با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه زنجان

چکیده

به منظور بررسی تأثیر کاربرد برگی سلنیم در چهار سطح (صفر، 1، 2 و 3 میلی گرم در لیتر) بر صفات کیفی و بیوشیمیایی انگور رقم فخری آزمایشی در قالب طرح بلوک­های کامل تصادفی با سه تکرار در تاکستان تجاری (استان­کردستان، شهرستان قروه) انجام شد. بوته­ها در سه مرحله: تشکیل میوه، ساچمه­ ای شدن حبه­ها، تغییر رنگ حبه­ ها محلول­پاشی شدند. در مرحله رسیدگی تجاری میوه (درجه بریکس 20) از میوه­ها و برگ­های بوته­ های تحت تیمار و شاهد نمونه­برداری صورت گرفت و صفات کلروفیل­کل و کارتنوئید، نیتروژن، پتاسیم، سلنیم برگ و میوه، موادجامدمحلول کل، قندهای محلول، اسید­قابل­تیتراسیون، اسیدیته (pH)، ویتامین C، فنل و فلاونوئیدکل، ظرفیت آنتی­اکسیدانی میوه و وزن­حبه ارزیابی شد. نتایج اثرات مثبت تیمار سلنیم بر صفات را نشان داد، به طوریکه محلول­پاشی سلنیم با غلظت ۲ میلی­گرم در لیتر رنگیزه­های فتوسنتزی، نیتروژن و پتاسیم برگ، مواد جامدمحلول، قندهای­محلول، ویتامین C، فنل ­کل، ظرفیت آنتی­اکسیدانی و سلنیم میوه را در مقایسه با شاهد افزایش داد. بیشترین مقدار اسید قابل‌تیتراسیون، فلاونوئیدکل میوه و سلنیم برگ در تیمار 3 میلی­گرم در لیتر سلنیم مشاهده شد در حالی که این تیمار بر سایر صفات تاثیر کمتری داشت. بیشترین مقدار وزن حبه در تیمار 1 میلی­گرم در لیتر بدست آمد. هیچکدام از تیمارهای سلنیم تاثیر معنی­داری بر اسیدیته (pH) آبمیوه نشان ندادند. در مجموع نتایج نشان دهنده اثر مثبت سلنیم بر بهبود ویژگی­های آنتی­اکسیدانی، کیفی و افزایش میزان سلنیم میوه انگور بود و 2 میلی‌گرم در لیتر سلنیم با بیشترین تأثیر بر صفات به عنوان بهترین تیمار مشخص گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Preharvest Spraying of Selenium on Qualitative and Biochemical Characteristics of Grape cv. Fakhri (Vitis vinifera cv. Fakhri)

نویسندگان [English]

  • Mohsen Mozaffari
  • Farhang Razavi
  • Vali Rabiei
  • Azizollah Kheiry
  • Akbar Hassani

Zanjan University

چکیده [English]

