با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، رشت، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی دانشگاه زنجان، زنجان، ایران

3 علوم باغبانی، دانشکده کشاورزی دانشگاه گیلان، رشت، ایران

4 گروه خاکشناسی، دانشکده کشاورزی دانشگاه زنجان، زنجان، ایران

چکیده

محدوده وسیعی از ترکیبات کودی با فرمول‌ها و کارایی‌های مختلف در بازارهای جهانی موجود می‌باشد. علاوه بر کودهای شیمیایی مرسوم، کودهای کمپلکس شده آلی در ابعاد نانو به‌عنوان یک نوآوری در بخش تغذیه کشاورزی محسوب می‌شوند. بنابراین، برای ارزیابی تأثیر چنین کودهایی در کشت و کار زیتون پژوهشی طی دو سال متوالی 1398 تا 1399 در یک باغ تجاری انجام گرفت. تیمارهای تغذیه شامل پنج تیمار از ترکیب عناصر نیتروژن و پتاسیم با دو منبع کودی نانو کود (نانو کود کلات نیتروژن و نانو کود کلات پتاسیم nano-NK) و کود شیمیایی (اوره و نیترات پتاسیم NK) بود. مقدار کود استفاده شده از هر دو منبع شامل دو سطح از غلظت‌های 02/1 و 81/0 گرم در لیتر (N1K1  و nano-N1K1) و 36/1 و 08/1 گرم در لیتر (N2K2 و nano-N2K2) به‌ترتیب نیتروژن و پتاسیم خالص بود که در چهار مرحله تورم جوانه، قبل از شکوفایی گل‌آذین، سخت شدن هسته میوه و بعد از برداشت کنسروی میوه روی درختان محلول‌پاشی برگی شد. درختان شاهد در همان مراحل زمانی با آب محلول‌پاشی ‌شدند. نتایج نشان داد که درختان تحت تیمار N2K2 دارای بالاترین عملکرد (43/36 کیلوگرم) بودند. از نظر محتوای عناصر معدنی هر دو فرم کاربردی کود منجر به افزایش غلظت عناصر نیتروژن و پتاسیم برگ در دو زمان اندازه‌گیری یعنی مراحل سخت شدن هسته میوه و بعد از برداشت کنسروی میوه در مقایسه با درختان شاهد شدند. بیشترین مقدار کلروفیل برگ مربوط به تیمار nano-N1K1 با میانگین به‌ترتیب 60/2 و 48/2 میلی‌گرم ‌بر گرم وزن تر در دو زمان اندازه‌گیری بود. تیمار  nano-N1K1در مرحله سخت شدن هسته میوه و تیمار nano-N2K2 در مرحله بعد از برداشت کنسروی میوه باعث افزایش مقدار کربوهیدرات برگ به‌ترتیب 39/1 و 48/1 برابر بالاتر از تیمار شاهد شد. تیمار nano-N1K1 با وجود عملکرد کمتر، نه تنها باعث افزایش درصد روغن شد بلکه منجر به بهبود خصوصیات کیفی روغن (اسیدچرب آزاد، ارزش پراکسید، شاخص‌های K232، K270 و رنگیزه‌های روغن)، محتوای فنل کل، آنتی‌اکسیدان و پروفایل اسید چرب نیز گردید. با توجه به نتایج به‌دست آمده، در مجموع عملکرد میوه تحت تأثیر تیمار کودهای اوره و نیترات پتاسیم در غلظت بالاتر و ویژگی‌های کیفی روغن زیتون متأثر از تیمار با غلظت پائین‌تر نانو کلات قرار گرفت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Foliar Application of Different Sources of Nano-Chelate Fertilizer (Nitrogen and Potassium) and Chemical Fertilizers (Urea and Potassium Nitrate) on Yield and Oil’s Quantity Attributes of Olive Tree cv. Zard

نویسندگان [English]

  • Zohre Rohi Vishekaii 1
  • Ali Soleimani 2
  • Mahmood Ghasemnejad 3
  • Akbar Hasani 4

1 Guilan Agricultural and Natural Resources Research and Education Center, Rasht, Iran

2 Department of Horticultural Science, University of Zanjan, Zanjan, Iran

3 Department of Horticultural Science, University of Guilan, Rasht, Iran

4 Department of Soil Science, University of Zanjan, Zanjan, Iran

چکیده [English]

Introduction
 Olive tree, with a thousand years of cultivation history, is one of the most important horticultural crops in Iran and has always played an important economical role for orchardists. In olive orchards traits such as an increased formation of incomplete flowers, low yield of fruits and oil are often found as major problems. It should be noted that these traits are affected by numerous environmental and management factors from which the nutrition status is one of the most important ones. Proper nutrition plays an important role in both olive fruit and oil yield. There is a wide range of fertilizer compounds with different formulas and efficiencies available in the world market, among which nano-products are becoming increasingly popular. However, there is limited information on their efficacy in different plant species.
 
