اثر کاربرد سالیسیلیک اسید بر صفات مورفوفیزیولوژیکی عروسک پشت پرده (Physalis peruviana L.) تحت تنش کم آبی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه باغبانی، دانشکده کشاورزی، دانشگاه لرستان

2 فیزیولوژی و اصلاح میوه، علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

3 فیزیولوژی گیاهان زینتی، علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان

چکیده

امروزه به دلیل تغییرات آب و هوا و کاهش بارندگی، تولید محصولات کشاورزی در بسیاری از مناطق، بخصوص مناطق خشک و نیمه خشک با مشکل مواجه شده است. از طرفی، استفاده از مواد تعدیل کننده تنش، یک راهکار بهینه و کم هزینه بوده و شناخت ویژگی‌های گیاه در این شرایط، منجر به اتخاذ شیوه‌های مدیریت تولید مناسب خواهد شد. به همین منظور، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور تنش کم آبی (سه سطح 95، 85 و 75 درصد ظرفیت زراعی) و محلول‌پاشی سالیسیلیک اسید ( چهار سطح صفر، 5/0، 1 و 2 میلی‌مولار) در سال 1397 درگلخانه تحقیقاتی دانشگاه لرستان انجام شد. نتایج نشان داد که اثر تنش کم آبی و تیمار سالیسیلیک اسید بر صفات اندازه‌گیری شده شامل رنگیزه‌های فتوسنتزی، کلروفیل فلورسانس، وزن تر و خشک میوه، تعداد میوه، میزان ویتامین ث، پرولین، قند محلول، وزن تر و خشک برگ، سطح برگ، ارتفاع بوته و حجم ریشه معنی‌دار شد. محلول‌پاشی سالیسیلیک اسید با غلظت‌ 2 میلی‌مولار در تنش کم آبی 75 درصد ظرفیت زراعی، موجب افزایش غلظت رنگدانه‌های فتوسنتزی شامل کلروفیل a (69/25 درصد)، کلروفیل b (08/14 درصد)، کلروفیل کل (70/6 درصد) و کارتنوئید (26/7 درصد) و افزایش میزان پارامترهای کلروفیل فلورسانس از جمله Fm (2/5 درصد) و Fv (92/1 درصد) نسبت به شاهد شد و در غلظت 1 میلی‌مولار بر صفات کمی و کیفی میوه از جمله تعداد میوه (67/2 درصد)، وزن تر میوه (61/10 درصد) و وزن خشک میوه (6/0 درصد)، نتایج مطلوب‌تری را نسبت به شاهد داشت. همچنین، در شرایط تنش 75 درصد ظرفیت زراعی، کاربرد سالیسیلیک اسید 2 میلی‌مولار موجب کاهش غلظت پرولین (2/31 درصد)، قند محلول (69/11درصد) و آنتوسیانین برگ (93/4 درصد) نسبت به شاهد شد. بنابراین طبق نتایج به دست آمده، می‌توان از سطوح آبیاری 85 و 95 درصد ظرفیت زراعی، جهت پرورش گیاه عروسک پشت پرده و غلظت 2 میلی‌مولار سالیسیلیک اسید به عنوان یک تعدیل کننده طبیعی برای کاهش اثرات تنش کم آبی استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Salicylic acid Application on Morphophysiological Traits of Physalis peruviana L. under Deficit Water Stress

نویسندگان [English]

  • S. Siahmansour 1
  • A. Ehtesham Nia 2
  • A.H. Rezaei Nejad 3
1 Engineering of Greenhouse Products, Horticultural Sciences, Faculty of Agriculture, Lorestan University, Iran
2 Physiology and Breeding of Fruit, Horticultural Sciences, Faculty of Agriculture, Lorestan University, Iran
3 Ornamental Plants Physiology, Horticultural Sciences, Faculty of Agriculture, Lorestan University, Iran
چکیده [English]

