نوع مقاله : مقالات پژوهشی

نویسندگان

گروه باغبانی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

میخک یکی از مهم­ترین گل­های شاخه­بریده جهان است که ماندگاری کوتاه آن موجب کاهش بازارپسندی این گیاه شده است. استفاده از قندها در محلول گلجای، عمر پس از برداشت گل­های شاخه­بریده را افزایش می­دهد. به­منظور بررسی اثر سطوح مختلف (صفر، 50 و 100 گرم بر لیتر) سه نوع قند (گلوکز، فروکتوز و ساکارز) و دو زمان کاربرد قند (24 ساعت اول و 24 ساعت دوم پس از برداشت، سال 1398) بر عمر پس از برداشت گل­های شاخه­بریده میخک رقم ’یلو کندی‘، آزمایشی فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار اجرا شد. نتایج نشان داد که اثر سطوح مختلف قندها روی همه صفات مورد بررسی معنی­دار بود. هر سه سطح قندها در هر دو زمان کاربرد، باعث افزایش عمر گلجای و بهبود صفات وابسته به آن شدند. بیشترین عمر گلجای (18 روز) در گل­های شاخه­بریده تیمارشده با 50 گرم بر لیتر گلوکز در 24 ساعت اول به دست آمد که با تیمارهای 100 گرم بر لیتر گلوکز، فروکتوز و ساکارز در 24 ساعت اول تفاوت معنی­داری نداشت. بیشترین جذب آب، بیشترین ماده خشک، کمترین فعالیت آنزیم­های پراکسیداز و سوپراکسید دیسموتاز و کمترین مقدار مالون­دی­آلدئید در تیمار 50 گرم بر لیتر گلوکز در 24 ساعت اول حاصل شد. بیشترین مقدار پروتئین گلبرگ، کلروفیل a، b و کلروفیل کل با کاربرد 50 گرم بر لیتر گلوکز در 24 ساعت دوم به دست آمد. کاربرد قندها در 24 ساعت اول در بهبود عمر گلجای مؤثرتر از کاربرد این ترکیبات در 24 ساعت دوم بود. بنابراین، کاربرد گلوکز ترجیحاً در ساعات اولیه برداشت به­عنوان ترکیب افزایش­دهنده ماندگاری پس از برداشت گل شاخه­بریده میخک رقم ’یلو کندی‘ توصیه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Glucose, Fructose, and Sucrose on Vase Life, Antioxidants Enzymes, and Some Physiologic Parameters of Carnation cv. ‘Yellow Candy’ Cut Flower

نویسندگان [English]

  • Ameneh Sharafshah Rostami
  • Behzad Kaviani

Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Rasht, Iran

چکیده [English]

Introduction
 Carnation (Dianthus caryphyllus L.), from Caryophyllaceae family, is one of the most important cut flowers in the world that its short vase life reduces the economic value. Postharvest longevity of cut flowers can be prolonged using carbohydrates (sugars) in a vase jar. Cut flowers undergo some physiological and biochemical changes that often lead to an early senescence. To delay the aging process in cut flowers, it is necessary to evaluate many aspects of preparation for storage conditions, especially preservative solutions that affect the quality and longevity of these flowers. Many flowers are harvested before they are fully developed, to ensure a long postharvest life and to minimize mechanical damages that might occur during handling. The growth and development of flower buds on cut flowers require food (especially carbohydrates), which is stored in the leaves and stems. These stored carbohydrates can be mobilized for the flower bud to use but maybe they are insufficient when the buds are harvested at a tight-bud stage. To maintain metabolic activities, including respiration, even for cut flowers that have reached full development, it is necessary to provide adequate reserves to achieve acceptable postharvest life. When stored materials are low, leaves and flowers age faster and the petals fade. Under these conditions, supplements can be provided to the flowers by adding sugars such as glucose, fructose and sucrose to the vase solutions. However, it is important to note that a sugar solution is also suitable for the growth of microorganisms, so that an antimicrobial agent should be added to the vase solution as well. Many researches were carried out on prolonging the vase life of cut carnation flowers with different preservative solutions together with an antimicrobial agent. Studies on postharvest longevity of cut carnation flowers using sugars as preservative solutions is low. Therefore, the aim of the present study was to evaluate the effect of sugars (glucose, fructose and sucrose) and application time on vase life and some physiological parameters of carnation cv. Yellow Candy’ cut flowers.
Materials and Methods
 A factorial experiment based on completely randomized design in three replicates was performed in order to investigate the effect of different levels (0, 50 and 100 g/L) of three types of sugars (glucose, fructose, and sucrose) and two sugar application times (the first and second 24 h, on 2019) on vase life of carnation cv. Yellow Candy’ cut flowers. Some other traits such as water uptake, dry mater, relative fresh weight, protein and carotenoid of petal, leaf chlorophyll, POD and SOD enzymes activity and MDA were also measured. The statistical analysis of data was performed using Statistical Package for Social Sciences (SPSS) v 16.0. Least significant difference (LSD) test at P < 0.05 was used to find out the significance of differences among the mean values.
 