Materials and Methods
In order to evaluate the impact of fertilizers on olive cultivation, a research was conducted during two successive years from 2019 to 2020 in a commercial orchard on 15 year old olive tree cv. ‘Zard’, in Manjil city of Guilan province. Foliar application included five treatments using two types of fertilizers; nano (nano-chelated nitrogen and potassium: nano-NK) and chemical fertilizers (urea and potassium nitrate; NK). Treatments involved application of two concentrations from each fertilizers sources; 1.02g and 0.81g (nano-N1K1 and N1K1), 1.36 g and 1.08 g (nano-N2K2 and N2K2) of pure nitrogen and potassium, respectively. Foliar application was conducted in four stages bud-swelling, before blooming, pit hardening and shortly after harvest of table olive. Spraying with water was considered as the control. The nano-chelated fertilizers were obtained from Khazra Company, Teheran, Iran (http://en.khazra.ir). Spraying with water was considered as control. The experiment was performed in a randomized block design with three replications. The measurement of leaf nutrient status and its chlorophyll and carbohydrate contents were carried out at two times each growing season; in August (during pit hardening stage) and October (shortly after the harvest of table olive). At the green ripening stage, fruits were collected and weighted to determine fruit yield. At the end of the experiment quantity and quality traits of oil were measured.
 
Results and Discussion
 The results showed that the trees under N2K2 treatment had the highest yield. In terms of mineral content, both forms of fertilizers increased the concentration of nitrogen and potassium leaf elements compared to the control trees. Chlorophyll content was affected by nano-N1K1 foliar application and carbohydrate content was affected by nano-N1K1 in the pit hardening stage and nano-N2K2 in shortly after the harvest of table olive. Nano-N1K1 treatment with the lower crop load not only increased oil content but also improved quality characteristics of olive oil (free fatty acids, peroxide value, specific ultraviolet absorbance K232, K270 and contents of pigments), total phenol content, antioxidant capacity and fatty acid composition. Generally, the results showed that olive trees responded well to fertilizer feeding. These trees produced better crop and higher quality oil in comparison with control trees. According to the results, fruit yield is better under urea and potassium nitrate treatment, and the quality of olive oil is more stable after nano-chelated nitrogen and potassium foliar application. It seems that the reason for the high amount of fruit yield with N2K2 in comparison to the slow-release property of nano-fertilizers is that using nitrogen and potassium in the form of ordinary chemical fertilizer regulates the biosynthesis, conversion and rapid translocation of assimilates and mineral elements into reproductive structures, which resulted in soaring yield. We assumed that nano-N1K1 foliar spray in the pit hardening stage and shortly after the fruit harvest for table olive might export the assimilation into the fruit to fulfill cell metabolism requirements for oil synthesis.
 
Conclusion
 The current findings indicated that two of four treatments, i.e. nano-N1K1 and N2K2, could be more effective on olive trees in terms of general fruit and oil attributes. It was remarkable that nano treatment with a lower concentration could provide adequate beneficial effects on quality characteristics of olive oil and is in line with good management strategies regarding the preservation of the environment. To the best of our knowledge, the current work is the first report considering the application of nano-chelated nitrogen and potassium and their is use as a foliar application on olive trees. Additional studies would be necessary to further optimize the concentration and timing of the applications with these new formulations.

کلیدواژه‌ها [English]