Introduction
 Reduction of water available to the plant leads to many morphological, physiological and biochemical changes in plant cell and plant organs activity will be directly disrupted. In addition to the defense systems in the plant itself, there are other ways to increase plant resistance, including the use of plant growth regulators. Salicylic acid is known as one of the common compounds used for environmental stresses and an essential molecular signal in plant fluctuations in response to environmental stresses. This substance has a protective effect and improves the growth process of the plant. This combination stimulates the plant immune system by inducing transcription of a specific group of genes involved in the defense and development of systemic resistance. Physalis is a small fruit of the Solanaceae family that originates in tropical and subtropical regions of South America. This genus has 80 species in the world, of which the famous species Ph. minima L., Ph. angulate L., Ph. philadelphia L., Ph. alkekengi L., Ph. peruviana L., Ph. pubscens L., Ph. ixocarpa L., among these species, Peruviana species is considered due to its unique taste and high yield.
Material and Methods
 An experiment was conducted at the Faculty of Agriculture research greenhouse of Lorestan University Khorramabad, Iran. (latitude 33◦ 29` N, longitude 48◦ 22` E, altitude 1125 m) in May 2018. The experimental design was factorial based on completely randomized design with three replications. The treatments consisted of 3 levels of deficit water stress (95, 85, and 75% field capacity) and four salicylic acid concentrations (0, 0.5, 1, and 2 mM). Physalis seedlings were grown into pots containing soil, sand, and manure. In this research, chlorophyll (Chl a, Chl b, total Chl) and carotenoid content, chlorophyll fluorescent parameters (F0, Fm, Fv, and Fv/Fm), fresh and dry weight of fruit, fruit diameter, fruit number, TSS and vitamin C, proline, leaf anthocyanin and shoot soluble sugar, fresh and dry weight of leaf, leaf area, root volume and plant height, were measured.
Results and Discussion
The results showed that the effect of deficit water stress and salicylic acid treatment on the measured traits including photosynthetic pigments, chlorophyll fluorescence, fresh, and dry weight of fruit, number of fruits, amount of vitamin C, proline, soluble sugar, fresh and dry weight of leaves, leaf area, plant height and root volume were significant. Foliar application of salicylic acid at a concentration of 2 mM under water stress under 75% of field capacity increases the concentration of photosynthetic pigments including chlorophyll a (25.69%), chlorophyll b (14.08%), total chlorophyll (6.70%), and carotenoid (7.26%) and increased chlorophyll fluorescence parameters including Fm (5.2%) and Fv (1.92%). Salicylic acid at a concentration of 1 mM had better results on quantitative and qualitative traits of fruit including a number of fruits (2.67%), fresh weight of fruit (10.61%), and dry weight of fruit (0.6%). Under stress conditions of 75% of field capacity, application of 2 mM salicylic acid reduced the concentration of proline (31.2%), soluble sugar (11.69%) and leaf anthocyanin (4.93%). Therefore, according to the results, the best levels of irrigation for breeding Physalis (Physalis pruviana L.) are 85 and 95% of field capacity, and the concentration of 2 mM salicylic acid as a natural modulator has an effective role in reducing the effects of dehydration stress. Stress significantly reduces the maximum efficiency of photosystem II (Fv/Fm). This adverse effect on Fv/Fm may be due to its role in inhibiting electron transfer, as well as destroying the reaction centers in PSII. Accumulation of proline under stress is because proline, as a compatible osmolyte, removes all types of active oxygen and protects the cell, and provides the necessary conditions for the plant to absorb water. Salicylic acid increases the chlorophyll synthesis and protects the chloroplast membrane from stress by removing destructive free radicals by stimulating the biosynthetic of the photosynthetic pigment pathway and reducing the chlorophyllas enzyme. It also prevents the ethylene formation by inhibiting of ACC- synthetase enzyme, which in turn prevents the degradation of chlorophyll. Salicylic acid regulates the various physiological processes such as plant growth and development.  
