نوع مقاله : مقالات پژوهشی

نویسندگان

1 استاد، گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 فارغ‌التحصیل دکتری، گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

به منظور تولید درختان خودریشه گلابی رقم ʼنطنزʽ (Pyrus communis cv. Natanz) در شرایط درون شیشه‌ای سه آزمایش جداگانه برای بهبود پرآوری شاخه (تاثیرات BAP و Fe-NaEDDHA)، استقرار مریستم (تاثیرات BAP و GA3) و ریشه‌دهی ریزشاخه‌ها (تاثیرات IBA و NAA) در قالب طرح کاملاً تصادفی به اجرا در آمد. شاخه‌ها در محیط کشت PMI (MS ×1.5 CaCl2. 2H2O, KH2PO4 and MgSO4. 7H2O) حاوی 5/1 میلی‌گرم بر لیتر BAP و صفر میلی‌گرم بر لیتر Fe-NaEDDHA پرآوری شدند (50/5 شاخه/ریزنمونه) و رشد طولی خوبی داشتند در صورتی‌که غلظت‌های پایین BAP و Fe-NaEDDHA برگ‌های بالغ بیشتری را تولید کرد. محیط کشت PMI غنی شده با 1 میلی‌گرم بر لیتر BAP بعلاوه 150 میلی‌گرم بر لیتر Fe-NaEDDHA برای پرآوری شاخه نطنز بدلیل بالاترین میزان در رشد رویشی و بالاترین کیفیت شاخه‌های پرآوری شده پیشنهاد می‌شود. محیط کشت MS حاوی 5/0 میلی‌گرم بر لیتر BAP و 5/0 میلی‌گرم بر لیتر GA3 و یا 1 میلی‌گرم بر لیتر BAP (81 درصد) و 1/0 میلی‌گرم بر لیتر GA3 (63 درصد) به ترتیب بالاترین درصد استقرار مریستم را داشتند. ریزشاخه‌های درون شیشه‌ای نطنز از طریق فروبری سریع در محلول IBA+NAA (1000+1000 میلی‌گرم بر لیتر) و سپس قرار دادن در محیط کشت PMI ریشه‌دار شدند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

In Vitro Production of Own-Root Pyrus communis L. cv. Natanz

نویسندگان [English]

