تنش شوری بر خصوصیات مورفولوژیکی و فیزیولوژیکی گیاهچه های برخی توده های بومی کدو و پایه های هیبرید وارداتی مناسب پیوند

نوع مقاله : مقالات پژوهشی

نویسندگان

1 سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان

2 دانشگاه فردوسی مشهد

3 فردوسی مشهد

4 دانشگاه تهران

5 دانشگاه کاتانیا

چکیده

تنش شوری یکی از مهم‌ترین عوامل محدود کننده رشد گیاه، بویژه در مناطق خشک و نیمه خشک می‌باشد. این تحقیق در دو آزمایش جداگانه کشت درون پتری‌دیش و کشت در بستر خاک درون کیسه نشا برای ارزیابی تحمل به شوری تعدادی از پایه‌های کدو در سال 92 و 93 در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان انجام شد. جمعیت‌های بومی از کدوی حلوایی (اصفهان و کوشک)، کدوی مسمایی (الور، تیران، کوشک و اصغرآباد)، کدوی تنبل (کرمانشاه، شهرضا، محمدیه و الور)، کدوی قلیانی، لیف، کدوی ماری و هیبریدهای بین گونه‌ای (Ferro، 113، 910، 909، 913، 426 و152) جمعاً 20 تیمار در آزمایش اول استفاده شد. در آزمایش دوم جمعیت لیف و کدوی ماری و هیبریدهای 426 و 152 حذف گردید و توده بومی کدوی پوست کاغذی اضافه گردید. در واقع آزمایش دوم با 17 تیمار انجام شد. تنش شوری با کاربرد کلرید سدیم در سطوح (صفر، دو، چهار، شش، هشت و10 دسی زیمنس بر متر) برای آزمایش اول و سطوح (صفر، دو و چهار دسی زیمنس بر متر) برای آزمایش دوم انجام شد. با استفاده از آزمایش فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار اجرا گردید. صفات سرعت و درصد جوانه‌زنی، قطر ساقه، طول ساقه و ریشه، وزن تر و خشک ساقه و ریشه، شاخص بنیه، حجم نسبی آب برگ و عدد اسپد (شاخص سبزینگی) اندازه‌گیری شد. نتایج بدست آمده نشان داد (که به استثنای نسبت ریشه به ساقه در آزمایش اول) کلیه صفات رشد اندازه‌گیری شده در کدوها در هر دو آزمایش در پاسخ به افزایش شوری کاهش معنی داری (05/0< P) نشان دادند. در تیمار رقم برای صفات اندازه‌گیری شده (به استثنای سرعت جوانه زنی و شاخص بنیه در آزمایش دوم) اختلاف معنی‌داری بین کدوها مشاهده شد. هیبرید فرو بیشترین درصد جوانه زنی را در بین پایه ها داشت. بیشترین قطر ساقه مربوط به توده های کدو تنبل بود. بیشترین طول ریشه در کدوی تنبل توده های شهرضا، کرمانشاه و الور و هیبریدهای بین گونه ای فرو، 909 و 910 بدست آمد. تیمار شوری 4 دسی زیمنس بر متر از منبع NaCl، آستانه خسارت برای کدوهای حساس به تنش شوری بود. تنش شوری 8 و 10 دسی زیمنس بر متر به شدت سبب محدودیت رشد رویشی پایه های کدو گردید. در مجموع، از بین ارقام و پایه‌های مورد مطالعه، جمعیت‌های کدو حلوایی کوشک، کدو مسمایی کوشک و اصغرآباد، کدو قلیانی، کدو پوست کاغذی و هیبرید وارداتی 113 حساس به شوری و کدوی تنبل کرمانشاه و شهرضا، کدو حلوایی اصفهان و هیبریدهای بین گونه‌ای فرو، 909 و 910 بر اساس صفات ارزیابی شده بعنوان پایه‌های برتر در تحمل به شوری معرفی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Salinity Stress on Morphological and Physiological Characteristics of some Local Landrace and Inter specific Hybrids of Cucurbits Seedlings as Rootstocks

نویسندگان [English]

  • Ali Farhadi 1
  • Hossain aroiee 2
  • Seyyed Hosein Nemati 3
  • reza salehi 4
  • francesco Giuffrida 5
1 Isfahan Agricultural and Natural Resources Research and Education Center
2 Ferdowsi University of Mashhad
3 Ferdowsi university of Mashhad
4 Tehran University
5 Catania University
چکیده [English]