Conclusion
 According to the results, the application of salicylic acid under low irrigation stress, as a growth enhancer and stress modulator, showed good results and improved physiological traits such as increasing photosynthetic pigments (chlorophyll and carotenoids), Fm, Fv and maximum efficiency of photosystem II and improvement of biochemical traits (proline, soluble sugar and leaf anthocyanin) at a concentration of 2 mM and increase in fruit traits (fresh and dry weight, number of fruits, vitamin C and fruit diameter) at a concentration of 1 mM. Growth and morphological traits also showed an increase in fresh and dry leaf weight, leaf area, plant height at a concentration of 2 mM salicylic acid at low irrigation stress levels. Therefore, salicylic acid can be used to reduce the destructive effects of deficit water stress and increase the quantity and quality of fruit if the Physalis plant is grown in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • Fv/Fm
  • Leaf anthocyanin
  • Plant growth regulator
  • Vitamin C
  • Abdi, S. (2020). Effect of salicylic acid on Yield and essential oil of Fenugreek in deficit irrigation conditions. Science and Technology of Greenhouse Cultivation 10(4): 37-51. (In Persian). https://doi.org/10.47176/jspi.10.4.18481.
  • Afsharmohamadian, M., Omidipour, M., & Jamalomidi, F. (2018). Effect of different levels of drought stress on florescent parameter in two cultivars of phseolus (Phaseolus vulgaris), Iran Biology Journal (Plant Reaserch Journal) 31(3). https://doi.org/20.1001.1.23832592.1397.31.3.3.3.
  • Alvarez, S., Navarro, A., Nicola, S.E., & Sanchez-Blanco, M.J. (2011). Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Science Horticulture Journal 129: 306–312. https://doi.org/10.1016/j.scienta.2011.03.031.
  • Amini, S., Ghobadi, C., & Yamchi, A. (2015). Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Journal Plant Molecular Breeding 3: 44–55. https://doi.org/22058/JPMB.2015.17022.
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Journal of Plant and Soil 39: 205–207. https://doi.org/10.1007/bf00018060
  • Daneshpajouh, P., Ghasemi, A., Nouree, M., & Barzegar, R. (2018). Effect of Partial irrigation of root zoon and zeolite on water use efficiency and physiological of Sweet peper. Journal of Water and Soil (Agricultural Science and Industry) 32(4): 675-690. (In Persian). https://doi.org/22067/jsw.v32i4.69640.
  • Demirsoy, H., Demirsoy, L., Uzun, S., & Ersoy, B. (2004). Non-destructive leaf area estimation in Peach. European Journal of Horticulture Sciences 69(4):144-146. https://doi.org/10.2307/24126190.
  • Deveci, M., & Celik, A. (2016). The effects of different water deficiency on physiological and chemical changes in Cape gooseberry (Physalis peruviana) which were grown in greenhouse conditions. Science Agriculture Journal 14(2): 260-265. https://doi.org/10.15192/PSCP.SA.2016.14.2.260265.
  • Garcia-Garizabal, I., Causape, J., & Abrahao, R. (2011). Application of the irrigation land environmental evaluation tool for flood irrigation management and evaluation of water use. Catena Journal 87(2): 260–267. https://doi.org/10.1016/j.catena.2011.06.010.
  • Gine-Bordonaba, J., & Terry, L.A. (2016). Effect of deficit irrigation and methyl jasmonate application on the composition of strawberry (Fragaria×ananassa) fruit and leaves. Science of Horticulture 199: 63-70. https://doi.org/10.1016/j.scienta.2015.12.026.
  • Hafeez, B., Khanif, Y.M., & Saleem, M. (2013). Role of zinc in plant nutrition - a review. American Journal of Experimental Agriculture 3: 374-391. https://doi.org/1007/s11104-016-3166-9.