  • Gholamhossein Davarynejad 1
  • Sajedeh Karimpour 2

1 Professor , Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Ph.D. Graduate, Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Introduction: Pyrus communis L. cv. Natanz is a popular pear cultivar in Iran because of its customer-friendly attribute due to its excellent characteristics. Pear own-rooted plants has better traits such as high vigorous in growth, low levels on tree losses and damaging by insects rather than grafted plants. Meristem culture widely used for micropropagation, in vitro germplasm preservation, and virus eradication purposes in pear. As pear is belonged to difficult-to-root fruit tree cultivars perhaps the rooting stage is the most important stage in propagation process, yet most difficult phase during the in vitro propagation procedure. In vitro rooting of micro-cuts was varied by genotypes (cultivars), type and concentration of auxin, the method of root induction and formation, different additional materials such as PVP, polyamines, and so on. This study was aimed to investigate the effect of different levels of BAP and Fe-EDDHA on shoot proliferation, BAP and GA3 on meristem establishment, and IBA and NAA on micro-cut rooting of pear cv. Natanz in in vitro condition.
Materials and Methods: Vegetative buds were taken from current growth shoots of Pyrus communis cv. Natanz from Pear collection orchard (25.36 E, 58.54 N, and ASL altitude 1380 m) of Agricultural and Natural Resources Research and Education Centre of Semnan Province (Shahrood city). In the first experiment, new shoots of active buds after 4 weeks grown in PMI  medium (MS ×1.5 CaCl2. 2H2O, KH2PO4 and MgSO4. 7H2O) + 1 mg.l-1 BAP were transferred to PMI  medium containing different levels of BAP (0.5, 1, 1.5 mg.l-1) and Fe-EDDHA (0, 100, 150 and 200 mg.l-1). In the second experiment, meristems (containing two newest leaf primordia) was excited from in vitro shoots and incubation on MS media containing BAP (0.5, 1, and 1.5 mg.l-1) and GA3 (0.1 and 0.5 mg.l-1) + 0.1 mg.l-1 IBA. Meristems were kept in dark for 4 days then were transferred to growth chamber with photoperiod 16/8 hrs. light/dark. Different concentrations and combinations of two auxins were used for root induction of micro-cuts in third experiment. 1000, 2000, 3000, and 4000 mg.l-1 of IBA or NAA and two combination solutions of them (1000 IBA+1000 NAA, and 2000 IBA+2000 NAA, mg.l-1). Shoots were immersing dip in solutions for 5 seconds then transfer to PGRs-free PMI medium and kept them to growth chamber. Data of all experiments were analyzed according by completely randomized design (CRD) with five replications. BAP (3 levels) and Fe-EDDHA (4 levels) for experiment 1; BAP (3 levels) and GA3 (2 levels) for experiment 2 were considered as factorial. SAS (v. 9.1) was used for analysis and means were compared with LSD test at 5% of probability level.
Results and Discussion: Proliferated shoot number was affected by BAP (p≤0.01) and Fe-EDDHA (p0.05) concentrations and also interaction of them (p≤0.05), while BAP (p≤0.01) was caused elongation of proliferated shoots and Fe-EDDHA had no effect. BAP (p≤0.05), Fe-EDDHA (p≤0.01) concentrations and BAP×Fe-EDDHA (p≤0.01) interaction had significant effect on leaf production. Shoot tip necrosis was shown in shoots grown in all media based on BAP concentration with different intensities (p≤0.05). Vegetative growth was counted as a power index of medium that in our experiment was under influence of BAP concentrations (p≤0.01), Fe-EDDHA (p≤0.05) and BAP×Fe-EDDHA interaction (p≤0.05). Shoots were proliferated (5.50 shoot.explant-1) and elongated in PMI medium containing 1.5 mg.l-1 BAP with no Fe-NaEDDHA while the lower concentrations of both BAP and Fe-NaEDDHA caused the higher mature leaf production. PMI media containing 1 mg.l-1 BAP + 150 mg.l-1 Fe-NaEDDHA is recommended for Natanz shoot proliferation because of the highest vegetative growth and highest quality in proliferated shoots. MS medium with 0.5 mg.l-1 BAP+ 0.5 mg.l-1 GA3 (81%) and 1 mg.l-1 BAP + 0.1 mg.l-1 GA3 (63%) had the highest meristem establishment, respectively. The established meristems naturally grown in medium supplement with 0.5 mg.l-1 BAP + 0.5 mg.l-1 GA3+0.1 mg.l-1 IBA. Different types of auxin and their concentrations had significantly effect on Natanz pear cultivar micro-cut rooting (p≤0.05). NAA induced rooting in lower concentrations while IBA had positive effect on rooting with concentration increasing. Micro-cuts were rooted via quick dip in 1000+1000 mg.l-1 (IBA+NAA) solution followed by incubation in PMI medium. The rooted shoots well adapted to environmental condition.
Conclusion: Important steps of in vitro propagation of pear is optimized in this experiment. MS medium containing 0.5 mg.l-1 BAP+0.5 mg.l-1 GA3+0.1 mg.l-1 IBA had suitable for meristem establishment. To produce in vitro healthy proliferated shoots of pear cv. Natanz using PMI medium supplement with 1 mg.l-1 BAP+150 mg.l-1 Fe-NaEDDHA is recommended. Micro-cuts were rooted easily by quick immersion of the end of micro-cuts in 1000+1000 mg.l-1 (IBA+NAA) solution for 5 seconds then incubation in PGRs-free medium.

کلیدواژه‌ها [English]

  • In vitro rooting
  • In vitro propagation
  • Meristem culture
  • Pear
  1.  

