نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

به منظور بررسی تأثیر غلظت­های مختلف اسیدفولویک و نانوکلات آهن بر گلدهی و همچنین عمر پس از برداشت گل ژربرا رقم دانی، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در سال 97-96 انجام شد. فاکتورهای آزمایش شامل اسیدفولویک در 4 سطح صفر، 50، 100 و 250 میلی­گرم در لیتر به‌صورت کاربرد خاکی و نانوکلات آهن در 4 سطح صفر ، 1، 2 و 4 گرم در لیتر به­صورت محلول­پاشی بود. آزمایش در شرایط گلخانه در گلدان و در محیط کشت هیدروپونیک اجرا شد. در این پژوهش شاخص­های تعداد روز تا ظهور غنچه گل، طول ساقه گل­دهنده، ماندگاری گل روی بوته، عمر گلجای، وزن تر و خشک گل و همچنین محتوای کلروفیل و کاروتنوئید مورد بررسی قرار گرفت. نتایج حاصل نشان داد که با افزایش غلظت نانوکلات آهن بیشترین وزن خشک گل بدست آمد ولی وزن تر گل تحت تأثیر تیمارها قرار نگرفت. تیمار اسید فولویک 50 میلی­گرم در لیتر بدون کاربرد نانوکلات آهن سبب زود گلدهی شد. محتوای کلروفیل (کلروفیل a، b و کلروفیل کل) و مقدار کاروتنوئید ژربرا با افزایش غلظت­های اسیدفولویک و نانوکلات آهن در مقایسه با شاهد افزایش یافت. بیشترین ماندگاری گل روی بوته در غلظت 250 میلی­گرم در لیتر اسیدفولویک به همراه 1 گرم در لیتر نانوکلات آهن به دست آمد و در غلظت 4 گرم در لیتر نانوکلات آهن تمامی غلظت­های اسیدفولویک باعث افزایش معنی­دار عمرگلجای نسبت به تیمار شاهد شدند. بطور کلی نتایج حاصل، بیانگر  تأثیر مثبت این تیمارها بر بیشتر صفات اندازه­گیری شده می­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Fulvic Acid and Iron Nano Chelate Application on Flowering and Vase Life of Gerbera jamesonii cv. Dune

نویسندگان [English]

  • Soheila Hajizadeh
  • Zohreh Jabbarzadeh
  • Mir Hassan Rasouli-Sadaghiani

Urmia University

چکیده [English]

Introduction: Gerbera jamesonii is a permanent, herbaceous and chilling-sensitive plant species from the family Asteraceae that is native to hot regions. The species has high color diversity and it is among the top ten cut flowers in the world. Fulvic acids are a family of organic acids, natural compounds, and components of the humus (which is a fraction of soil organic matter). They are similar to humic acids, with differences being the carbon and oxygen contents, acidity degree of polymerization, molecular weight and color. Fulvic acid remains in solution after removal of humic acid from humin by acidification. Fulvic acids are of relatively low molecular mass and less biologically active than humic acids. Among micronutrients, Iron (Fe) is a cofactor for approximately 140 enzymes that catalyze unique biochemical reactions and is an essential element for growth of plants. Lack of iron causes young leaves yellow and photosynthesis activity reduce significantly and consequently biomass reduce. Iron plays many essential roles in plant growth and development, including chlorophyll synthesis, thylakoid synthesis, chloroplast development, contribution in RNA synthesis and improvement the performance of photosystems. Nano-fertilizers can be substituted for conventional fertilizers. Studies showed that the effect of nano-particles on plants can be beneficial (seedling growth and development).
Materials and Methods: In order to investigate the effect of different concentrations of fulvic acid and iron nano chelate on flowering of gerbera as well as flower vase life of gerbera cv. Dune, an experiment was conducted as a factorial based on a completely randomized design with three replications during the years 2016-2017. The medium was included peat moss 65%, perlite 30% and cocopeat 5%. The seedlings of tissue cultured plants were planted into pots (size-20) (volume 7 L, height 19 cm, diameter 24 cm) in hydroponic greenhouse conditions. Day/night temperature regime was set at 20-25/13-16°C and light intensity at 400-500 μmol m-2 s-1. The plants were fed three times a week. The treatments were: fulvic acid at four concentrations of 0 , 50, 100 and 250 mg L-1 as drench and iron nano chelate at 4 concentrations of 0, 1, 2 and 4 gr L-1 as foliar application  (15 days intervals for 4 months),. Two weeks after the last treatment, morphological parameters were measured. They were included flower fresh and dry weight, flowering stem length, flower longevity and vase life and the number of days to the appearance of flower buds. Also, the recorded physiological parameters included chlorophyll a, b and total chlorophyll, chlorophyll index and carotenoid.
Results and Discussion: The results of this study showed that, flower dry weight was increased with increasing the concentration of iron nano chelate. The highest flower dry weight )6.43g( was obtained from plants treated with 4 g L-1 iron nano chelate and the lowest one )5.57 g( from control plants, but flower fresh weight was not affected by these treatments. The highest length of flowering stem was observed in treatment of 2 g L-1 iron nano chelate. The lowest time to flowering was obtained from 50 mg L-1 fulvic acid without application of iron nano chelate. The results of means comparisons showed that fulvic acid and iron nano chelate caused to increase flower longevity significantly. The highest flower longevity (19 days) was obtained from 250 mg L-1 fulvic acid and 1 g L-1 iron nano chelate and the lowest mean (12.66 days) was related to control plants. Also, most of treatments caused to increase vase life compared to control. The highest vase life (14.66 days) was observed in 1 g L-1 iron nano chelate without fulvic acid while the lowest mean (6.66 days) was observed in control. Chlorophyll content (chlorophyll a, b and total chlorophyll) and carotenoid content of gerbera increased with increasing concentrations of fulvic acid and iron nano chelate in compared with the control. 
Conclusion: According to the results obtained from this research, application of fulvic acid and iron nano chelate have a positive effect on most flowering and biochemical indices. Application of low concentrations of fulvic acid (50 mg L-1) supplemented with iron nano chelate caused to early flowering. Fulvic acid didn’t have any effect on flowering stem length and its application reduced the flower dry weight. While combined application of fulvic acid and iron nano chelate caused to increase flower longevity. Also iron nano chelate caused to increase flowering stem length, vase life and flower dry weight. In most of the biochemical indices, combined treatment of 100 mg L-1 of fulvic acid and 2g L-1 of iron nano chelate had better or favorable result on measured indices compared to the control treatment although the highest concentration of treatments did not have a negative effect and sometimes in some indicators also have more impact. Among these treatments, the concentrations of 100 and 250 mg L-1 fulvic acid and 2 and 4 g L-1 iron nano chelate can be effective for gerbera plant.

