نوع مقاله : مقالات پژوهشی

نویسندگان

بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در این پژوهش، تأثیر تیمار پس از برداشت گاما آمینو بوتیریک اسید (گابا) با غلظت‌های (صفر، 2/5 و 5 میلی‌مولار) به‌صورت غوطه­وری به‌مدت پنج دقیقه بر سرمازدگی و خواص آنتی‌اکسیدانی میوه موز در طی نگهداری در دمای پنج درجه سلسیوس مورد ارزیابی قرار گرفت. نمونه‌برداری هر چهار روز یک بار در روزهای صفر، 4، 8، 12، 16، 20 و 24 انبارمانی انجام گرفت. آزمایش در قالب طرح کاملاً تصادفی در سه تکرار انجام گرفت. صفات مختلفی از قبیل آسیب سرمازدگی، مالون دی آلدهید، آنزیم‌های آنتی‌اکسیدانت شامل کاتالاز، آسکوربات پراکسیداز، پراکسیداز، سوپراکسید دیسموتاز، ظرفیت مهار رادیکال­های DPPH و میزان تجمع H2O2 مورد ارزیابی قرار گرفتند. نتایج این پژوهش نشان داد که میزان سرمازدگی در میوه‌های موز در پاسخ به تیمار 5 میلی‌مولار گابا کمتر بود که با کاهش نشت یونی و تجمع مالون دی آلدهید همراه بود. میوه‌های شاهد، بیشترین میزان نشت یونی و آسیب سرمازدگی را داشتند. میزان فعالیت آنزیم­های آنتی‌اکسیدانی و هم‌چنین ظرفیت آنتی‌اکسیدانی در میوه‌های موز در طی دوره انبارمانی سرد تحت تأثیر تیمارهای گابا در مقایسه با شاهد افزایش یافت. میزان تجمع H2O2 که از مهم‌ترین شاخص­های تنش اکسیداتیو در سلول است، تحت انبارمانی در دمای پایین در شاهد بیش از تیمارهای گابا افزایش یافت. در تیمار 5 میلی‌مولار گابا میزان H2O2 در طی دوره انبارمانی تقریباً ثابت ماند. به‌طور کلی، تیمار 5 میلی‌مولار گابا مؤثرترین تیمار برای کاهش اثرات سرمازدگی و حفظ خواص آنتی‌اکسیدانی میوه‌های موز رقم ̓کاوندیش̒ در دوره انبارمانی طولانی‌مدت بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Application of Gamma Aminobutyric Acid Treatment on Frost Damage and Antioxidant Properties of Cavendish Banana (Musa acuminata cv. Cavendish) during Cold Storage

نویسندگان [English]

  • Z. Pakkish
  • S. Mohajerpour
  • S. Saadati

Department of Horticultural Sciences, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

چکیده [English]

Introduction
Fresh fruits and vegetables are physiologically active and perishable after harvest. Continued metabolic processes such as transpiration or respiration may significantly affect their quality and thus shorten their useful life. Since keeping at low temperatures and without freezing for a long time effectively reduces the physiological activity of the products, it can be used as a strategy to maintain the quality of the products and increase their life after harvesting. Among the most economically important tropical fruits, ripe green bananas are very sensitive to cold and when stored below the threshold temperature, they show all the symptoms of frost damage. While banana cultivars, maturity stage, and ripening all influence cold sensitivity, there's a growing interest in extending the shelf life of produce using natural, plant-friendly compounds. Gamma-aminobutyric acid (GABA), a naturally occurring four-carbon, non-protein amino acid found in plants, animals, and bacteria, is a promising candidate in this area.Abiotic stresses such as cold, heat, drought, ultraviolet rays and low oxygen can cause the accumulation of GABA in plants. Generally, the purpose of this research was to investigate the effect of gamma-aminobutyric acid treatment to improve freezing and antioxidant properties of Cavendish banana at 5 degrees Celsius for 24 days in 90% relative humidity.
 