    1. Abel S., and Theologis A. 1996. Early genes and auxin action. Plant Physiology 111: 9-17.
    2. Al-Maarri K., Arnaud Y., and Miginiac E. 1994. Micropropagation of Pyrus communis cultivar 'Passe Crassane' seedlings and cultivar 'Williams': factors affecting root formation in vitro and ex vitro. Scientia Horticulturae 58: 207-214.
    3. Aygun A., and Dumanoglu H. 2015. In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Frontiers in Plant Science 6: 1-9.
    4. Bairu M.W., Jain N., Stirk W.A., Dolezal K., and Staden J.V. 2009a. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens bychanging the cytokinin types, calcium and boron concentrations in the medium. South African Journal of Botany 75: 122-127.
    5. Bairu M.W., Stirk W.A., and Staden J.A. 2009b. Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell, Tissue and Organ Culture 98: 239-248.
    6. Bell R.L., and Reed B.M. 2002. In vitro tissue culture of pear: advances in techniques for micropropagation and germplasm preservation. Proc.8th IS on Pear, Eds. L. Corelli-Grappadelli et al. Acta Horticulturae 596: 412-418.
    7. Bhojwani S.S., Mullins K., and Cohen D. 1984. In vitro propagation of Pyrus pyrifolia. Scientia Horticulturae 23: 247-254.
    8. Clapa D., Fira , and Rusu T. 2007. The use of isubgol and sequestrene 138 for the in vitro propagation of the highbush blueberry (Vaccinium corymbosum L.). Journal of Food, Agriculture & Environment 6(1): 132-134.
    9. De Klerk G.J., Van Der Krieken W., and De Jong J.C. 1999. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cellular & Developmental Biology-Plant 35:189-99.
    10. Dong Y., Zhang Z., Zhamg H., Hong N., and Yu, J. 2002. Studies on elimination of apple and pear virus by combining tissue culture of top-stem with heat therapy. Northern Fruits 2.
    11. Druart P. 1997. Optimization of culture media for in vitro rooting of Malus domestica cv. Compact Spartan. Biologia Plantarum 39: 67-77.
    12. Erig A.C., and Fortes G.R.L. 2002. In vitro establishment of pear (Pyrus) starting from meristems and buds. Ciência Rural 32(4): 577-582.
    13. Erturk U. 2013. The in vitro rooting performance of pear rootstock ‘OHx×F 333’ in different rooting Procedures. Journal of Food, Agriculture & Environment 11(3&4): 1424-1427.
    14. Fira A., Clapa D., and Badescu C. 2008. Aspects regarding the in vitro propagation of highbush blueberry cultivar Blue crop. Bulletin of the University of Agricultural Sciences & Veterinary 65(1): 104-109.
    15. Grigoriadou K., Leventakis N., Vasilakakis M. 2000. Effect of various culture conditions on proliferation and shoot-tip necrosis in the pear cultivars ‘William’s’ and ‘Highland’ grown in vitro. Acta Horticulturae 520: 103-108.
    16. Haghgou Tabalvandi M., Yadollahi A., Atashkar D., Kalatejari S. and Eftekhari M. Optimized root production during micropropagation of new Iranian apple hybrid rootstock (AZ×M9): effects of Fe-EDDHA and thiamine. International Journal of Advanced Biological and Biomedical Research 2(10): 2659-2662.
    17. Hakkaart F.A., and Versluijs J.M.A. 1988. Virus elimination by meristem-tip culture from a range of Alstroemeria cultivars. Netherlands Journal of Plant Pathology 94: 49-56.
    18. Haq Z., and Kaloo Z.A. 2010. In vitro micro propagation of “sand pear” Pyrus pyrifolia (Burm.f.) Nakai. Frontiers of Agriculture in China 4(3): 358–361.
    19. Harbage J.F., Stimart D.P., and Evert R.F. 1993. Anatomy of adventitious root formation in microcuttings of Malus domestica ‘Gala’. Journal of the American Society for Horticultural Science 118: 680-8.
    20. Hassanen S.A., and Gabr M.F. 2012. In vitro propagation of Pear Pyrus betulaefolia American-Eurasian Journal of Agricultural & Environmental Sciences 12(4): 484-489.
    21. Hong Z.H., Hong N., and Wang G. 2004. Pear meristem culture and its application in pear virus eliminations. Journal of Huazhong Agricultural 3.
    22. James D.J., Thurbon I.J. 1979. Rapid in vitro rooting of the apple rootstock M.9. Journal of Horticultural Science 54: 309-11.