کلیدواژه‌ها [English]

  • Carotenoid
  • Chlorophyll
  • Flower dry weight
  • Flower longevity
1. Ahmadi M., Ehsanzadeh P., and Jabbari F. 2007. Introduction to Plant Physiology (translated), Volume 2, Tehran University Press. 681 p. (In Persian).
2. Akbarian M.M., Heidari Sharifabad H., Noormohammadi G., and Darvish Kojouri F. 2012. The effect of potassium, zinc and iron foliar application on the production of saffron (Crocus sativa). Annals of Biological Research, 3(12): 5651-5958.
3. Askary M., Amirjani M.R., and Saberi T. 2016. Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. Journal of Plant Nutrition, 7(40): 974-982.
4. Atiyeh R.M., Lee S., and Edwards C.A. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84: 7-14.
5. Bagi H., and Chamani E. 2016. Effects of iron nanoparticles and humic acid on growth, development and vase life of cut rose flower cv. White Nablus under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture, 7(3): 103-112. (In Persian with English abstract).
6. Balazadeh S., and Hassanpour Asil M. 2014. The Effect of Humic Acid and nano calcium chelate on growth Chrysanthemum morfolium. International conference on sustainable development, strategies and challenges with a focus on Agriculture, Natural Resources, Environment and Tourism. Tabriz. (In Persian).
7. Bekhrad H., Niknam F., and Mahdavi B. 2017. Effects of nano fertilizer and different levels of nitrogen on grain and oil yield of sesame (Sesamum indicum L.). Journal of Plant Ecophysiology, 9(28): 110-122. (In Persian).
8. Briat J.F., Curie C., and Gaymard F. 2007. Iron ultilization and metabolism in plants. Current Opinion in Plant Biology, 10(3): 82-276.
9. Davoodi Fard M., Habibi D., and Davoodi Fard F. 2012. Effects of salt stress on cell membrane stability, chlorophyll and yield components in wheat inoculated with plant growth promoting bacteria and humic acid. Iranian journal of Agronomy and Plant Breeding, 8(2): 71-86. )In Persian with English abstract(.
10. Dolatian N. 2013. The effect of humic acid on quantitative and qualitative characteristics of strawberry var. Selva under greenhouse conditions. MSc Thesis, Ferdowsi University of Mashhad.
11. Dole J.M., and Wilkins H.F. 2004. Floriculture, principles and species. Prentice Hall Upper Saddle River New Jersey. Pp. 356-360.
12. Dudley J.B., Pertuit Jr, A.J., and Toler J.E. 2004. Leonardite influences zinnia and marigold growth. HortScience, 39: 251–255.
13. Eid R.A., and Abou-Leila B.H. 2006. Response of croton plants to gibbeellic acid, benzyladenine and ascorbic acid application. Word Journal of Agricultural Sciences, 2(2): 174-179.
14. Gill S.S., and Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930.
15. Hadavi E., Salehi M., and Moradi P. 2011. Application of microorganisms compared with nanoparticles of silver, humic acid and gibberellic acid on vase life of cut gerbera goodtimming. Journal of Ornamental and Horticultural Plants, 1(1): 27-33.
16. Haghighi M., Nikbakht A., Xia Y.P., and Pessarakli M. 2014. Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis, 45: 177-188.
17. Karbalaye Golizadeh Sh., Mir Mahmudi T., and Khalili Aghdam N. 2016. Morpho-physiological changes hempseed (Cannabis satival L.) traits as affected by seed priming whith fulvic acid and hydrogen peroxide. Journal of Crop Ecophysiology (Agricultural Science), 10(1): 73-88. (In Persian with English abstract).
18. Kheiry A. Vaisi M., and Sanikhani M. 2017. Effect of micro-elements of Fe, Zn and Mn on some characteristics of Borage (Borago officinalis L.). Journal of Plant Ecophysiology, 9 (29): 183-194. (In Persian with English abstract).
19. Kholde Barin B., and Eslamzadeh T, 2005. The nutrition mineral of high plants. Shiraz University Press. First volume, 456 p. (In Persian).
20. Khosh Khoui M., Sheibani B., Rouhani ‌I. and Tafazzoli E.A. 2008. Principles of gardening. Shiraz University Press, 19nd 596 p. (In Persian).