 
Results and Discussion
Results showed that the effect of different levels of sugars on all evaluated traits was significant. Each three levels of sugars at each two applied times caused to increase vase life and relative traits. Maximum vase life (18 days) was obtained in 50 g/L glucose at the first 24 h with no statistically significant differences with the 100 g/L sucrose and fructose at the first 24 h. The highest water uptakes and dry matter, the lowest POD and SOD activity and minimum MDA were obtained in treatment of 50 g/L glucose at the first 24 h. The study found that the highest levels of petal protein content, chlorophyll a, b, and total chlorophyll were achieved in carnation "Yellow Candy" cut flowers treated with 50 g/L glucose after 24 hours of harvesting. The application of sugars at the first 24 hours after harvesting had a greater impact on improving the vase life of the flowers compared to the second 24 hours. Therefore, the use of glucose as an external holding solution, preferably within the early hours of harvesting, is recommended to prolong the postharvest life of carnation "Yellow Candy" cut flowers. The study also revealed that the use of external holding solutions, particularly sugars combined with antimicrobial agents, can have a positive effect on prolonging the vase life of cut flowers. The concentration of sugar required in the holding solution varies depending on the type of flower being treated, with most flowers requiring a concentration of 2% sugar. However, some flowers may require higher concentrations, up to 4-6%, while others may be damaged if treated with concentrations higher than 1%. The application of sucrose has been shown to increase glucose and fructose levels in petals, further supporting the use of external holding solutions containing sugars for extending the vase life of cut flowers. Therefore, it is important to examine each flower before treating it to determine the optimal concentration of sugars. Sugars are a source of energy and carbon for cut flowers and play an important role in decreasing the protein degradation and ethylene production, maintenance of osmotic balance, increasing water uptake, and finally delaying in senescence process

کلیدواژه‌ها [English]