    23. Karimpour S, Davarynejad G.H., Bagheri A., and Tehranifar A. 2013. In vitro establishment and clonal propagation of Sebri pear cultivar. Journal of Agricultural Science and Technology 15: 1209-1217.
    24. Karimpour S., Davarynejad G.H., Bagheri A.,Tehranifar A., Ardakani E., and Vatandoost-Jartoode, S. 2012. IBA and wounding effect on in vitro rooting of Natanz pear cultivar. 3rd Iranian Agricultural Biotechnology Congress. p. 255. 3-5 September, Mashhad, Iran. (In Farsi with English abstract)
    25. Kintzios S., Stravropoulous E.R., and Skamneli S. 2004. Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Science 167: 655-664.
    26. Lane WD. 1978. Regeneration of apple plants from shoot meristem-tips. Plant Science Letters 13: 281-5.
    27. Mackay W.A., Tipton J.L., and Thompson G.A. 1995. Micropropagation of Mexican redbud, Cercis canadensis mexicana. Plant Cell, Tissue and Organ Culture 43: 295-299.
    28. Mansouryar M., Erfani-Moghadam J., Abdollahi H., and Salami SA. 2016. Optimization of in vitro micropropagation protocol for some vigorous rootstocks of pear. Iranian Journal of Horticultural Science 47 (2): 361-370.
    29. Marino G. 1988. The effect of paclobutrazol on in vitro rooting, transplant establishment and growth of fruit plants. Plant Growth Regulation 7: 237-247.
    30. Niino T., and Sakai A. 1992. Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Science 87: 199-206.
    31. Ongaro V., and Leyser O. 2008. Hormonal control of shoot branching. Journal of Experimental Botany 59: 67–74.
    32. Pardaz J.E., Ojagh S., and H.D. Kazemnia. 2015. Effect of polyvinylpyrrolidone (PVP) on meristem establishment and in vitro organogenesis of Iranian pear (Pyrus glabra). International Journal of Agriculture and Biosciences 4(5): 206-208.
    33. Pierik R.L.M., Oosterkamp J., Manschot G.A.J., and Barth T. 1997. Basic factors affecting initiation and growth of adult Quercus rubur Fastigiata in vitro. COST 822: 4th Meeting of the working group 3 on ‘Identification and control of phase changes in rejuvenation’, Nitra, Slovak Republic, 15-19 October, (original not seen cited by Grigoriadou et al. [2000] Acta Horticulturae 520: 103-108).
    34. Postman J. D. 1994. Elimination of viruses from clonal pear germplasm. Acta Horticulture 367: 72-75.
    35. Postman J. D., and Hadidi, A. 1995. Elimination of apple scar skin viroid from pears by in vitro thermotherapy and apical meristem culture. Acta Horticulture 386: 536-543.
    36. Postman J.D., and Sugar, D. 2002. Elimination of viruses from the USDA Pyrus germplasm collection. Proc.8th IS on Pear. Eds. L. Corelli-Grappadelli et al. Acta Horticulture 596: 529-530.
    37. Reed B.M. 1990. Survival of in vitro-grown apical meristems of Pyrus following cryopreservation. HortScience 25(1): 111-113.
    38. Reed M.B., De Noma J., Wada S., and Postman J. 2013. Micropropagation of Pear (Pyrus ). Maurizio Lambardi et al. (eds.), Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, Methods in Molecular Biology 994: 3-18.
    39. Rugini E., Jacoboni A., and Luppino M. 1992. Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Scientia Horticuiturae 53: 63-72.
    40. Saadat Y.A., Jokar L. and Sayyah Jahromi L. 2012. In vitro rooting of Pyrus glabra Microshoots. Iranian Journal of Natural Resources Research 1: 46-51.
    41. Sadeghi F., Yadollahi A., Jafarkhani Kermani M., and Eftekhari M. 2015. Optimizing culture media for in vitro proliferation and rooting of Tetra (Prunus empyrean 3) rootstock. Journal of Genetic Engineering and Biotechnology 13(1): 19-23.
    42. Safarnejad A., Bibi S., Alamdari L., Darroudi H., and Dalir M. 2016. The effect of growth regulators (BAP and IBA) on regeneration, proliferation and rooting of Natanz pears plant using in vitro Iranian Journal of Plant Biology 8(29): 77-90. (In Persian with English abstract)
    43. Sakakibara, H. 2004. Cytokinin biosynthesis and metabolism, In: Davies, P.J. (Ed.), Plant Hormones: Biosynthesis, Signal transduction, Action, 3rd ed. Kluwer Academic Publishers, London, 95–114.