  • Hafeznia, M., Mashayekhi, K., & Ghaderifar, F. (2014). Investigashion the effect of time of salicylic acid spray on some pigments and morphological traits of fruit in Tomato. Journal of Plant Production 22(2). (In Persian). https://doi.org/10.12692/ijb/5.9.237-243.
  • He, F., Mu, L., Yan, G.L., Liang, N., Pan, Q., Wang, J., Reeves, M., & Duan, C. (2010). Biosynthesis of anthocyanin's and their regulation in colored grapes. Molecules Journal 15: 9057-9091. https://doi.org/10.3390/molecules15129057.
  • Hernandez, E.A., & Uddameri, V. (2010). Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets. Water Research Management 24: 4589–4612. https://doi.org/10.1007/s11269-010-9681-1.
  • Javaheri, M., Mashayekhi, K., Dadkhah, A., & Zaker Tavallaee, F. (2012). Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum). International Journal of Agriculture and Crop Science. 4-16/1184-1187. https://doi.org/ijagcs.com/21.2015/2012.1184-1187.
  • Kalaji, H., Rastogi, A., Zivcgk, M., & Brestic, M. (2018). Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica Journal [CrossRef]. https://doi.org/10.1007/s11099-018-0766-z.
  • Kammouna, M., Bouallousa, O., Fakhri Ksourib, M., Gargouri-Bouzida, R., & Nouri-Ellouz, O. (2018). Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum) cultivated under greenhouse conditions. Agriculture Water Management 203: 9–19. https://doi.org/10.1016/j.agwat.2018.02.032.
  • Keshavarsnia, R., Payghambary, A., & Bihamta, M.R. (2016). Effect of drought stress in beginning of season and reirrigation on chlorophyll florescent and some physiological traits of Wheat. Journal of Iranian Crop Science 48(1): 39-45. (In Persian). https://doi.org/22059/IJFCS.2017.202541.654065.
  • Khademian, R., & Sedaghati, B. (2019). Evaluation the effect of modifiering in drought stress by using of salicylic acid in Marytighal. P. 212-215. In The first national conference on new idease of agriculture and natural resources. November 2019. Mohaghegh Ardabili University, Iran.
  • Khosrowshahi, Z.H., Ghassemi‑Golezani, K., Salehi‑Lisar, S.V., &·Motafakkerazad, R. (2020). Changes in antioxidants and leaf pigments of safower (Carthamus tinctorius) afected by exogenous spermine under water defcit. Biologia Futura Journal 2(12): 66-82. https://doi.org/10.1007/s42977-020-00039-z.
  • Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of Physiological Methods 2: 95-97. 197. https://cir.nii.ac.jp/crid/1570572700792185472.
  • Krall, J.P., & Edwards, G.E. (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Physiology Plant Journal 86: 180-187. https://doi.org/10.1111/j.1399-3054.1992.tb01328.x.
  • Leng, P., Itamura, H., Yamamura, H., & Deng, M.X. (2000). Anthocyanin accumulation in apple and peach shoots during cold acclimation. Science of Horticulture Journal 83: 4350. https://doi.org/10.1016/S0304-4238(99)00065-5.
  • Lichtenthaler, H.K. (1987). Chlorophylls and cartenoides pigments of hotosynthetice biomembranes. Method in Enzymology 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1.
  • Mozafari, A., Dedejani, S., & Ghaderi, N. (2018). Positive responses of strawberry (Fragaria × ananassa) explants to salicylic and iron nanoparticle application under salinity conditions. Plant Cell Tissue and Organ Cultivation Journal 134: 267–275. https://doi.org/10.1007/s11240-018-1420-y.
  • Nematollahi, E., Jafari, A., & Bagheri, A. (2012). Effect of drought stress and salicylic acid on photosynthesis pigments and macronutrients absorption in two sunflower (Helianthus annuus) cultivars. Journal of Plant Ecophysiology 5: 37-51. (In Persian). https://doi.org/10.22122/jrrs. v10i3.1376.
  • Nooraee, Z., & Ghaderi, N. (2013). Interaction of manure and nitroxin on some physiological traits of strawberries under drought stress. P. 267-27. In Conference on Agricultural research finding. Aguste 2013. Kurdistan University, Sanandej, Iran.
