نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

اسید سالیسیلیک و جاسمونات­ها به عنوان ترکیبات پیام­رسان کلیدی در فرآیند القا که منجر به تجمع متابولیت­های ثانویه می­شود بسیار مورد توجه می­باشند. محلول­پاشی با این ترکیبات باعث القا تنش کاذب و برانگیخته شدن پاسخ­های دفاعی در گیاه شده و بدنبال آن تولید متابولیت ثانویه افزایش می­یابد. این آزمایش به منظور بررسی اثر محلول­پاشی با اسید جاسمونیک و سالیسیلیک بر پراکسید هیدروژن، هدایت الکتریکی، فعالیت آنزیم­های GPX، GST، فنیل­آلانین­آمونیالیاز (PAL)، غلظت فنل کل، فلاونویید و آنتوسیانین در استویا در شرایط مزرعه­ای انجام شد. آزمایش حاضر در قالب طرح بلوک­های کامل تصادفی با 12 تیمار و سه تکرار انجام شد. تیمار­های آزمایشی شامل محلول­پاشی با اسید جاسمونیک، اسید سالیسیلیک و ترکیب تیماری از هر دوی آنها بود. محلول­پاشی با اسید سالیسیلیک و جاسمونیک غلظت پراکسید هیدروژن را در بیشتر تیمارها نسبت به شاهد افزایش داد؛ بیشترین غلظت پراکسید هیدروژن در تیمار 20 میکرومولار اسید جاسمونیک - 1 میلی­مولار اسید سالیسیلیک با غلظت 46/5 میکرومول در بافت تر مشاهده شد؛ گیاه در پاسخ به محلول­پاشی با اسید جاسمونیک و سالیسیلیک فعالیت آنزیم­های آنتی­اکسیدانی GPX و GST را در اغلب تیمارها افزایش داد؛ بیشترین میزان فعالیت آنزیم GPX در تیمار­های 5 میکرومولار اسید جاسمونیک و تیمار ترکیبی 20 میکرومولار اسید جاسمونیک - 1 میلی­مولار اسید سالیسیلیک با میانگین144/0 و بیشترین میزان فعالیت آنزیمGST در تیمارهای 5 میکرومولار اسید جاسمونیک - 5 /0 میلی­مولار اسید سالیسیلیک و 1 میلی­مولار اسید سالیسیلیک با میانگین 35/0 میکرومول بر دقیقه بر گرم بافت تر مشاهده شد؛ به دنبال افزایش فعالیت سیستم آنتی­اکسیدانی میزان هدایت الکتریکی در بیشتر تیمارها (10 تیمار) کمتر از شاهد بود؛ کمترین میزان هدایت الکتریکی در تیمار 20 میکرومولار اسید جاسمونیک - 1 میلی­مولار اسید سالیسیلیک با میانگین 40 درصد مشاهده شد. محلول­پاشی با اسید جاسمونیک و سالیسیلیک فعالیت آنزیم PAL را در تیمارهای ترکیبی بیشتر افزایش داد. بیشترین میزان فعالیت آنزیم PAL در تیمار 50 میکرومولار اسید جاسمونیک - 1 میلی­مولار اسید سالیسیلیک مشاهده شد. بیشترین میزان غلظت فنل کل و فلاونویید در تیمار 20 میکرومولار اسید جاسمونیک - 1 میلی­مولار اسید سالیسیلیک مشاهده شد. محلول­پاشی با اسید جاسمونیک و سالیسیلیک غلظت آنتوسیانین را در تمام تیمارهای ترکیبی افزایش داد. محلول­پاشی با اسید جاسمونیک و سالیسیلیک توانست غلظت ترکیبات فلاونوییدی را به عنوان یکی از ترکیبات مهم استویا افزایش دهد. نکته قابل توجه آن است که در بیشتر صفات، تیمارهای ترکیبی اسید جاسمونیک و سالیسیلیک تأثیر بیشتری در افزایش فعالیت آنزیم PAL، غلظت فنل کل، فلاونویید و آنتوسیانین داشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Jasmonic and Salicylic Acid on Antioxidant Enzymes, PAL and Phenolic Compounds in Stevia rebaudiana bertoni

نویسندگان [English]

  • Seyyedeh Fatemeh Rasouli
  • Manoucher Gholipoor
  • Kambiz Jahanbin
  • Hamid Reza Asghari

Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood

چکیده [English]