  • Antioxidant capacity
  • Fatty acid profile
  • Foliar fertilizer
  • Olive

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abbasi, H., Rezaei, K., & Rashidi, L. (2008). Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. Journal of the American Oil Chemists' Society, 85, 83-89. https://doi.org/10.1007/s11746-007-1158-x
  2. Abbasi, Y., Bakhshi, D., Forghani, A., Sabouri, A., & Porghauomy, M. (2012). Effect of macro and micronutrients sprays on fruit quality and quantity of zard and rowghani olive cultivar. American-Eurasian Journal Agricultral Environment Science, 12, 1548-1552. https://doi.org/10.5829/idosi.aejaes.2012.12.12.1907
  3. Abd El Migeed, M., El-Attar, H., ElRheem, K.M.A., Hassan, S., & Saleh, M. (2017). Response of Picual olive trees to urea winter sprays. Middle East Journal of Agriculture Research, 6(4), 1431-1437.
  4. Arnon, D. (1949). Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
  5. Avidan, B., Ogrodovitch, A., & Lavee, S. (1997). A reliable and rapid shaking system for determination of the oil content in olive fruits. Olivae, 67, 44-47. https://doi.org/10.17660/ActaHortic.1999.474.135
  6. Aytac, Z., Gulmezoglu, N., Saglam, T., Gokhan Kulan, E., Selengil, U., & Levent Hosgun, H. (2017). Changes in N, K, and fatty acid composition of black cumin seeds affected by nitrogen doses under supplemental potassium application. Journal of Chemistry, 1-8. https://doi.org/10.1155/2017/3162062
  7. Barker, A.V., & Pilbeam, D.J. (2007). Handbook of plant nutrition. CRC Press, Taylor and Francis Group.
  8. Baruah, S., & Dutta, J. (2009). Nanotechnology applications in sensing and pollution degradation in agriculture. Environmental Chemistry Letters, 7, 191-204.
  9. Başar, H., & Gürel, S. (2016). The influence of Zn, Fe and B applications on leaf and fruit absorption of table olive “Gemlik” based on phonological stages. Scientia Horticulturae, 198, 336-343.
  10. Bellaloui, N., Yin, X., Mengistu, A., McClure, A.M., Tyler, D.D., & Reddy, K.N. (2013). Soybean seed protein, oil, Fatty acids, and isoflavones altered by potassium fertilizer rates in the Midsouth. American Journal of Plant Sciences, 7, 976-988.
  11. Beltrán, G., Del Rio, C., Sanchez, S., & Martinez, L. (2004). Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from Cv. Picual. Journal of Agricultural and Food Chemistry, 52, 3434–3440. https://doi.org/10.1021/jf049894n
  12. Beltrán, G., Aguilera, M.P., Del Rio, C., Sanchez, S., & Martinez, L. (2005). Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chemistry, 89, 207–215. https://doi.org/10.1016/j.foodchem.2004.02.027
  13. Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules, 12, 1679-1719.
  14. Boskou, D. (1996). Olive oil chemistry and technology. USA: AOCS Press, Champaign, Illinois.Brussard, L., Ferrera- Cenato, R. 1997. Soil ecology in sustainable agricultural systems. New York: Lewis publishers, U. S. A. 168 P.
  15. Bouhafa, K., Moughli, L., Bouchoufi, K., Douaik, A., & Daoui, K. (2014). Nitrogen fertilization of olive orchards under rainfed Mediterranean condition. American Journal of Experimental Agriculture, 4, 890-901. https://doi.org/10.9734/AJEA/2014/8719
  16. Bradley, D.G., & Min, D.B. (1992). Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition, 31, 211-236.
  17. Carrasco-Pancorbo, A., Cerretani, L., Bendini, A., Segura-Carretero, A., Delcarelo, M., Gallina-Toschi, T., Lercker, G., Compagnone, D., & Fernnandez-Gutiearrez, A. (2005). Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. Agricultural and Food Chemistry, 53, 8918- 8925.
  18. Casero, T., Benavides, A., Puy J., & Recasens, I. (2004). Relationships between leaf and fruit nutrients and fruit quality attributes in Golden Smoothee apples using multivariate regression techniques. Journal of Plant Nutrition, 27, 313-324. https://doi.org/10.1081/PLN-120027656