21. Lichtenthaler H.K., and Wellburn A.R.1987. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11: 591- 592.
22. Lu P., He Sh., Li H., Cao J., and Xu H.L. 2010. Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. Journal of Food, Agriculture and Enviroment, 8(2): 1118-1122.
23. Maleki Farahani S., Khalesi A., and Sharghi Y. 2015. Effect of nano iron chelate fertilizer on iron absorption and saffron (Crocus sativus L.) quantitative and qualitative characteristics. Asian Journal of Biological Sciencec, 8(2): 72-82.
24. Marschner H. 2012. Mineral nutrition of higher plants. 3rd Ed. New York, USA. 672p.
25. Moghadam A.R., Vattani H., Baghaei B., and Keshavarz N. 2012. Effect of different levels of fertilizer nano-iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.). Research Journal of Applied Sciences, 4(12): 4813-4818.
26. Mohamadipoor R., Sedaghathoor S., and Mahboub-Khomami A. 2013. Effect of application of iron fertilizer in two methods foliar and soil application on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology, 3(1): 232-240.
27. Morard P., Eyheraguibel B., Morard M., and Silvestre J. 2011. Direct effects of humic- like substances on growth, water and mineral nutrition of various species. Journal of Plant Nutrition, 34: 46-59.
28. Mothaghi D. 2015. Fulvic acid and its role in agriculture. Datis Agrochemicals R&D Department.
29. Nadi E., Aynehband A., and Mogaddam M. 2013. Effect of nano-iron chelate fertilizer on grain yield, protein percent and cholorophyll content of Faba bean (Vicia faba L.). International Journal of Biosciences, 3(9): 272-276.
30. Nardi S., Pizzeghello D., Gessa C., Ferrarese L., Trainotti L., and Casadoro G. 2000. A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings. Soil Biology and Biochemistry, 32: 415-419.
31. Nasiri Y., Zehtab Salmasi S., Nasrullah Zadeh S., Ghassemi Gholezani K., Najafi N., and Javanmard A. 2013. Evaluation of foliar spray of ferrous sulfate and zinc sulfate on yield and nutrients concentration of aerial parts in German chamomile. Journal of Agricultural Science, 23(3), 105-115. (In Persian with English abstract)
32. Nazari Deljou M., Pour Youssef M., Karamian R., and Jaberian Hamedani H. 2012. Effect of cultivar on water relations and postharvest quality of gerbera (Gerbera jamesonii Bolus ex. Hook f.) cut flower. World Applied Sciences Journal, 18(5): 698-703.
33. Rezaei R. Hosseini S.M. Shabanali Fami H., and Sarafrazi A.M. 2009. An identification and analysis the mechanisms of nanotechnology development in Iranian agricultural sector. Iranian Journal of Agricultural Economics and Development, 42(3): 379-388. (In Persian with English abstract)
34. Salman S.R., Abou-Hussein S.D., Abdel-Mawgoud A.M.R., and El-Nemr M.A. 2005. Fruit yield and quality of watermelon as affected by hybrids and humic acid application. Journal of Applied Sciences Research, 1: 51-58.
35. Shahsavan Markadeh M., and Chamani E. 2014. Effects of various concentrations and time of humic acid application on quantitative and qualitative characteristics of cut stock flower Matthiola incana ‘Hanza’. Journal of Science and Technology of Greenhouse Culture, 5(19): 157-170. (In Persian with English abstract)
36. Shamloo A., and Roozbahani A. 2016. Effect of amino acids and microelements on the rate of photosynthetic pigments content and yield of red bean (Phaseolus vulgaris L.). Journal of Plant Physiology, 7(21): 136 - 150.
37. Suh H.J., Yoo K.S., and Suh S.G. 2014. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Horticulture Environment and Biotechnology, 55(6): 455-461.
38. Yang C.M., Ming C.W., Lu Y.F., Chang I.F., and Chou C.H. 2004. Humic substances affect the activity of chlorophylls. Journal of Chemical Ecology, 30(50): 1057-1065.
39. Yazdani B. 2010. Effect of different concentrations of humic acid and fulvic acid on the qualitative and quantitative characteristics of Gerbera jamesonii. Master's Thesis. Isfahan University of Agricultural Sciences. (In Persian).
CAPTCHA Image