  • Postharvest life
  • Sugars
  • Vase solution
  • Water relations
  1. Abdul Wasea, A.A. (2012). Effects of some preservative solutions on vase life and keeping quality of snapdragon (Antirrhinum majus (cut flowers. Journal of the Saudi Society of Agricaltural Sciences 11: 29–35. https://doi.org/10.1016/j.jssas.2011.06.002.
  2. Abri, F., Ghasemnezhad, M., Hasansajedi, R., & Bakhshi, D. (2013). Effect of ascorbic acid on vase life and petal senescence in cut rose flowers (Rosa hybrida) cv. ‘Royal Class’. American Eurasian Journal of Agricultural & Environmental Sciences 13(1): 38–43. Corpus ID: 55654135.
  3. Arora, A., & Singh, V.P. (2006). Polyols regulate the flower senescence by delaying programmed cell death in gladiolus. Journal of Plant Biochemistry and Biotechnology 15(2): 139–142. https://doi.org/10.1007/BF03321918.
  4. Borji, N., Hassanpour Asil, M., & Sabouri A. (2016). Effect of accel, sucrose and thyme oil on vase life and postharvest quality of tuberose (Polianthes tuberosa) cut flower. Iranian Journal of Horticultural Science 47(1): 93–104. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2016.58215.
  5. Callis, J. (1995). Regulation of protein degradation. Plant Cell 7: 845–857. https://doi.org/10.1105/tpc.7.7.845.
  6. Chandrashekar, S.Y., & Gopinath, G. (2001). Influence of chemicals on the post-harvest quality of carnation cut-flowers. Karnataka Journal of Agricultural Sciences 14: 731–735.
  7. Chitra, K.P., & Pillai, K.S. (2002). Antioxidants in health. Indian Journal Physiology Pharmacology 46(1): 01–05. PMID:
  8. Chuang, Y.C., & Chang, Y.C. (2013). The role of soluble sugars in vase solutions during the vase life of Eustoma grandiflorum. HortScience 48(2): 222–226. https://doi.org/21273/HORTSCI.48.2.222.
  9. Dilley, D.R., & Carpenter, W.J. (1975). The role of chemical adjuvants and ethylene synthesis on cut flower longevity. Acta Horticulturae 41: 117–132. https://doi.org/10.17660/ActaHortic.1975.41.11.
  10. Dung, C.D., Seaton, K., & Singh, Z. (2017). Influence of type and concentration of sugars, supplemented with 8 hydroxyquinoline sulphate, on the vase life of waxflower. Folia Horticulturae 29(1): 39–49. https://doi.org/10.1515/fhort-2017-0005.
  11. Elgimabi, M.N., & Ahmed, O.K. (2009). Effects of bactericide and sucrose pulsing on vase life of rose cut flowers (Rosa hybrida). Botany Research International 2(3): 164–168.
  12. Ewa, S., Rabiza Wider, J., Wachowicz, M., & Ukaszewska, A.J. (2004). Senescence of cut leaves of Zantedeschia aethiopica and elliottana. part 1. chlorophyll degradation. Acta Scientiarum Polonorum Hortorum Cultus 3(2): 57–65. Corpus ID: 15731218.
  13. Geng, X.M., Guo, Lu, J., Hu, F.R., & Okubu, H. (2009). Effect of cold storage and different pulsing treatment on postharvest quality of cut OT lilly "Mantissa" flowers. Faculity of Agriculture, Kyushu University 54: 41–45. https://doi.org/5109/14035.
  14. Gerailoo, S., & Ghasemnezhad, M. (2011). Effect of salicylic acid on antioxidant enzyme activity and petal senescence in ‘Yellow Island’ cut rose flowers. Journal of Fruit and Ornamental Plant Research 19(1): 183–193. Corpus ID: 83073036.
  15. Giannopolitis, C., & Ries, S. (1997). Superoxid desmutase. I: Occurence in higher plant. Plant Physiology 59: 309–314. https://doi.org/10.1104/pp.59.2.309.
  16. Gibson, S.I., Laby, R.J., & Kim, D. (2002). The sugar-insensitive (Sis1) mutant of Arabidopsis is allelic to Ctr1. Biochemical and Biophysical Research Communications 280: 196–203. https://doi.org/10.1006/bbrc.2000.4062.
  17. Gowda, J.V.N. (1990). Effect of sucrose and aluminium sulphate on the postharvest life of tuberose double. Current Research, University of Agriculture Science (Bangalore) 19(1): 14–16. Corpus ID: 82489468.