  19. Chen, M., Li J., Dai, X., Sun, Y., & Chen, F. (2011). Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology, 12, 187-192. https://doi.org/10.1007/s10201-010-0336-y
  20. Collins, M., & Duke, S.H. (1981). Influence of potassium-fertilization rate and form on photosynthesis and N2 fixation of Alfalfa. Crop Science, 21, 481-485.
  21. Connor, D.J., & Fereres, E. (2005). The physiology of adaptation and yield expression in olive. Horticultural Reviews, 31, 155–229.
  22. Corral-Diaz, B., Peralta-Videa, J.R., Alvarez-Parrilla, E., Rodrigo-García, J., Morales, M.I., Osuna-Avila, P., Niu G., Hernandez-Viezcas, J.A., & Gardea-Torresdey, J.L. (2014). Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiology and Biochemistry, 84, 277-285.
  23. Covas, M.I., Ruiz-Gutiérrez, V., De La Torre, R., Kafatos, A., Lamuela-Raventós, R.M., Osada, J., Owen, R.W., & Visioli, F. (2006). Minor components of olive oil: evidence to date of health benefits in humans. Nutrition Reviews, 64, S20-S30.
  24. Dag, A., Ben-David, E., Kerem, Z., Ben-Gal, A., Erel, R., Basheerb, L., & Yermiyahu, U. (2009). Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. Journal of the Science of Food and Agriculture, 89, 1871–1878.
  25. Davarpanah, S., Tehranifar, A., Abadía, J., Val, J., Davarynejad, G., Aran, M., & Khorassani, R. (2018). Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Scientia Horticulturae, 230, 86-91. https://doi.org/10.1016/j.scienta.2017.11.023
  26. Davarpanah, S., Tehranifar, A., Davarynejad, G. H., Aran, M., Abadía, J., & Khorasani, R. (2017). Effects of foliar nano-nitrogen and urea fertilizers on the physical and chemical properties of Pomegranate (Punica granatum cv. Ardestani) fruits. Horticultural Science, 52, 288–294. https://doi.org/10.21273/HORTSCI11248-16
  27. Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210, 57-64. https://doi.org/10.1016/j.scienta.2016.07.003
  28. De la Rosa, R., Rallo, L., & Rapoport, H.F. (2000). Olive floral bud growth and starch content during winter rest and spring budbreak. Horticultural Science, 35, 1223-1227.
  29. Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113, 557-562.
  30. Elbadawy, N., Hegazi, E., Yehia, T., Abourayya, M., & Mahmoud, T. (2016). Effect of nitrogen fertilizer on yield, fruit quality and oil content in Manzanillo olive trees. Journal of Arid Land Studies, 26, 175-177.
  31. El-Salhy, A.M., Al-Wasfy, M.M., Badawy, E.F.M., Gouda, F.M., & Shamroukh, A.A. (2021). Effect of nano-potassium fertilization on fruiting of Zaghloul date palm. SVU-International Journal of Agricultural Science, 3(1), 1-9.
  32. European Economic Commission (EEC). (1991). Characteristics of olive and olive pomace oils and their analytical methods. Regulation EEC/2568. Official Journal of the European Communities, 248, 1-82.
  33. Fernández-Escobar, R., Beltrán, G., Sánchez-Zamora, M.A., García-Novelo, J., Aguilera, M.P., & Uceda, M. (2006). Olive oil quality decreases with nitrogen over-fertilization. Horticulturae Scientia, 41, 215–219.
  34. Fernández-Escobar, R., Parra, M., Navarro, C., & Arquero, O. (2009). Foliar diagnosis as a guide to olive fertilization. Spanish Journal of Agricultural Research, 7, 212-223. https://doi.org/10.5424/sjar/2009071-413
  35. Fernández-Escobar, R., García-Novelo, J., & Restrepo-Diaz, H. (2011). Mobilization of nitrogen in the olive bearing shoots after foliar application of urea. Scientia Horticulturae, 127, 452-454. https://doi.org/10.1016/j.scienta.2010.10.006
  36. Froment, M.A., Turley, D., & Collings, L.V. (2000). Effect of nutrition on growth and oil quality in linseed. Tests Agrochemistry Culture, 21, 29-30.
  37. Ghormade, V., Deshpande, M.V., & Paknikar, K.M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792–803.