Materials and Methods
Cavendish banana fruits (Musa acuminata cv. Cavendish) at the time of commercial maturity (ripe green) were obtained from a banana garden in Kerman and immediately transferred to the horticultural science laboratory of Shahid Bahoner University, Kerman. Healthy and uniform fruits were selected in terms of size, shape, color, and degree of ripening, and after washing with water and drying them, frost tolerance, malondialdehyde, and antioxidants were measured for zero day. GABA (Sigma-Aldrich, USA) required after weighing was dissolved in water and prepared in two concentrations of 2.5 and 5 mM. The fruits were divided into three groups of 54 and each repetition included 18 fruits. The first and second groups were immersed in GABA solution of 2.5 mM and 5 mM for 5 minutes, respectively. The third group was immersed in distilled water for 5 minutes and was used as a control (Khaliq et al., 2023). Each treatment was repeated three times. Then, all the fruits were dried in the air for one hour and kept for 24 days at 5 degrees Celsius and relative humidity of 85-90%. Biochemical observations were measured on days 0, 4, 8, 12, 16, 20 and 24 of storage.
 
 
Results and Discussion
The results of this research showed that frost damage gradually increased during the storage period and the control fruits showed significantly more frost damage symptoms than the fruits treated with GABA. GABA treatments of 2.5 and 5 mM at the end of the storage period reduced the amount of frost damage by 55.64 and 69.95%, respectively, compared to control fruits. As shown in Figure 1b, MDA content as an index of membrane lipid peroxidation in the control and GABA-treated fruit showed an upward trend, which was associated with the destruction of banana fruit membrane under cold stress. Compared to control, banana fruits treated with GABA showed lower MDA accumulation during the entire storage period at 4 degrees Celsius. On the last day of storage, GABA treatment with a concentration of 2.5 mM and 5 mM reduced the amount of MDA in banana fruits by 30.99% and 59.80%, respectively, compared to the control. Post-harvest treatment with GABA reduced frostbite, ion leakage and MDA levels in banana fruits, thereby maintaining fruit quality during low temperature storage. GABA treatment increased the activity of catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD) enzymes in banana fruit compared to the control under low temperature storage. The activity of antioxidant enzymes CAT, APX, POD and SOD increased significantly until the 20th day of storage at low temperature, especially in the 5 mM GABA treatment compared to the other two treatments, and then decreased slightly at the end of the storage period. An increase in the concentration of oxygen free radicals, including hydrogen peroxide, leads to an increase in catalase enzyme activity. Catalase enzyme is often present in the peroxisome and causes the decomposition of hydrogen peroxide into water and oxygen. The specific activity of catalase enzyme increased during cold storage, especially in GABA treatments, so it seems that this enzyme is an efficient scavenger for removing hydrogen peroxide and thus causes better protection of cells against peroxidation. In the ascorbate-glutathione cycle, the ascorbate peroxidase enzyme reduces the amount of hydrogen peroxide by using ascorbate as an electron donor. In the present study, the activity of ascorbate peroxidase enzyme in GABA treatment was significantly higher than the control, which indicates the importance of the role of ascorbate peroxidase in plant tissues against oxidative damage. Guaiacol peroxidase enzyme is another antioxidant enzyme that decomposes hydrogen peroxide into water and oxygen. Peroxidase enzyme plays a role in the oxidation of precursors of phenolic compounds, lignin production, and removal of free radicals. The activity of peroxidase enzyme showed a similar trend in all three treatments, although its activity in GABA treatments was more than the control. Therefore, this enzyme effectively eliminated free radicals in banana fruits. In confirmation of these findings, it was reported in research that the activity of peroxidase enzyme increased in fir cuttings during the cold period. In research, post-harvest treatment of GABA with a concentration of 5 mM reduced frostbite and increased the activity of antioxidant enzymes such as CAT, APX, POD and SOD in peach fruits.
 
Conclusion
The results of this research showed that the applied post-harvest treatments reduced the signs of frostbite and preserved the antioxidant properties of banana fruits. Among the treatments, 5 mM concentration of GABA was the most effective treatment in the storage period. Therefore, GABA treatment can be used as a practical solution to reduce frostbite and preserve the antioxidant properties of Cavendish bananas during long-term storage.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • GABA
  • Ion leakage
  • Malondialdehyde