  18. Gupta, J., & Dubey, R.K. (2018). Factors affecting post-harvest life of flower crops. International Journal of Current Microbiology and Applied Sciences 7(1): 548–557. https://doi.org/20546/ijcmas.2018.701.065.
  19. Halevy, A.H., & Mayak, S. (1981). Senescence and post-harvest physiology of cut flowers. Part 1. Horticultural Reviews 1: 204–236. https://doi.org/1002/9781118060742.ch5.
  20. Heath, R.L., & Parker, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stiochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198 https://doi.org/10.1016/0003-9861(68)90654-1.
  21. Huang, K.L., Liao, L.J., Shen, R.S., Chen, W.S., & Lin, Y.H. (2002). The synergetic effect of maleic hydrazide (1.2-dihydro-3,6-pyridazinedione) and sucrose on vase life of cut roses. Australian Journal of Experimental Agriculture 42: 637–641. https://doi.org/10.1071/EA01101.
  22. Huang, R., Xia, R., Hu, L., Lu, Y., & Wang, M. (2007). Antioxidant activity and oxygen scavenging system in orange pulp during fruit ripening and maturation. Science Horticultural 113: 166–172. https://doi.org/10.1016/j.scienta.2007.03.010.
  23. Ichimura, K., & Hisamatsu, T. (1999). Effects of continuous treatment with sucrose on the vase life, soluble carbohydrate concentrations, and ethylene production of cut snapdragon flowers. Journal of the Japanese Society for Horticultural Science 68: 61–66. https://doi.org/10.2503/jjshs.68.61.
  24. Ichimura, K., Takada, M., & Ogawa, K. (2022). Effects of treatments with nigerosylmaltooligosaccharide, glucose and sucrose on the vase life of cut snapdragon flowers. Scientia Horticulturae 291: 110565. https://doi.org/10.1016/j.scienta.2021.110565.
  25. In, B.C., Motomura, S., Inamoto, K., Doi, M., & Mori, G. (2007). Multivariente analysis of relation between preharvest environmental factors, postharvest morphological and physiological factors and vase life of cut "Asomi Red" roses. Japanese Society for Horticultural Science 76: 66–72. https://doi.org/10.2503/jjshs.76.66.
  26. Jahanifar, E., Nazarideljou, M.J., & Aramideh, Sh. (2016). Water relations of flowering stem, microbial activity of preservative solution and postharvest quality of Alstroemeria cut flower under peppermint’s essential oil and sucrose treatments. Journal of Crop Production and Processing 5(8): 221–232. (In Persian with English abstract). https://doi.org/10.18869/acadpub.jcpp.5.18.221.
  27. Joz Ghasemi, S., Mortazavi, S.N., & Khodadadi, M. (2011). An investigation of the effect of 2,4-D sucrose, and CaCl2 treatment on some qualitative, and quantitative traits of tuberose cut flower (Polianthes tuberose). Iranian Journal of Horticultural Science 41(2): 133–142. (In Persian with English abstract). DOR: 1001.1.2008482.1389.41.2.4.0.
  28. Khalighi, A., & Shafie, M.R. (2000). Effect of chemical and temperature treatments and harvesting stages on cut flower longevity and some other characteristics of carnation (Dianthus caryophyllus). Iranian Journal of Agricultural Science 31(1): 119–125. (In Persian with English abstract)
  29. Knee, M. (2000). Selection of biocides for use in floral preservatives. Postharvest Biology and Technology 18: 227–34. https://doi.org/10.1016/S0925-5214(99)00074-5.
  30. Kuiper, D., Ribot, S., Van Reenen, H.S., & Marissen, N. (1995). The effect of sucrose on the flower bud opening of made ion cut roses. Science of Horticulture 60: 325–336. https://doi.org/10.1016/0304-4238(94)00706-L.
  31. Lay-Yee, M., Stead, A.D., & Reid, M.S. (1992). Flower senescence in daylily (Hemerocallis). Physiologia Plantarum 86: 308–314. https://doi.org/10.1034/j.1399-3054.1992.860218.x.
  32. Lerslerwonga, L., Ketsa, S., & van Doorn, W.G. (2009). Protein degradation and peptidase activity during petal senescence in Dendrobium ‘Khao Sanan’. Postharvest Biology and Technology 52: 84–90. https://doi.org/10.1016/j.postharvbio.2008.09.009.