  • Nouri, A., Nezami, A., Kafi, M., & Hassanpanah, D. (2017). Evaluation of water deficit tolerance of 10 potatoes (Solanum tuberosum) cultivars based on some physiological traits and tuber yield in Ardabil region. Journal of Crop Ecophysiology 10(1): 234-268. https://doi.org/10.55006/biolsciences.2022.2305.
  • Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.S.P. (2014). Response of plants to water stress. in Plant Science 5: 86. https://doi.org/10.3389/fpls.2014.00086.
  • Padilla-Rivera, A., Morgan-Sagastume, J.M., Noyola, A., & Guereca, L.P. (2016). Addressing social aspects associated with wastewater treatment facilities. Environmental Impact Assessment Review 57: 101–113. https://doi.org/10.1016/j.eiar.2015.11.007.
  • Plazek, A., Rapacz, M., & Hura, K. (2004). Relationship between quantum efficiency of PSII and cold-induced plant resistance to fungal pathogens. Acta Physiology Plantrum Journal 26: 141–148. https://doi.org/org/10.1007/s11738-004-0003-1.
  • Raeini-Sarjaz, M., & Chalavi, V. (2011). Effects of water stress and constitutive expression of a drought induced chitinase gene on water use efficiency and carbon isotope composition of strawberry. Applied of Botany and Food Quality Journal 84: 90-94. https://doi.org/10.4328/2011.July.27.3.
  • Rafieepour, M., Gholami, M., & Sarikhani, H. (2019). Effect of deficit irrigation on some morphological and physiological trats of Strawberry. Journal of plant production (Iranian Biology Journal) 31(4): 822-837. (In Persian). https://doi.org/20.1001.1.23832592.1397.31.4.6.8.
  • Rahdari, P., Tavakoli, S., & Hosseini, S.M. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea) leaves. Journal of Stress Physiology and Biochemistry 8(1): 182-193. https://doi.org/10.5897/JMPR11.698.
  • Rezaei Nejad, A., & Ismaili, A. (2013). Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens) as affected by growing media. Journal of Science Food Agriculture 94: 905–910. https://doi.org/10.1002/jsfa.6334.
  • Roghami, M., Estaji, A., Bagheri, V., & Ariakia, E. (2016). Effect of salinity stress and salicylic acid on some morphological traits of eggplant (Solanum melongena Taki) in soiless culture system. Journal of Science and Technology of Greenhous Cultures 7(27): 77-87. https://doi.org/10.18869/acadpub.ejgcst.7.27.77.
  • Sajjadinia, A., Ershadi, A., Hokmabadi, H., Khayyat, M., & Gholami, M. (2010). Gas exchange activities and relative water content at different fruit growth and developmental stages of on and off cultivated pistachio trees. Australian Journal of Agriculture Engineering 178(1): 1-6. https://doi.org/1560–8530/2007/09–2–352–354.
  • Samani, R., Javid, A., & Shabani, M. (2020). Effect of different concentration of salicylic acid on increasing drought tolerance in fig. Plant Ecophysiology Journal 40: 28-39. (In Persain). https://doi.org/1001.1.23832592.1398.32.4.17.6.
  • Segura-Monroy, S., Uribe-Vallejo, A., Ramirez-Godoy, A., & Restrepo-Diaz, H. (2011). Effect of Kaolin application on growth, water Use efficiency, and leaf epidermis characteristics of (Physalis peruviana) seedlings under two Irrigation regimes. Journal of Agriculture Science Technology 17: 1585-1596. https://doi.org/20.1001.1.16807073.2015.17.6.7.8.
  • Shao, G.C., Deng, S., Liu, N., Wang, M.H., & She, D.L. (2015). Fruit Quality and Yield of Tomato as Influenced by Rain Shelters and Deficit Irrigation. Journal of Agriculture Science Technology 17: 691-704. https://doi.org/4236/ajps.2011.23040.
  • Ting, S.U., & Russeff, L. (1981). Citrus Fruit and Their Products Analysis Technology. Food and Science Technology 124-142. https://doi.org/10.1080/10408398309527366.
  • Wagner, G.J. (1979). Content and vacuole/extra vacuoles distribution of neutral sugars, free amino acid, and anthocyanins in protoplast. Plant Physiology Journal 64: 88-93. https://doi.org/10.1104/pp.64.1.88.
  • Zhang, L., Zhang, Z., & Gao, H. (2011). Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiologiae Plantarum Journal 143: 396-407. https://doi.org/1111/j.1399-3054.2011.01514.x.

 

 

 

CAPTCHA Image