©2024The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  • Aebi, H.E. (1983). Catalase in methods of enzyme analysis. Bergmeyer, 3, 273–285. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
  • Aghdam, M.S., & Bodbodak, S. (2014). Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37–53. https://doi.org/10.1007/s11947-013-1207-4
  • Aghdam, M.S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M.A.A., & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Scientia Horticulturae, 198, 52–60. https://doi.org/10.22069/JOPP.2019.14927.2393
  • Aghdam, M.S., Naderi, R., Sarcheshmeh, M.A.A., & Babalar, M. (2015). Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Postharvest Biology and Technology, 110, 70–76. https://doi.org/1016/j.postharvbio.2015.06.020
  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/1146/annurev.arplant.55.031903.141701
  • Billiard, F. (1997). Fruit cold storage: Techniques and equipment. International Symposium Effect of Pre-& Postharvest Factors in Fruit Storage, 485, 61–70. https://doi.org/10.17660/ActaHortic.1999.485.7
  • Blokhina, O., Virolainen, E., & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage, and oxygen deprivation stress: A review. Annals of Botany, 91(2), 179–194. https://doi.org/10.1093/aob/mcf118
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
  • Buege, J. A. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6
  • Campos, P.S., Nia Quartin, V., Chicho Ramalho, J., & Nunes, M.A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Journal of Plant Physiology, 160(3), 283–292. https://doi.org/10.1078/0176-1617-00833
  • Deewatthanawong, R., Nock, J.F., & Watkins, C.B. (2010). γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 Postharvest Biology and Technology, 57(2), 92–96. https://doi.org/10.1016/j.postharvbio.2010.03.003
  • D’hont, A., Denoeud, F., Aury, J.M., Baurens, F.C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., & Rouard, M. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488, 213–217. https://doi.org/10.1038/nature11241
  • Ding, Z., Tian, S., Zheng, X., Zhou, Z., & Xu, Y. (2007). Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia plantarum, 130, 112–121. https://doi.org/10.1111/j.1399-3054.2007.00893.x
  • Elbagoury, M.M., Turoop, L., Runo, S., & Sila, D.N. (2021). Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening. Food Science and Nutrition, 9(2), 929–942. https://doi.org/1002/fsn3.2058
  • Fabi, C., Cachia, F., Conforti, P., English, A., & Moncayo, J. R. (2021). Improving data on food losses and waste: From theory to practice. Food Policy, 98, 101934. https://doi.org/10.1016/j.foodpol.2020.101934
  • FAOSTAT, (2022). Available: http://www.fao.org/faostat/en/.
  • Fernandes, F.A.N., Rodrigues, S., Gaspareto, O.C.P., & Oliveira, E.L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77(1), 188–193. https://doi.org/1016/j.jfoodeng.2005.05.058
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guillén, F., Serrano, M., & Valero, D. (2019). Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture, 99(14), 6408–6417. https://doi.org/10.1002/jsfa.9920
  • Hardenburg, R.E., Watada, A.E., & Wang, C.Y. (1986). The commercial storage of fruits, vegetables, and florist and nursery stocks (Issue 66). US Department of Agriculture, Agricultural Research Service.
  • Heli, Z., Hongyu, C., Dapeng, B., Yee Shin, T., Yejun, Z., Xi, Z., & Yingying, W. (2022). Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Frontiers in Nutrition, 9, 1076223. https://doi.org/10.3389/fnut.2022.1076223
  • Herppich, W.B., & Zsom, T. (2021). Comprehensive assessment of the dynamics of banana chilling injury by advanced optical techniques. Applied Sciences, 11(23), 11433. https://doi.org/10.3390/app112311433
  • Hilal, B., Khan, T.A., & Fariduddin, Q. (2023). Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiology and Biochemistry, 196, 1065-1083. https://doi.org/10.1016/j.plaphy.2023.03.006
  • Janeczko, A., Hura, K., Skoczowski, A., Idzik, I., Biesaga-Kościelniak, J., & Niemczyk, E. (2009). Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiologiae Plantarum, 31, 71–79. https://doi.org/1007/s11738-008-0202-2