  33. Liao, L.J., Lin, Y.H., Huang, K.L., & Cheng, Y.M. (2000). Posthavest life of cut rose flowers as affected by silver thiosulfate and sucrose. Botanical Bulletin of Academia Sinica 41: 299–303. https://doi.org/10.7016/BBAS.200010.0299.
  34. Lukaszewska, A.J. (1995). Effect of the preservative solution on keeping qualities of the new "Diana" carnations. Annals of Warsaw Agricultural University – SGGW, Horticulture 17: 25–31. Corpus ID: 107247600.
  35. Manzoor, A., Rahman, A., Qamar, M., & Ashraf, S. (2018). Evaluation of different preservative solutions and packaging material for improving postharvest quality of gladiolus (Gladiolus grandiflorus) cut spikes. World Journal of Biology and Biotechnology 3(3): 215-222. https://doi.org/10.33865/wjb.003.03.0165.
  36. Marousky, F.J. (1969). Vascular blockage, water absorption, stomatal opening, and respiration of cut ‘Better Times’ roses treated with 8-hydroxyquinoline citrate and sucrose. Journal of the American Society for Horticultural Science 94: 223–226.
  37. Mayak, S., & Dilley, D.R. (1976). Effect of sucrose on response of cut carnation to kinetin, ethylene, and abscisic acid. Journal of American Society of Horticultural Science 101: 583–585.
  38. Mazumdar, B.C., & Majumdar, K. (2003). Methods on physicochemical analysis of fruits. Sundeepbooks.com. 187 p.
  39. Menguc, A., & Usta, E. (1993). Research on the effects of silver thiosulphate+sucrose pretreatment on the cold storage period and post storage vase life of cut flowers of carnation cv. Astor harvested at different maturities. Acta Horticulturae 368: 802–807. https://doi.org/10.17660/ActaHortic.1994.368.95.
  40. Mohammadi, R., & Hashemabadi, D. (2016). Improvement postharvest longevity of alstroemeria (Alstroemeria hybrida) by sucrose, honey and citric acid. Plant Ecophysiology 204–218. (In Persian with English abstract). DOR: 1001.1.20085958.1396.9.29.19.1.
  41. Mortazavi, S.N., Naderi, R., Khalighi, A., Babalar, M., & Allizadeh, H. (2007). The effect of cytokinin and calcium on cut flower quality in rose (Rosa hybrida Illona). Journal of Food, Agriculture and Environment 5(3-4): 1459–0263.
  42. Mortazavi, S.N., Rabi Angourani, H.V., & Khodadadi, M. (2011). Effect of sucrose and calcium chloride on the quality and longevity of cut flower of rose cv. Varlon. Journal of Crop Improvement of Scion and Seed 26(3): 359–363. (In Persian with English abstract). https://doi.org/10.22092/sppj.2017.110413.
  43. Naing, A.H., Win, N.M., Han, J.S., Lim, K.B., & Kim, C.K. (2017). Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Frontiers in Plant Science 8: 1–12. https://doi.org/10.3389/fpls.2017.01590.
  44. Nair, S.A., Singh, V., & Sharma, T.V. (2003). Effect of chemical preservatives on enhancing vaselife of Gerbera flowers. Journal Tropical Agricultre 41: 56–58.
  45. O’Donoghue, E.M., Somerw Eld, S.D., Wat Son, L.M., Brummell, D.A., & Hunter, D.A. (2008). Galactose metabolism in cell walls of opening and senescing petunia petals. Planta 229: 709–721. https://doi.org/10.1007/s00425-008-0862-6.
  46. Park, D.Y., Aung, H., Naing, T.N., Han, J.S., Kang, I.K., & Kim, C.K. (2017). Synergistic effect of nano-sliver with sucrose on extending vase life of the carnation cv. Edun. Frontiers in Plant Science 8: 1–10. https://doi.org/3389/fpls.2017.01601.
  47. Pun, U.K., & Ichimura, K. (2003). Role of sugars in senescence and biosynthesis of ethylene in cut flowers. Journal ARQ 37(4): 219–224.
  48. Pun, U.K., Shimizu, H., Tanase, K., & Ichimura, K. (2005). Effect of sucrose on ethylene biosynthesis in cut spray carnation flowers. Proceeding of VIIIth IS Postharvest Physiology Ornamentals, Acta Horticulturae 669: 171–174.
  49. Ranwala, A.P., & Miller, W.B. (2000). Preventive mechanism of gibberellin4+7 and light on low temperature-induced leaf senescence in Lilium Stargazer. Postharvest Biology and Technology 19: 85–92. https://doi.org/10.1016/S0925-5214(00)00072-7.