Introduction: Salicylic acid and jasmonates (chemical elicitors) are considered as key signaling compounds in induction process, which leads to accumulate of secondary metabolites. External uses of these compounds cause to induce pseudo stress in plants and excites defensive replies in plants, in response to induction of oxidative stress, the plant increases amount of antioxidant genes expression and increase enzymatic activity and non-enzymatic anti­oxidants concentration (they often have a medicinal aspect).
Material and methods: The present study investigated the effects of jasmonic acid and salicylic acid on hydrogen peroxide content, electrical lockage, GPX, GST and PAL activity, total phenol, flavonoid and anthocyanin changing in Stevia rebaudiana bertoni under field conditions. The experiment arranged as a randomized complete block design with 12 treatments and three replications in 2015-2016 at Amol city in Mazandaran Province in Iran. Experimental treatments were spraying by different concentration of jasmonic acid, salicylic acid and components of jasmonic acid- salicylic acid. Foliar application started after plant establishment in vegetative phase. Each experimental plot was 2 m× 3 m consisting 10 rows with 30 cm row spaces and seedling transplanted on 15 May. At the end of foliar application, sampling was done for the measuring. Sampling for biochemical analyses from second fully developed leaf was done and freezed in liquid nitrogen, then quickly carried out to laboratory.
Results and Discussion: The analysis of variance showed that different concentration of jasmonic acid and salicylic acid and spraying both of them in 7-day intervals appeared to be effective (with 99% confidence) on studied traits (data not shown). Spraying with jasmonic and salicylic acid increased hydrogen peroxide content in 9 treatments compared to the control. The highest amount of hydrogen peroxide content in compounds treatment 20 ????M JA -1 mM SA with mean of 5.46 ????mol in fresh weight observed. Plant in response to jasmonic and salicylic acid spraying increased GPX activity in 10 treatments and GST activity in 7 treatments compared to the control and follow them electrical lockage in most treatments (10) was lower than control. The highest amount of GPX activity in treatments 5 ????MJA and 5 ????MJA with average of 0.11 ????molmin-1g-1 FW observed. The highest amount of GST activity was obtained from treatments of 0.5 mM SA -5 ????M JA and 1 mM SA with average of 0.35 ????molmin-1g-1 FW. The PAL enzyme activity (the first enzyme in phenyl proponed compounds biosynthesis pathway) in 10 treatment increased. The highest amount of PAL activity was in compounds treatment of 50 ????M JA -1 mM SA with average of 1140 ????mol cynamic acid mg-1 protein min-1. The PAL enzyme activity had correlation with hydrogen peroxide concentration and GST activity.  The PAL enzyme initiates a phenylpropanoid route that converts L-phenylalanine to trans-cyanamide acid deamination. The PAL enzyme can consider as an antioxidant enzyme because it has the role of depositing oxygen radicals through phenolic compounds. Spraying increased total phenol content in 8 treatments compared to the control. The highest amount of total phenol content was observed in compounds treatment of 20 ????M JA -1 mM SA with mean of 423.7 mgg-1 FW. Spraying with jasmonic acid and salicylic acid increased flavonoid concentration in 9 treatments compared to the control. The highest amount of flavonoid content was in treatment of 20 ????M JA -1 mM SA with mean of 110 mgg-1 FW. Spraying increased anthocyanin concentration in 6 treatments compared to the control. Anthocyanins are the most important group of natural pigments after chlorophyll that are involved in light protection. The noticeable point is that in most treatment PAL enzyme activity, total phenol, flavonoid and anthocyanin content in compound treatment increased.
Conclusion: The highest amount of total phenol and flavonoid content observed in compounds treatment of 20 ????M JA -1 mM SA and anthocyanin increased in total compounds treatment and using PAL enzyme activity had correlation and significant effect (data not shown). Stevia has anti–cancer effect, anti-blood glucose effect and anti-cardiovascular effect. This effects for the existence phenolic compounds in stevia such that had the ability to remove ROS, so increasing phenolic component by jasmonic acid and salicylic acid spraying in stevia was useful.

کلیدواژه‌ها [English]