  • Khademi, O., Ashtari, M., & Razavi, F. (2019). Effects of salicylic acid and ultrasound treatments on chilling injury control and quality preservation in banana fruit during cold storage. Scientia Horticulturae, 249, 334–339. https://doi.org/1016/j.scienta.2019.02.018
  • Khaliq, G., Ali, S., Ejaz, S., Abdi, G., Faqir, Y., Ma, J., Siddiqui, M.W., & Ali, A. (2023). γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1233477
  • Liang, S., Kuang, J., Ji, S., Chen, Q., Deng, W., Min, T., Shan, W., Chen, J., & Lu, W. (2020). The membrane lipid metabolism in horticultural products suffering chilling injury. Food Quality and Safety, 4, 9–14. https://doi.org/10.1093/fqsafe/fyaa001
  • Luo, L., Lin, S., Zheng, H., Lei, Y., Zhang, Q., & Zhang, Z. (2007). The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings. Forestry Studies in China, 9, 107–113. https://doi.org/10.1007/s11632-007-0016-0
  • Luyckx, A., Lechaudel, M., Hubert, O., Salmon, F., & Brat, P. (2016). Banana peel physiological post-harvest disorders: A review. MOJ Food Processing & Technology, 3(1), https://doi.org/10.15406/MOJFPT.2016.03.00060
  • Ma, P., Li, T., Ji, F., Wang, H., & Pang, J. (2015). Effect of GABA on blood pressure and blood dynamics of anesthetic rats. International Journal of Clinical and Experimental Medicine, 8(8), 14296.
  • Maehly, A., & Chance, B. (1954). Catalases and peroxidases. Methods Biochem Anal, 1, 357–424. https://doi.org/1002/9780470110171.ch14
  • Malekzadeh, P., Khosravi-Nejad, F., Hatamnia, A.A., & Sheikhakbari Mehr, R. (2017). Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruit in response to chilling tolerance. Physiology and Molecular Biology of Plants, 23, 827–836. https://doi.org/1007/s12298-017-0475-2
  • Marangoni, A.G., Palma, T., & Stanley, D.W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217. https://doi.org/10.1016/0925-5214(95)00042-9
  • Mditshwa, A., Khaliq, G., Hussein, Z., & Ejaz, S. (2023). Sustainable postharvest management practices for fresh produce. Frontiers in Sustainable Food Systems, 7, 1143759. https://doi.org/10.3389/fsufs.2023.1143759
  • Mohammadrezakhani, S., Hajilou, J., Rezanejad, F., & Zaare-Nahandi, F. (2019). Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress. Journal of Plant Interactions, 14(1), 347–358. https://doi.org/10.1080/17429145.2019.1629033
  • Moradi, M., Razavi, F., Rabiei, V., Soleimani Aghdam, M., & Salehi, L. (2019). The effect of gamma aminobutyric acid (GABA) treatment on post-harvest frostbite of tomato fruit. Horticultural Sciences, 34, 221-230. (In Persian). https://doi.org/22067/JHORTS4.V34I2.78718
  • Murata, T. (1969). Physiological and biochemical studies of chilling injury in bananas. Physiologia Plantarum, 22(2), 401–411. https://doi.org/10.1111/j.1399-3054.1969.tb07392.x
  • Nakano, Y., & Asada, K. (1980). Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology, 21(8), 1295–1307. https://doi.org/10.1093/oxfordjournals.pcp.a076128
  • Ngaffo Mekontso, F., Duan, W., Cisse, E.H.M., Chen, T., & Xu, X. (2021). Alleviation of postharvest chilling injury of carambola fruit by γ-aminobutyric acid: Physiological, biochemical, and structural characterization. Frontiers in Nutrition, 8, 752583. https://doi.org/10.3389/fnut.2021.752583
  • Nguyen, T.B.T., Ketsa, S., & Van Doorn, W.G. (2003). Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30(2), 187–193. https://doi.org/10.1016/S0925-5214(03)00103-0
  • Pongprasert, N., Sekozawa, Y., Sugaya, S., & Gemma, H. (2011). A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel. Scientia Horticulturae, 130(1), 73–77. https://doi.org/1016/j.scienta.2011.06.006
  • Promyou, S., Ketsa, S., & van Doorn, W.G. (2008). Hot water treatments delay cold-induced banana peel blackening. Postharvest Biology and Technology, 48(1), 132–138. https://doi.org/10.1016/j.postharvbio.2007.09.006