  38. Gucci, R., Lodolini, E., & Rapoport, H. (2007). Productivity of olive trees with different water status and crop load. The Journal of Horticultural Science and Biotechnology, 82, 648-656. https://doi.org/10.1080/14620316.2007.11512286
  39. Guru, T., Thatikunta, R., & Reddy, N. (2015). Crop nutrition management with nano fertilizers. International Journal of Environmental Science and Technology, 1, 4-6.
  40. Hasani, M., Zamani, Z., Savaghebi, G., & Sheikh Sofla, H. (2016). Effect of foliar and soil application of urea on leaf nutrients concentrations, yield and fruit quality of pomegranate. Journal of Plant Nutrition, 39, 749–755.
  41. Hegazi, E.S., Mohamed, S.M., El-Sonbaty, M.R., Abd El-Naby, S.K.M., & El-Sharony, T.F. (2011). Effect of potassium nitrate on vegetative growth, nutritional status, yield and fruit quality of olive cv. Picual. Journal of Horticultural Science and Ornamental Plants, 3, 252-258.
  42. Holmes, M.R.J., & Bennett, D. (1979). Effect of nitrogen fertilizer on the fatty acid composition of oil from low erucic acid rape varieties. Journal of the Science of Food and Agriculture, 30, 264-266.
  43. Inglese, P., & Gullo, G. (2000). Fruit growth and oil quality in relation to foliar nutrition and time of application in olive tree [Olea europaea L-Calabria]. Atti V Giornate Scientifiche SOI, 2, 567–568.
  44. Inglesias, D.J., liso, L.L., Tadeo, F.R., & Talon, M. (2002). Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Plant Physiology, 116, 563-572.
  45. International Olive Oil Council (IOOC). (2011). Guide for the determination of the characteristics of Oil Olives. International Olive Oil Council COI/OH/Doc. No 1.
  46. Irigoyen, J., Einerich, D., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiology Plant, 84, 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  47. Kumar, M., Dwivedi, R., Anand, A.K., & Kumar, A. (2014). Effect of nutrient on physicochemical characteristics of phalsa (Grewia subinaequalis D.C.) fruits. Journal of Bioscience and Biotechnology, 3, 320–323.
  48. Lee, Y.J, Yang, C.M., Chang, K.W., & Shen, Y. (2011). Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Botanical Studies, 52, 295–303.
  49. Mailer, R., & Beckingham, C. (2006). Testing olive oil quality: chemical and sensory methods. Primefact P, 231, 1-5.
  50. Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. 3rd ed, p. 651. Academic Press. Elsevier Ltd. https://doi.org/10.1016/C2009-0-63043-9
  51. Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., & DeRosa, M.C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. Nanotechnologies in food and agriculture. Rai, M., N. Duran, C. Ribeiro, L. Mattoso. Springer Cham Heidelberg New York Dordrecht London. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-14024-7_2
  52. Masumi, S.A., & Arzani, K. (1998). Study of pollination and determine the best inseminator of olive Roghani Mahalli roudbar cultivars. Journal of Seed and Plant, 14, 20-29.
  53. Minguez-Mosquera, M.I., Rejano L., Gandul B., Sanchez, A.H., & Garrido, J. (1991). Color pigment correlation in virgin olive oil. Journal of the American Oil Chemists' Society, 68, 322–337.
  54. Mitre, I., Mitre V., Sestras, A.F., & Sestras, R.E. (2012). Effects of fall applications of urea in order to improve fruit sizes, weight and buds cold hardiness in sweet cherry. Bull Univ Agr Sci Vet Med Cluj-Napoca Horticulture, 69, 248-253.
  55. Monreal, C.M. (2010). Nanofertilizers for increased N and P use efficiencies by crops. p. 12-13. In summary of information currently provided to MRI concerning applications for Round 5 of the Ontario Research Fund-Research Excellence program.
  56. Naderi, M., Danesh Shahraki, A.A., & Naderi, R. (2011). Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iran Journal Nanotechnology, 12, 16–23.
  57. Nazaran, M.H. (2012). Chelate compounds. US Patent 8, 288.