Introduction: Demand for healthy and high-quality fruits has increased in the markets, and compositions such as vitamins, sugars, and anti-oxidant properties of fruits have attracted many consumers. Grapes contain phenols, flavonoids, anthocyanins, tannins and vitamins with high antioxidant properties. Antioxidants support biological systems such as proteins, amino acids, lipids, and DNA against oxidative damage produced by active oxygen species of ROS, resulting in reduction of cell damage and death, cardiovascular disease and cancers in the human body. Selenium is essential for humans and animals and should be fed through a diet, for this reason, FAO recommends entering selenium to agricultural products (especially fruits and vegetables). In recent years, selenium has been recognized as a useful element for plants that have been toxic at high concentrations but at desirable concentrations, it has positive antioxidant effects, increases growth and significantly affects seed germination. Selenium protects plants from several abiotic stresses such as heavy metal and arsenic, ultraviolet radiation, and biotic stress such as pathogens and pests. Selenium neutralizes oxidative stress interfering with lipid peroxidation, and accelerates gluthatione peroxidase (GSH-Px) activity, this phenomenon delay plant senescence and diminish postharvest losses. This element increases the yield and improves the quality of the fruits and vegetables. When Camelia oleifera plants were treated with selenium, cellular content of linoleic acid and sterol were elevated but oleic acid content diminished. Selenium treatment had a significant effect on preserving the sensory and the postharvest quality by decreasing respiration rate and ethylene biosynthesis in broccoli by diminishing phenylalanine ammonia-lyase (PAL) activity and ethylene production in lettuce and chicory. Foliar application of peach and pear trees with selenium, decelerated fruit softening rate and elongated shelf-life. Therefore, treatment of agricultural products with the appropriate amount of selenium can have a positive effect on the increase of the quality and enrichment of selenium in fruits and also play an important role in human health.
Materials and Methods: In order to investigate the effect of selenium as foliar application (0, 1, 2 and 3 mg L-1) on quality traits, antioxidant compounds and enrichment of grape cv. Fakhri, an experiment based on randomized complete block design with three replications in a vineyard (Kurdistan Povince, Ghorveh town) was performed. The 15-year-old vines were sprayed with selenium solution plus 0.1% of Twin 20 as surfactant until the leaves were completely wet (for each vine about 0.5 liter) at three stages of berry growth and development: Berry formation, Lag phase and veraison. A 1000 mg L -1 stock solutions (Made by the Belgian company CHEM-Lab, containing selenium ion Se+6) was used to prepare the desired solutions. At commercial fruit maturity stage (20° Brix), samples of fruits and leaves randomly were collected from treated and control vines and were immediately transferred to the postharvest physiology laboratory. Traits such as total chlorophyll, carotenoid, nitrogen, potassium, selenium  content of leaves and fruits, and also, total soluble solids, soluble sugars, titrable acidity, acidity (pH), vitamin C, phenol and flavonoids, antioxidant capacity in fruits and the berry weight were evaluated. Data were analyzed using SAS statistical software (SAS V.9.4), and means were compared by Duncan’s multiple range tests at the 5% of probability level.
Results and Discussion: Results showed positive effects of selenium treatment on evaluated traits. As a result, 2 mg L-1 of selenium increased photosynthetic pigments, nitrogen and leaf potassium, soluble solids, soluble sugars, vitamin C, total phenol, antioxidant capacity of fruits in comparison with untreated vines. The highest amount of titrable acidity, total fruit flavonoid and leaf selenium was recorded in vines treated with 3 mg L-1 selenium, whereas, this treatment had less effect on other traits. The highest amount of berry weight was obtained in 1 mg L-1 of selenium. However, none of the selenium treatments had significant effect on the juice acidity (pH). In general, the results showed a positive effect of selenium on improvement of antioxidant properties, quality and enrichment of grape, and 2 mg L-1 selenium with the highest effect on traits was identified as the best treatment. According to other researchers, foliar application of selenium in "Starking Delicious" apple cultivar was effective in enhancement of fruit selenium content and nutritional properties, postponing the flesh firmness decrease, and delaying fruit ripening resulting from less ethylene production, therefore significantly affecting apple fruit quality and storage life.

کلیدواژه‌ها [English]