  • Rabiei, V., Kakavand, F., Zaare‐Nahandi, F., Razavi, F., & Aghdam, M.S. (2019). Nitric oxide and γ-aminobutyric acid treatments delay senescence of cornelian cherry fruits during postharvest cold storage by enhancing antioxidant system activity. Scientia Horticulturae, 243, 268–273. https://doi.org/10.1016/j.scienta.2018.08.034
  • Ramos-Ruiz, R., Martinez, F., & Knauf-Beiter, G. (2019). The effects of GABA in plants. Cogent Food and Agriculture, 5, 1670553. https://doi.org/10.1080/23311932.2019.1670553
  • Renaut, J., Hausman, J., & Wisniewski, M.E. (2006). Proteomics and low‐temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum, 126(1), 97–109. https://doi.org/10.1111/j.1399-3054.2006.00617.x
  • Saadati, S., Baninasab, B., Mobli, M., & Gholami, M. (2019). Measurements of freezing tolerance and their relationship with some biochemical and physiological parameters in seven olive cultivars. Acta Physiologiae Plantarum, 41, 1–11. https://doi.org/1007/s11738-019-2843-8
  • Sairam, R.K., & Saxena, D.C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55–61. https://doi.org/10.1046/j.1439-037x.2000.00358.x
  • Sanna, D., Delogu, G., Mulas, M., Schirra, M., & Fadda, A. (2012). Determination of free radical scavenging activity of plant extracts through DPPH assay: An EPR and UV–Vis study. Food Analytical Methods, 5, 759–766. https://doi.org/1007/s12161-011-9306-1
  • Shang, H., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Journal of Agricultural and Food Chemistry, 59(4), 1264–1268. https://doi.org/1021/jf104424z
  • Shi, Q., Ding, F., Wang, X., & Wei, M. (2007). Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry, 45(8), 542–550. https://doi.org/1016/j.plaphy.2007.05.005
  • Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba) under NaCl salinity. Plant Science, 161(3), 613–619. https://doi.org/10.1016/S0168-9452(01)00450-2
  • Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45–51. https://doi.org/10.1111/j.1399-3054.2005.00582.x
  • Valenzuela, J.L., Manzano, S., Palma, F., Carvajal, F., Garrido, D., & Jamilena, M. (2017). Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. International Journal of Molecular Sciences, 18(7), 1467. https://doi.org/3390/ijms18071467
  • Vijayakumari, K., & Puthur, J.T. (2016). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum plants subjected to PEG-induced stress. Plant Growth Regulation, 78, 57–67. https://doi.org/10.1007/s10725-015-0074-6
  • Wang, N.N., Yang, Y.C., Sun, D.W., Pu, H., & Zhu, Z. (2015). Shelf-life prediction of ‘Gros Michel’bananas with different browning levels using hyperspectral reflectance imaging. Food Analytical Methods, 8, 1173–1184. https://doi.org/1007/s12161-014-9960-1
  • Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., & Du, R. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132–137. https://doi.org/1016/j.scienta.2014.01.022
  • Wisniewski, M., Bassett, C., & Gusta, L.V. (2003). An overview of cold hardiness in woody plants: Seeing the forest through the trees. HortScience, 38(5), 952–959. https://doi.org/21273/HORTSCI.38.5.952
  • Wolfe, J.O.E. (1978). Chilling injury in plants—the role of membrane lipid fluidity. Plant, Cell and Environment, 1(4), 241–247. https://doi.org/10.1111/j.1365-3040.1978.tb02036.x
  • Yang, A., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chemistry, 129(4), 1619–1622. https://doi.org/10.1016/j.foodchem.2011.06.018
  • Zhou, C., Dong, W., Jin, S., Liu, Q., Shi, L., Cao, S., Li, S., Chen, W., & Yang, Z. (2022). γ-Aminobutyric acid treatment induced chilling tolerance in postharvest peach fruit by upregulating ascorbic acid and glutathione contents at the molecular level. Frontiers in Plant Science, 13, 1059979. https://doi.org/10.3389/fpls.2022.1059979
  • Zhu, X., Luo, J., Li, Q., Li, J., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low-temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78. https://doi.org/1016/j.postharvbio.2018.08.015
  • Zsom, T., Strohmayer, E., Phuong Le Nguyen, L., Hitka, G., & Zsom-Muha, V. (2018). Chilling injury investigation by non-destructive measuring methods during banana cold storage. Progress in Agricultural Engineering Sciences, 14, 147–158. https://doi.org/1556/446.14.2018.S1.14
CAPTCHA Image