    44. SAS Institute Inc. 1989. SAS/STAT User’s Guide, Version 6. 4th Edition, Volume 2. SAS Institute, Inc., Cary.
    45. Scottez C., Chevreau E., Godard N., Arnaud, P., Duron M., and Dereuddre J. 1992. Cryopreservation of cold-acclimated shoot tips of pear in vitro cultures after encapsulation-dehydration. Cyrobiology 29: 691-700.
    46. Sedlák J., and Paprštein F. 2015. In vitro propagation and rooting of pear cultivars. Proc. VIIIth IS on In vitro Culture and Horticultural Breeding. Acta Horticulture 1083: 157-162.
    47. Sedlak J., Paprstein F., Bilavcik A., and Zamecnik J. 2004. In vitro cultures and cryoperservation as a tool for conserving of fruit species. Bulletin of Botanical Gardens 13: 65–67.
    48. Shibli R.A., Ajlouni M.M., Jaradat A., Aljanabi S., and Shatnawi M. 1997. Micropropagation in wild pear (Pyrus syrica). Scientia Horticulturae 68: 237-242.
    49. Sotiropoulos T.E., Almaliotis D., Papadakis I., Dimassi K.N. and Therios I.N. 2006. Effects of different iron sources and concentrations on in vitro multiplication, rooting and nutritional status of the pear rootstock 'OHF 333'. European Journal of Horticultural Science 71(5): 222-226.
    50. Spornberger A., Brunmayer R., Fischer G., Kaufmann C., and Osterc G. 2008. Testing of pear trees on their own roots in comparison with important used rootstocks under organic farming conditions with special regard to fire blight. 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, 18-20.
    51. Sriskandarajah S., Mullins M.G., and Nair Y. 1982. Induction of adventitious rooting in vitro in difficult-to-propagate cultivars of apple. Plant Science Letters, 24:1–9.
    52. Stanica F., Dumitrascu M., and Peticila A. 2000. Behavior of three pear varieties propagated “in vitro” and self-rooted on Tatura trellis Proceedings of the ISHS- 8th International Pear Symposium, Ferrara-Bologna, Italy 4.-9.9.2000, 202-203.
    53. Sun Q., Sun H., Bell R., and Xin L. 2009. Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis) of different ploidy. Plant Cell, Tissue and Organ Culture 99: 299–304.
    54. Taiz L., and Zeiger E. 1991. Plant Physiology. The Benjamin/Cummings Publ. Co., Inc. Redwood City, Calif., USA. 565 p.
    55. Tan R., Wang L., Hong N., and Wang G. 2010. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell, Tissue and Organ Culture 101: 229–235.
    56. Thakur A., and Kanwar J.S. 2011. Effect of phase of medium, growth regulators and nutrient supplementations on in vitro shoot-tip necrosis in pear. New Zealand Journal of Crop and Horticultural Science 39(2): 131-140.
    57. Thakur A., and Kanwar J.S. 2008. Micropropagation of ‘wild pear’ Pyrus pyrifolia (Burm F.) Nakai.I. explant establishment and shoot multiplication. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36(1): 103-108.
    58. Tsao W.V., and Reed B.M. 2002. Gelling agents, silver nitrate, and sequestrene iron influence adventitious shoot and callus formation from Rubus leaves. In Vitro Cellular & Developmental Biology-Plant 38: 29-32.
    59. Vatandoost Jartodeh S., Davarynejad G.H., Tehranifar A., and Kaveh H. 2011. Effect of Auxin Treatments and Cuttings on Rooting of Cuttings of Natanz, Sabri and Sugar Pears. Journal of Horticultural Science 25(1): 38-44.
    60. Vescan L.A., Pamfil D., Clapa A., Fira C.R. Sisea I.F., Pop I.V., Petricele O. Ciuzan, and Pop R. 2012. Efficient micropropagation protocol for highbush blueberry (Vaccinium corymbosum ) cv. ‘Elliot’. Romanian Biotechnological Letters 17(1): 6893-6902.
    61. Wang L., Wang G., Hong N., Tang R., and Deng X. 2006. Effect of thermotherapy on elimination of apple stem grooving virus and apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience 41(3): 729-732.
    62. Webster C.A, and Jones O.P. 1991. Micropropagation of some cold hardy dwarfing rootstocks for apple. Journal of Horticultural Science 66: 1-6.
    63. Zilka S., Faingersh E., Rotbaum A., and Malca N. 2002. In vitro Production of Virus-Free Pear Plants. Acta Horticulturae 596: 477-479.
CAPTCHA Image