Introduction: Salinity stress is regarded as one of the most important abiotic factors in plant limiting growth, particularly in arid and semi-arid regions. The reduction of plant growth by salinity stress has been well documented. When water supply is limited, plant structure is modified by increasing the root: shoot ratio. To reduce of losses in vegetative growth and production of plant and to improve water use efficiency under saline conditions in high-yielding genotypes grafting them onto rootstocks could bereduced the effect of saline stress on plant shoot. Grafting is a routine technique in continuous cropping systems. Most of the species of cucurbits are distributed in the dry regions. The objective of this studywas investigated the effectiveness of salinity stress on accessions of cucurbita and hybrid inter specific which enter from another country to Iran.
Materials and Methods: This research was conducted in laboratory and greenhouse at the Research Center of Agricultural and Natural Resources of Isfahan during 2013-2014 growing season. A factorial experiment based on completely randomized design with three replications was conducted for rootstock and irrigation water salinity.. In the first experiment 25 seeds of rootstocks were sown in petri dishes with 10 cm diameter and irrigated by 10 ml of saline water. Rootstocks included 20 different local landraces and interspecific hybrids (C.moschata cv. Isfahan and Koshk, C.pepo cv. Alvar, Tiran, Koshk and Asgharabad, C. maxima cv. Kermanshah, Shahreza, Mohamadiyeh and Alvar, Lagenaria Siceraria, Luffa cylindrica, Trichosanthes cucumerina, RZ-Ferro, Es113, Ews910, Ews909, Ews913, 426 and Es152). Salinity stress was 6 levels (0, 2, 4, 6, 8 and 10 ds/m of NaCl). Germination, diameter of stem, height of root and stem, shoot and root fresh mass, vigor index and root: shoot ratio were evaluated. In the second experiment seeds were sown in plastic pot by soil media. Seedlings were irrigated daily with 200 ml of saline water (0, 2 and 4 ds/m) for 35 days. Excess solution was allowed to drain from the plants through drainage holes in the base of the pots. Hybrids of 152,426 and Trichosanthes cucumerina, Luffa cylindrical and Cucurbita pepo con. Pepo var. Styriaca was added. In the second phase measured shoot and root dry mass, SPAD index, relatively water content and seedling vigor index.
Results and Discussion: the results showed that all parameters were significantly influenced by salinity except root: shoot ratio in Petri dish. Salinity stress reduced chlorophyll index (SPAD), relative water content in cucurbita leaves than control (without saline) and also seeds germination, seedlings fresh mass and seedlings vigour by 51%, 53%, and 75 % respectively. .The shoot dry biomass of local landrace and inter specific hybrids in both experiment decreased linearly in response to increasing saline stress. Recorded data in Petri dish and plastic pot were significantly influenced by rootstock, whereas no significant difference was observed on germination rate and vigor index for plastic pot in greenhouse. The lowest seed germination percentage, seedling growth, vigor index and root: shoot ratio recorded on high saline concentration. NaCl threshold damage to cucurbits was evaluated 4 ds/m. Populations of C. maxima cv.Kermanshah and Shahreza, C.moschata cv. Isfahan and inters pecific hybrids Ferro, 909 and 910 were showed tolerant to salinity. It is proven that crop growth decreases with increasing saline stress (Rouphael, et al., 2012). Hybrids of C. moschata cv. Koshk, C. pepo cv. Koshk and Asgharabad, Lagenaria Siceraria, Es113 and Cucurbita pepo con. Pepo var. Styriaca were sensitive to saline stress. Kumar et al, (2008) also reported plant response to salinity depends on type of salt, salt concentration and plant genotype.
Conclusions: Salinity stress adversely affect biomass and leaf water content of cucurbita. Our results indicated that local and hybrid cucurbit plants exhibited different response to saline stress. Hybrid rootstocks 909, 910 and Ferro were tolerant to salinity. Although local landrace C. maxima. cv. Shahreza and Kermanshah, C. moschata cv. Isfahan and C. pepo cv. Tiran were tolerant to salinity. Sensitivity to saline stress was similar between some local landrace and hybrid plants. Finally, after grafting in cucurbita rootstocks needs more research to use water, wast water, NaCl and other resources of salinity and to find the most tolerant rootstock.

کلیدواژه‌ها [English]