  • antioxidant capacity
  • Chlorophyll
  • Selenate
  • Total phenol
  • vitamin C
1- Abd El-Motty E.Z., and Orabi A.S. 2013. The beneficial effects of using zinc, yeast and selenium on yield, fruit quality and antioxidant defense systems in navel orange trees grown under newly reclaimed sandy soil. Journal of Applied Sciences Research 9(10): 6487-6497.
2- Ali K., Maltese F., Choi Y.H., and Verpoorte R. 2010. Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews 9: 357–378.
3- Ardebili Z.O., Ardebili N.O., Jalili S., and Safiallah S. 2015. The modified qualities of basil plants by selenium and or ascorbic acid. Turkish Journal Botanical 39: 401-407.
4- Arnon A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23: 112-121.
5- Asghari M. R., and Ahadi L. 2014. Effect of postharvest application of salicylic acid and aloe vera gel on qualitative characteristics and antioxidant activity of grape fruit of Ghezel Azum cultivar. Journal of Horticultural Science 27: 349-342. (In Persian with English abstract)
6- Ayaz F.A., Torun H., Ayaz S., Correia P.J., Alaiz M., Sanz C., Gruz J., and Strnad M. 2007. Determination of chemical composition of anotolian carob pod (Ceratonia siliqua L.) sugars, amino and organic acid, minerals and phenolic compounds. Journal of Food Quality (30)6.
7- Babalar M., Mohebbi S., Zamani Z., and Askari M.A. 2019. Effect of foliar application with sodium selenite on selenium biofortification and fruit quality maintenance of ‘Starking Delicious’ apple during storage. Journal of the Science of Food and Agriculture 99: 5149–5156.
8- Chen Z., Young T.E., Ling J., Chang S.C., and Gallie D. R. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America 100: 3525-3530.
9- Chomchan R., Siripongvutikorn S., and Puttarak P. 2017. Selenium bio-fortification: an alternative to improve phytochemicals and bioactivities of plant foods. Functional Foods in Health and Disease 7(4): 263-279.
10- Crisosto C.H. 2008. Central valley postharvest. Cooperative Extension University of California Kearney Agricultural Center 17: 2.
11- Dehgan G., and Khoshkam Z. 2012. Tin (ll)-quercetin complex: Synthesis, spectral characterization and antioxidant activity. Food Chemistry 131: 422-426.
12- Dong J.Z., Wang Y., Wang S.H., Yin L.P., Xu G.J., Zheng C., Lei C., and Zhang M.Z. 2013. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. Journal of the Science of Food and Agriculture 93: 310–315.
13- Drahonovsky J., Szakova J., Mestek O., Tremlova J., Kana A., and Najmanova J. 2016. Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environmental and Experemental Botany 125: 12–19
14- Drake S., Raese J., and Smith T. 2002. Time of nitrogen application and its influence on Golden Delicious apple yield and fruit quality. Journal of Plant Nutrition 25(1): 143-157.
15- Emami A. 1996. Plant decomposition methods. Soil and Water Research lnstitute Tehran Iran. 1, pp. 128.
16- Feng R.W., Wei C., and Tu S. 2013. The roles of selenium in protecting plant against abiotic stresses. Environmental and Experimental Botany 87: 58-68.
17- Ferreira A.S., Nunes C., Castro A., Ferreira P., and Coimbra M.A. 2014. Influence of grape pomace extract incorporation on chitosan properties. Carbohydrate Polymers 113: 490–499.
18- Fotopoulos V., Mario C., De Tullio M.C., Barnes J., and Kanellis A.K. 2008. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. Journal of Experimental Botany 59: 729–737.
19- Fu D.D., Duan M.L., Liang D.L., Wan S.S., and Wu X.P. 2011. Effects of selenite and selenat on growth and nutrient absorption of pakchoi. Plant Nutrition and Fertilizer Science 17: 358-365.
20- Ghasemi K. 2017. Selenium enrichment of crops and its effect on plant physiology. Plant Production Technology 9(2): 193-207. (In Persian with English abstract)
21- Hajiboland R., and Keivanfar N. 2012. Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus L.) plants. Acta Agriculturae Slovenica 99(1): 13-19.
22- Hu Q., Xu J., and Pang G. 2003. Effects of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural and Food Chemistry 51: 3379-3381.
23- Irigoyen J.J., Emerch D.W., and Sanchez-Diaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa). Physiologia plantarum 84: 55-60.