  50. Reid, M.S. (2009). The commercial storage of fruit, vegetables and florist and nursery stocks. USDA Handbook 66. pp 36.
  51. Sacalis, J.N., & Lee, J.S. (1987). Promotion of floral longevity by the ovary in carnation flowers. Journal of the American Society for Horticultural Science 112: 118–121. https://doi.org/10.21273/JASHS.112.1.118.
  52. Seven, V., & Jose, J.V.G. (2004). Sucrose loading decrease ethylene responsiveness in carnation (Dianthsis caryaphynus White Sim) petals. Postharvest Biology and Technology 31: 305–312. https://doi.org/10.1016/j.postharvbio.2003.09.010.
  53. Shahsavar, A., & Azarakhsh, H. (2009). Interaction of sucrose and some chemical compounds on increasing the vase life of carnation (Dianthus caryophyllus, cv. "Pink Castellaro") flowers. Journal of Agricultural Science and Industries 6(19): 41–50. (In Persian with English abstract)
  54. Sindhu, S.S., & Pathania, N.S. (2003). Effect of pulsing, holding and low temperature storage on keeping quality on Asiatic lily hybrids. Acta Horticulturae 624: 389–394. https://doi.org/10.17660/ActaHortic.2003.624.54.
  55. Sood, S., & Nagar, P.K. (2003). The effect of polyamine on leaf senescence in two diverse rose species. Plant Growth Regulation 39: 155–160. https://doi.org/10.1023/A:1022514712295.
  56. Stigter, H. (1981). Effects of glucose with 8-hydroxyquinolinesulfate or aluminium sulfate on water balance of cut (Sonia) rose. Zeitschrift Fur Pflanzen Physiology 101(2): 95–105. https://doi.org/10.1016/S0044-328X(81)80044-X.
  57. Tanazad, M., Sharifi-Sirchi, Gh.R., Mirzaalian-Dastjerdi, A.M., & Yousefzadi, M. (2016). Improvment of stability traits and enzyme activity in Diana carnation (Dianthus caryophyllus) cut flower in preservative solutions. Plant Research Journal 29(1): 43–53. (In Persian with English abstract). DOR: 20.1001.1.23832592.1395.29.1.4.6.
  58. Vacca, R.A. (2004). Reactive oxygen species, alteration of sitosolic ascorbat peroxydase and impairment of mitochondrial metabolism are early events in heat shok induced programmed cell death in tobacco bright yellow 2 cells. Plant Physiology 134: 100–112. https://doi.org/10.1104/pp.103.035956.
  59. Van der Meulen-Muisers, J., van Oeveren, J., Meijkamp, B., & Derks, F. (1995). Effect of floral bud reduction on individual flower longevity in Asiatic hybrid lilies. Acta Horticulturae 405: 46–57. https://doi.org/10.17660/ActaHortic.1995.405.5.
  60. Van Doorn, W.G., Monic, A.S., & Tomassen, M. (2004). Daffodil flowers delay senescence in cut Iris Phytochemistry 65: 571–577. https://doi.org/10.1016/j.phytochem.2003.12.008.
  61. Van Meetern, U., van Gelder, H., & van Leperen, W. (2000). Reconsideration of use of deionized water as vase water, in postharvest experiments of cut flowers. Postharvest Biology and Technology 16: 169–181. https://doi.org/10.1016/S0925-5214(99)00050-2.
  62. Verlinden, S., & Garcia, J.J.V. (2004). Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus White Sim) petals. Postharvest Biology and Technology 31: 305–312. https://doi.org/10.1016/j.postharvbio.2003.09.010.
  63. Zadeh Bagheri, M., Namayandeh, A., Solati, M.R., & Javanmardi, Sh. (2011). Effect of pulse and continuous of chemical preservative solutions on increasing the quality and postharvest longevity of cut carnation (Dianthus caryophyllus, cv. "Yellow Candy") flower. Journal of Agricultural Modern Science 6(19): 41–50. (In Persian with English abstract)
  64. Zhang, C., Liu, M., Fu, J., Wang, Y., & Dong, L. (2012). Exogenous sugars involvement in senescence and ethylene production of tree peony ‘Luoyang Hong’ cut flowers. Horticultural Science and Technology 30(6): 718–724. https://doi.org/10.7235/hort.2012.12089.

 

CAPTCHA Image