  • Salinity tolerance
  • Germination
  • Seedling growth
  • Vigor index
1- Abdul-Baki A.A., and Anderon J.D. 1973. Vigor determination in soybean by multiple criteria. Crop Science, 13: 630-633.
2- Akbari Ghogdi E., Izadi-Darbandi A., Borzouei A., and Majdabadi A.2011. Evaluation of morphological changes in some wheat genotypes under salt stress. Journal. Science. & Technology. Greenhouse Culture, 1(4).71-82. (In Persian with English abstract)
3- Amjad M., Ziaf K., Iqbal Q., Ahmad I., and Atif Riaz M.2007. Effect of seed priming on seed vigor and salt tolerance in hot pepper. Pakistan Journal of Agricultural Science, 44 (3): 408-416.
4- Archangi A.M., Khodambashi V., and Mohamadkhani A. 2012. The effect of salt stress on morphological characteristics and Na+ , K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum L.) under hydroponic culture. Journal. Science. & Technology. Greenhouse Culture, 3(10).33-40. (In Persian with English abstract)
5- Colla G., Fanasca S., Cardarelli M., Rouphael Y., Saccardo F., Graifenbereg A., and Curadi M. 2005. Evaluation of salt tolerance in rootstocks of cucurbitaceae. Acta Horticulture, 697.469-471.
6- Colla G., Rouphael Y., Cardarelli M., Salerno A., and Rea E.2010. The effectiveness of grafting to improve alkalinity tolerance in watermelon, Environmental and Experimental Botany, 68:283-291.
7- Demir I., and Vande venter H. A. 1999. The effect of priming treatments on the performance of watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds under temperature and osmotic stress. Seed Science and Technology, 27: 871- 875.
8- Du C.X., Fan H.F., Guo S.R., Tezuka T., and Li J. 2010. Proteomic analysis of cucumber seedling roots subjected to salt stress, Phytochemistry, 71:1450-1459.
9- Edelstein M., and Kigel J. 1990. Seed germination of melon (Cucumis melo) at sub- and supra- optimal temperatures. Scientia Horticulturae, 45:55-63.
10- Ganjali A., Persa H., and Hojat S.2007. Genetic variation of seedling root and shoot traits in pea (Cicer arientumL.) In the hydroponics and greenhouse. Iranian Journal of Field Crops Research, 5(1).143-155. (In Persian with English abstract)
11- Huang Y., Bie Z.L., Liu Z.X., Zhen A., and Jiao X.R. 2011. Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt tolerant pumpkin rootstocks. Biologia plantarum, 55(2): 285-290.
12- Huang Y., Kong Q.S., Chen F., and Bie Z.L.2015. The History, Current Status and Future Prospects of Vegetable Grafting in China. Acta Horticulture, 1086.31-39.
13- Kafi M., and Mahdavi Damghani M. 2000. Mechanisms of plant resistance to environmental stress.Ferdowsi University of Mashhad. (In Persian)
14- King S. R., Davis A. R., Zhang X., and Crosby K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae.Scientia horticulturae, 127(2):106-111.
15- Kumar V., Shriram V., Nikam T.D., Jawalib N., and Shitole M.G. 2008. Sodium chloride-induced changes in mineral nutrients and proline accumulation in Indica rice cultivars differing in salt tolerance. Journal Plant Nutrition, 31: 1999-2017.
16- Kurth E., Cramer G.R., Lauchli A., and Epstein E. 1986. Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiologhy, 82: 1102-1106.
17- Lal Khajanchi S.G., Setih M., Sharma P.C., Swarup A., and Gupta S.K. 2007. Effect of NaCl concentration on growth, root morphology and photosynthetic pigment in wheat and barley under solution culture. Journal Agrochimistry, 51: 194-206.
18- Leung J., Bouvier-Durand M., Morris P.C., Guerrier D., Chedfor F., and Giraudat J. 1994. Arabidopsis ABA-response gene ABI1: features of a calcium-modulated protein phosphatase. Plant Science, 264: 1448–1452.
19- MirMohamadi Meybodi S A., and Gharayazi B. 2002. Physiological aspects of salinity and plant breeding.Isfahan University of Technology. (In Persian)
20- Rouphael Y, Cardarelli M., Rea E., and Colla G. 2012. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50(2):180-188.
21- Savvas D., Ntatsi G., and Barouchas P., 2013. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Scientia Horticulturae, 149. 86-96.
22- Shelden M.C., Roessner U., Sharp R.E., Tester M., and Bacic A.2013. Genetic variation in the root growth response of barley genotypes to salinity stress. Functional. Plant Biology, 40(5): 516-530.
23- Siyal A.A., Skaggs T.H., and van Genuchten M.T. 2010. Reclamation of saline soils by partial ponding: Simulations for different soils. Vadose Zone Journal, 9: 486-495.
24- Tarchoune I., Degl’Innocenti E., Kaddour R., Guidi L., Lachaâl M., Navari-Izzo F., and Ouerghi Z. 2012. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiologhy. Plantarum, 34:607-615.
25- Trivellini A., Gordillo B., Rodriguez-Pulido F.J., Borghesi E., Ferrante A., Vernieri P., Quijada-Morin N., Gonzalez-Miret M.L., and Heredia F.J. 2014. Effect of salt stress in the regulation of anthocyanins and color of Hibiscus flowers by digital image analysis. Journal of Agriculture and Food Chemistry, 62:6966-6974.
26- Tylkowska K., and Van den Bulk R. W. 2001. Effects of osmo and hydro priming on fungal infestation levels and germination of carrot (Daucus carota L.) seeds contaminated with Alternaria spp. Seed Science and Technology, 29: 365-375.
27- Uygur V., and Yetisir H., 2009. Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake by watermelon under salt stress, Journal of plant nutrition, 32:629-643.
28- Yang Y., Wang L., Tian J., Li J., Sun J., He L., Guo S., and Tezuka T. 2012. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.Plant Physiology and Biochemistry, 58:54-65.
CAPTCHA Image