbook, the art and science of mushroom cultivation. Kendall/Hunt Publishing Company, USA.
29- Razeghi Yadak L., Azizi M., Farsi M., and Shahtahmasebi Sh. 2009. Evaluation effect of media formulation, pH and temperature on "shiitake” mycelium growth analysis on solid and liquid culture conditions. Journal of Horticultural Sciences, 23:18-26. (In Persian with English abstract).
30- Royse D. 2007. ICT Web Development. Available at http://www.ppath.cas.psu.edu/ FACULTY/royse.html.
31- Royse D.J., and Bahler C.C. 1986. Effects of genotype, spawn run time and substrate formulation on biological efficiency of shiitake. Applied Environment and Microbiology. 52:1425-1427.
32- Rühl M., Fischer Ch., and Kües U. 2008. Ligninolytic enzyme activities alternate with mushrooms production during industrial cultivation of Pleurotus ostreatuson wheat-straw-based substrate. Current Trends in Biotechnology and Pharmacy. 4:478–492.
33- Sanchez C. 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology. 85:1321–1337.
34- Sanchez C. 2004. Modern aspects of mushrooms culture technology. Applied Microbiology and Biotechnology. 64:756–762.
35- Siwulski M., Krzysztof S., and Malgorzata W. 2009. Comparison of mycelium growth and yielding of selected strains of Hericium erinaceus (Bull. Fr.) Pers. on sawdust substrates with the glucose addition. Kerla polonica. 55:266-272.
CAPTCHA Image