24- Jezek P., Hlusek J., Losak T., Juzl M., Elzner P., Kracmar S., Bunka F., and Martensson A. 2011. Effect of foliar application of selenium on the content of Selenium-lected amino acids in potato tubers (Solanum tuberosum). Plant, Soil and Environment 57: 315-320.
25- Kafi M., Zand A., Kamkar B., Sharifi H., and Gholdani M. 2002. Plant physiology, University of Mashhad. P, 379. (In Persian)
26- Kaijv M., Sheng L., and Chao C. 2006. Antioxidation of flavonoids of green rhizome. Journal Food Science 27: 110-115.
27- Keck A.S., and Finley J.W. 2006. Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa cells. Food and Chemical Toxicology 44: 695-703.
28- Khavarinejad R., Goshegir Z., and Sadatmand S. 2010. Interaction effect of selenium and molybedon on pigment photosyhthesis of tomato. Journal of Plant Science Researches 17(1): 14-23. (In Persian with English abstract)
29- Kostopoulou P., Kyriazopoulos A.P., Abraham E.M., Parissi Z.M., Karatassiou M., Barbayannis N. 2015. Synergistic Effect of selenium addition and water stress on Melilotus officinalis L. mineral content. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2): 447-454.
30- Lee G.J., Kang B.K., Kim T.I., Kim T.J., and Kim J.H. 2007. Effects of different selenium concentrations of the nutrient solution on the growth and quality of tomato fruit in hydroponics. Acta Horticultre 761: 443–448.
31- Lei C., Ma Q., Tang Q.Y., Ai X.R., Zhou Z., Yao L., Ying W., Wang Q., and Dong J.Z. 2014. Sodium selenite regulates phenolics accumulation and tuber development of purple potatoes. Scientia Horticulturae 165: 142-147.
32- Liang N.N., Pan Q.H., He F., Wang J., Reeves M.J., and Duan C.Q. 2013. Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. Journal of Agricultural and Food Chemistry 6 (25): 6016–6027.
33- Liu Q.L., Wang D., Wu G.L., Hao G.W., Hao Y.Y., and Sun S. 2011. Effects of selenium on leaf senescence and antioxidase system in Pyrus bretschneider Dangshan Suli. Acta Horticulturae Sinica 38: 2059-2066.
34- Lopez A.R. 1993. Humic acid effect on the stomata conductance and leaf abscission on apple cv. Golden Delicious under tropical conditions. Acta Horticulturae 329: 254-254.
35- Majedi M. 1994. Methods of foods chemicals analysis. Jahad daneshgahi press. University of Tehran. (In Persian)
36- Malik J.A., Goel S., Kaur N., Sharma S., Singh I., and Nayyar H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany 77: 242-248.
37- Malorgio F., Diaz K.E., Ferrante A., Mensuali-Sodi A., and Pezzarossa B. 2009. Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. Journal of the Science of Food and Agriculture 89: 2243–2251.
38- Mazzafera P. 1998. Growth and biochemical alterations in coffee due to selenite toxicity. Plant and Soil 201: 189-196.
39- Mittler R., Vanderauwera S., Gollery M., and Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9(10): 490-498.
40- Nawaz F., Ahmad R., Ashraf M.Y., Waraich E.A., and Khan S. Z. 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituent of wheat under drought stress. Ecotoxicology and Environmental Safety 113: 191–200
41- Nowak J., Kakiewski K., and Ligocki M. 2004. Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biology and Biochemistry 36(10): 1553-1558.
42- Pennanen A., Xue T., Hartikainen H. 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany 76: 66-67.
43- Pezzarossa B., Remorini D., Gentile M.L., Massai R. 2012. Effects of foliar and fruit addition of sodium selenite on selenium accumulation and fruit quality. Journal of the Science of Food and Agricultre 92: 781–786.
44- Poldma P., Moor U., Tonutare T., Herodes K., and Rebane R. 2013. Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa). Acta Scientiarum Polonorum 12: 167-181.
45- Qi J., Sun S., Yang L., Li M., Ma F., and Zou Y. 2018. Potassium uptake and transport in apple roots under drought stress. Horticultural Plant Journal 5(1): 10–16.
46- Rios J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., and Ruiz J. M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107-116.
47- Rios J.J., Blasco B., Rosales M.A., Sanchez-Rodriguez E., Leyva R., Cervilla L.M., and Ruiz J.M. 2010. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture 90: 1914–1919.