58.Nestby, R., Lieten, F., Pivot, D., Lacroix, C.R., & Tagliavini, M. (2005). Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs: Acta Horticulturae, 5, 139-156. https://doi.org/10.1300/J492v05n01_13

  1. Netto, A.T., Campostrini, E., de Oliveira, J.G., & Bressan-Smith, R.E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104, 199-209. https://doi.com/10.1016/j.scienta.2004.08.013
  2. Norozi, M.M., ValizadehKaji, B., Karimi, R., & NikoogoftarSedghi, M.A. (2019). Effects of foliar application of potassium and zinc on pistachio (Pistacia vera L.) fruit yield. International Journal of Horticultural Science and Technology, 6, 113-123. https://doi.org/10.22059/ijhst.2019.278757.286
  3. Owen, R.W., Mier, W., Giacosa, A., Hull, W. E., Spiegelhalder, B., & Bartsch, H. (2000). Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols secoiridoids, lignansand squalene. Journal of Food and chemical Toxicology, 38, 647-659.
  4. Ramezanian, A., Rahemi, M., & Vazifehshenas, M.R. (2009). Effect of foliar application of calcium chloride and urea on quantitative and qualitative characteristics of pomegranate fruits. Scientia Horticulturae, 121, 171–175. https://doi.org/10.1016/j.scienta.2009.01.039
  5. Ramezani, S., & Shekafandeh, A. (2011). Influence of Zn and K sprays on fruit and pulp growth in olive (Olea europaea L. cv. 'Amygdalifolia'). Iran Agricultural Research, 30, 1-10. https://doi.org/10.22099/iar.2012.489
  6. Rashidi, S. (2012). Nano fertilizers in the environment, First National Conference on Nanotechnology and its Application in Agriculture and Natural Resources, University of Tehran. (In Persian)
  7. Rohi Vishekaii, Z., Soleimani, A., Fallahi, E., Ghasemnezhad, M., & Hasani, A. (2019a). The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Scientia Horticulturae, 257, 1-8. https://doi.org/10.1016/j.scienta.2019.108689
  8. Rohi Vishekaii, Z., Soleimani, A., Ghasemnezhad, M., & Hasani, A. (2019b). The feasibility for replacement of urea with nitrogen nano-chelated fertilizer in olive (Olea europaea L.) orchards. Iranian Journal of Plant Physiology, 10, 3047-3058. https://doi.org/10.30495/ijpp.2019.670790
  9. Rohi Vishekaii, Z., Soleimani, A., Hasani, A., Ghasemnezhad, M., Rezaei, K., & Kalanaky, S. (2021). Nano-Chelated nitrogen fertilizer as a new replacement for urea to improve olive oil quality. International Journal of Horticultural Science and Technology, 8(2), 191-201. https://doi.org/10.22059/ijhst.2020.295041.332
  10. Rohi Vishekaii, Z., Soleimani, A., Fallahi, E., Hasani, A., & Ghasemnezhad, M. (2022). Response of olive (Olea europaea L.) trees to foliar spray of nano chelated and chemical potassium fertilizers. Journal of Plant Nutririon, 46, 1-13. https://doi.org/10.1080/01904167.2022.2072740
  11. Saadati, S., Moallemia, N., Mortazavia, S.M.H., & Seyyednejad, S.M. (2013). Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening. Scientia Horticulturae 164, 30–34. https://doi.org/10.1016/j.scienta.2013.08.033
  12. Sarrwy, S.M.A., Mohamed, E.A., & Hassan, H.S.A. (2010). Effect of foliar sprays with potassium nitrate and mono-potassium phosphate on leaf mineral contents, fruit set, yield and fruit quality of Picual olive trees grown under sandy soil conditions. American-Eurasian Journal of Agricultural and Environmental Sciences, 8, 420–430.
  13. Scott, N., & Chen, H. (2003). Nanoscale science andengineering for agriculture and food systems. A Report Submitted to Cooperative State Research, Education, and Extension Service, theUSDA. National.
  14. Shereen, A., Shaheen, A.EL., Taweel, A., & Al-khateb, A. (2011). Effect of using olive vetation water on growth, flowering and yield of manzanillo olive trees. Journal of American Science, 7, 501-510.
  15. Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  16. Tekaya, M., Mechri, B., Bchir, A., Attia, F., Cheheb, H., Daassa, M., & Hammami, M. (2013). Enhancement of antioxidants in olive oil by foliar fertilization of olive trees. Journal of the American Oil Chemists' Society, 90, 1377–1386. https://doi.org/10.1007/s11746-013-2286-0
  17. Thanaa, Sh., Mahmoud, M., Enaam, Sh., Mohamed, A., & El-Sharony, T.F. (2017). Influence of foliar application with potassium and magnesium on growth, yield and oil quality of “Koroneiki” olive trees. American Journal of Food Technology, 12, 209-220. https://doi.org/10.3923/ajft.2017.209.220
  18. Toplu, C., Önder, D., Önder, S., & Yıldız, E. (2009). Determination of fruit and oilcharacteristics of olive (Olea europaea L. cv. Gemlik) in different irrigation andfertilization regimes. African Journal of Agricultural Research, 4, 649–658.
  19. Tura, D., Gigliotti, C., Pedo, S., Failla, O., Bassi, D., & Serraiocco, A. (2007). Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea europea L.) and correlations with oxidative stability. Scientia Horticulturae, 112, 108–119. https://doi.org/10.1016/j.scienta.2006.12.036
  20. Walinga, I., Van Vark, W., Houba, V., & van der Lee, J. (1989). Soil and plant analysis: part 7- plant analysis procedures. Wageningen Agricultural University, Wageningen.
  21. Zhong, Y. (2005). Lipid oxidation: measurement methods. In: Shahidi F. editors. Bailey's industrial oil products. Edible Oil and Fat Products: Chemistry, Properties, and Health Effects. 6th ed. vol 1. Wiley-Interscience 3616 -78.
CAPTCHA Image