  • H2O2
  • GST
  • GPX
  • Flavonoid
1-Ashok Kumar F., Yadav S., Singh D., Dhyani P., and Ahuja S. 2011. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Plant Science Journal, 91: 1-27.
2-Bagal U.R., Leebens mack J.H., Walter Lorenz W., and Dean J.F.D. 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms, 13: (3) 1471-2164.
3-Bi H.H., Zeng R.S., Su L.M., An M., and Luo S.M., 2007. Rice allelopathy induced by methyl jasmonate and methyl salicylate. Journal of Chemical Ecology - Springer, 33(5): 1089-1103 -
4- Carlberg I., and Mannervik B. 1985. Glutathione reductase. Methode Enzymol, 113: 484-490.
5- Chance B., and Maehly A.C. 1955. Assay of catalases and peroxidases. Methods Enzymol, 11: 764-755.
6-Carmanol F., Sinet P.M., Rapin J., and Jerome H. 1981. Glutathione S-transferase of humen red blood cells assay, values in normal subjects and in two pathological circumstances: iperbillirubinemia and impaired renal function. Clinica chimica Acta Journal, 117 (3): 209-217.
7- Chan Z., and Tian S. 2006. Induction of H2O2 metabolizing enzyme and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry. Postharvest Biology, Technology, 39: 314-320.
8-Chen J., Cheng Z., and Zhong S. 2007. Effect of exogenous salicylic acid on growth and H2O2- metabolizing enzymes in rice seedlings lead stress. Journal of Environment Science, 19: 44-49.
9-Divya P., Puthusseri B., and Neelwarne B. 2013. The effect of plant regulators on the concentration of carotenoids and phenolic compound in foliage of Coriander. Food ScienceTechnology, 56: 101-110
10 -Dong J., Wan G., and Liang Z. 2010. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148: 99-104
11-Goyal R., Samsher K., and Goyal S.K. 2010. Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition, 61 (1): 1-10.
12-Gupta P., Sharma S., and Saxena S. 2015. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Applied Biochemistry and Biotechnology- Springer; 176(3): 863-74.
13- Haji_Mehdipour H., Khanavi M., Shkrchy M., Abadi Z., and Pirali-Hamadani M. 2008. The investigation of best method for phenolic compound extraction in Echinacea purpurea. Journal of Medicinal Plant, 8: 145-152.
14. Heredia J.B., and Cisneros-Zevallos L. 2009. The effect of exogenous ethylene and methyl jasmonate on PAL activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Post Biology Technology, 51(2): 242-249.
15- Jana S., and Choudhuri M.A. 1981. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquatic Botany, 12: 342-354.
16- Kar M., and Mishra D. 1976. Catalase, peroxidase, and polyphenol‌oxidase activities during rice leaf senescence. Plant Physiology, 57: 315-319.
17-Kovacik J., and Bklejdus B. 2012. Tissue and method specificities of phenylalanine ammonia-lyase assay. Plant Physiology Journal, 169: 1317-1320
18-Krizek D.T., Britz S.J., and Mirecki R.M. 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. new red fire lettuce. Physiology Plantarum, 103: 1-7.
19-Kumari G. J., Reddy A.M., Naik S. T., Kumar S.G., Prasanthi J., Sriranganayakulu G., Reddy P.C., and Sudhakar C. 2006. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase enzymes in peanut seedlings. Biologia Plantarum, 50: 219-226
20- Marrs K.A. 1996. The functions and regulation of glutathione s-transferase in plants. Plant Physiology, Plant Molecular Biology, 47:127–58
21-Mendoza D., Cuaspud O., Ariasa J.P., Ruiz O., and Arias M. 2018. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnology Reports, (19): 1-19
20-Mikkelsen M. D., Petersen B. L., Glawischnig E., Jensen A. B., Andreasson E., and Halkier B. A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology Journal, 131(1): 298-308.
23- Mita S., Murano N., Akaike M., and Nakamura K. 1997. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin those are inducible by sugars. Plant Journal, 11:841-851.
24- Moons A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Plant Hormones; 72: 155-202.
25- Popova L., Ananieva E., Hristova V., Christov K., Georgieva K., Alexieva V., and Stoinova Z.H. 2003. Salicylic acid and methyl jasmonte induced protection on photosynthesis to paraquat oxidative stress Bulg. Journal of Plant Physiology, 13: 133-152.
26- Rao M.V., Paliyath G., Ormord D.P., and Watkins C.B. 1997. Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiology, 115: 137-149.
27-Rasouli F., Gholipuor M., Jahanbin K., and Asghari H.R. 2018. Effect of salicylic acid and jasmonic acid on induction of oxidative stress, increasing resistance and yield of Echinacea purpurea L. Crop Plant Production, 11(2): 109-122. (In Persian)
28-Samadi S., Ghasemnezhad A., and Alizadeh M. 2014. Investigation on phenylalanine ammonia-lyase activity of artichoke (Cynara scolymus L.) affected by methyl jasmonate and salicylic acid in in-vitro conditions. Journal of Plant Production Research, 21: 135-148.
29- Sangtarash M.H., Qaderi M.M., Chinnappa C.C., and Reid D.M. 2009b. Carotenoid differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environmental and Experimental Botany, 66 (2): 212-219
30- Suzuki A., Miller G., Morales J., Shulaev V., Torres M.A., and Mittler R. 2011. Respiratory burs toxi dases: theeng in esof ROS signaling. Curr Opin. Plant Biology, 14, 691–699
31-Taiz L., and Ziger A. 2006. Plant Physiology. 13, pp: 619-6230
32-Wasternack C., and Hause B. 2013. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013; 111: 1021±1058
33- Yan B., Dai Q., Liu X., Huang S.h., and Wang Z. 1996. Flooding induce membrane damage, lipid oxidation and activated oxygen generation in Corn leaves. Plant and Soil Journal, 179:261-268.
34- Zhao J.L., Davis C., and Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances Journal – Elsevier, 23: 283–333.
CAPTCHA Image