48- Rios J.J., Rosales M.A. Blasco B., Cervilla L.M., Romero L., and Ruiz J.M. 2008. Biofortification of selenium and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae 116: 248–255.
49- Robbins R.J., Keck A.S., Banuelos G., and Finley J.W. 2005. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. Journal of Medicinal Food 8: 204–214.
50- Rolland F., Baena-Gonzalez E., and Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57: 675–709.
51- Sae-Lee N., Kerdchoechuen O., and Laohakunjit N. 2012. Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium. Plant and Soil 356: 381-393.
52- Salmani Nodoushan M., Abedi M., and Vakilli M. 2013. Selenium and human health. Journal of Shahid Sadoughi University of Medical Science 21(1): 101-112. (In Persian with English abstract)
53- Schiavon M., dall Acqua S., Mietto A., Pilon-Smits E.A.H., Sambo P., and Masi A., and Malagoli M. 2013. Selenium fertilization alters the chemical composition andantioxidant constituents of tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry 61: 10542-10554.
54- Sharma P., Jha A.B., Shanker Dubey R., and Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 10: 21-47.
55- Simonne E.H., Jones J.R., Mills D.A., Snittleand C., and Hussey G. 1993. Influence of catalyst, sample weight, and digestion conditions on Kjeldahl N. Commun. Soil Science and Plant Analysis 24: 1609-1616.
56- Singleton V. L., and Rossi J. A. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Enology and Viticulture 16: 144-15.
57- Skrede G., Martinsen B.K., Wold A.B., Birkeland S.E., and Aaby K. 2012. Variation in quality parameters between and within 14 Nordic tree fruit and berry species. Acta Agriculturae Scandinavica Section Soil and Plant Science 6: 193-208.
58- Turakainen M., Hartikainen H., and Seppanen M. M. 2004. Effects of selenium treatments on potato (Solanum tuberosum) growth and concentrations of soluble sugars and starch. Journal of Agriculture and Food Chemistry 52: 5378-5382.
59- Turakainen M., Hartikainen H., Ekholm P., and Seppanen M.M. 2006. Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. Journal of agricultural and food chemistry 54(22): 8617–8622.
60- Vogrincic M., Cuderman P., Kreft I., and Stibilj V. 2009. Selenium and its species distribution in above-ground plant parts of selenium enriched Buckwheat (Fagopyrum esculentum). Analytical Sciences 25: 1357-1363.
61- Wei J.D., Yu D.Z., Mab H.L., Yao M.B., Liub F.C., Songc Y.G., Xuc Y.F., and Lib L. 2017. Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Scientia Horticulturae 225: 1–5
62- Wu L., and Huang Z.Z. 1991. Chloride and sulfate salinity effects on selenium accumulation by Tall Fescue. Crop Science 31: 114-118.
63- Xue T.L., Hartikainen H., Piironen V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237: 55-61.
64- Yu S., and Shih-Wen C. 2018. Response of nitrogen metabolism in pak choi plants treated with different sodium selenate (Na2SeO4) concentrations. The Horticulture Journal 87:3.
65- Zgallai H., Steppe K., and Lemeur R. 2006. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti oxidative enzymes in tomato plants. Journal of Integrative Plant Biology 48(6): 679-685.
66- Zhang H. Y., Han T., Tian L., Wang Y. N., and Jia H. J. 2010. Accumulation of Selenium in peach, jujube and strawberry after spraying Selenium fertilizer on leaves. Journal of Fruit Science 5: 802–806.
67- Zhang M., Tang S., Huang X., Zhang F., Pang Y., Huang Q., and Yi Q. 2014. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oriza sativa L.). Environmental and Experimental Botany 107: 39- 45.
68- Zhu S., Liang Y., Gao D., An X., and Kong F. 2017. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Scientia Horticulturae 218: 87–94.
69- Zhu Z., Chen Y.L., Shi G.Q., and Zhang X.J. 2017. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry 219: 179-184.
70- Zhu Z., Chen Y., Zhang X., and Li M. 2016. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Scientia Horticulturae 198: 304-31.
71- Zhu Z.Y., Zhang J., Liu Y., and Chen X.Z. 2018. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chemistry 308-8146.
CAPTCHA Image