تهیه و تولید نانو کپسول ژل آلوئه ورا حاوی اسانس کاکوتیL. Ziziphora tenuior

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم باغبانی دانشکده کشاورزی دانشگاه فردوسی مشهد

2 گروه علوم باغبانی و فضای سبز دانشکده کشاورزی دانشگاه فردوسی مشهد

3 گروه تولیدات گیاهی، دانشگاه تربت حیدریه

4 گروه گیاهپزشکی دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

میوه­ها و سبزی­ها به دلیل داشتن رطوبت بالا و فعالیت بیولوژیکی بعد از برداشت (تنفس، تعرق و فعالیت­های بیوشیمی) فسادپذیرند. پوشش­دهی میوه­ها با ترکیبات ضدمیکروبی و در عین حال خوراکی و ایمن برای مصرف­کنندگان راهکار موثری برای جلوگیری از فساد میوه­ها و افزایش ماندگاری آن است. تولید این قبیل پوشش­های خوراکی با بهره­گیری از فناوری نانو سـبب افزایش کارایی مواد تشکیل دهنده پوشش می­شود. در همین راستا این پژوهش با هدف تهیه و تولید پوشش خوراکی نانوکپسول حاوی اسانس کاکوتی انجام شد. اجزای سازنده فرمولاسیون نانوکپسول، ژل آلوئه ورا، آب، توئین و اسانس کاکوتی بود. جهت شناسایی ترکیبات اسانس از دستگاه گازی کروماتوگرافی GC و گاز کروماتوگرافی متصل به طیف سنج جرمیGC-MS استفاده شد. میانگین اندازه ذره­ای و پتانسیل زتا، تصویر میکروسکوپ الکترونی نانوکپسول و میزان پایداری ذرات و درصد کارایی نانوکپسول محاسبه شد. در اسانس گیاه کاکوتی (Ziziphra tenuiorL.) 21 ترکیب شناسایی شد. ترکیبات اصلی و مهم اسانس کاکوتی شامل پولگون (23/65 درصد)، منتوفوران (72/12 درصد) و 1و8- سینئول (01/6 درصد) بودند. اندازه نانوکپسول حاوی اسانس، 46/84 نانومتر و پتانسیل زتا 02/16- میلی­ولت بود. براساس نتایج حاصل از میکروسکوپ الکترونی، اندازه ذرات کمتر از 200 نانومتر بود. سطح خارجی نانوکپسول­ها کاملاً صاف و یکنواخت بود. درصد انکپسولاسیون اسانس 25/83 درصد محاسبه شد. مطالعات پایداری اندازه ذرات و پتانسیل زتا در مدت 3 ماه نشان داد که نانوکپسول حاوی اسانس از پایداری خوبی برخوردار بوده است. به طور کلی نتیجه تحقیق حاضر نشان داد نانوکپسول ژل آلوئه ورا حامل مناسبی برای اسانس کاکوتی است و می‌توان به عنوان پوشش خوراکی برای ماندگاری میوه­ها از آن استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation and Production of Nano Capsules of Aloe vera Gel Containing Ziziphora tenuior L. Essential Oil

نویسندگان [English]

  • T. Baeradeh 1
  • H. Arouiee 2
  • M. Naseri 3
  • M. Mamarabadi 4
1 Department of Horticulture Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Horticulture Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Plant Production, Faculty of Agriculture, University of Torbat Heydarieh, Torbat Heydarieh, Iran
4 Department of Plant protection, Ferdowsi University of Mashhad
چکیده [English]

Introduction
Fruits and vegetables are perishable due to high humidity and biological activity after harvesting (breathing, transpiration and biochemical activities). Covering fruits with antimicrobial compounds, while being edible and safe for consumers, is an effective solution to prevent the spoilage of fruits and increase their shelf life. In developing countries, packaging, storage and transportation technologies for these products have not been developed yet. One of the cheap and high-performance methods to increase the shelf life of fruit and maintain its quality during the storage period is to use a coating on the fruit. The purpose of coating application is to reduce water loss, slow aging, polish and better marketing. In addition to improving quality, coating can protect the fruit from pathogens and contamination. Edible coatings create a thin layer on the surface of the food that are effective and eco-friendly alternatives and maintain the firmness of fresh fruits and vegetables. The main components of edible coatings are natural polysaccharides, including starch, cellulose, pectin, alginates and chitosan. These coatings apply by spraying, immersion or rubbing. The use of essential oils and other extracts of medicinal plants has been evaluated in the development of edible coatings.
Adding Ziziphora tenuior L. essential oil to food has been considered as an antioxidant and antimicrobial compound. Directly use of essential oils for fruits and vegetable shelf life has some limitations due to low solubility in water, high vapor pressure and physical and chemical instability. One of the ways to reduce these limitations is the nanoencapsulation of essential oil as. Applications of nano technology to the development of edible coatings (included various nanosystems, including polymeric nanoparticles, nanoemulsions), efforts to control the release of essential oils. Aloe vera gel, which is extracted from the inner parts of the leaves, is clear, odorless, completely healthy and environmentally friendly and can replace the coverings used after harvesting fruits. This is a polysaccharide gel, it dissolves easily in water and has advantages such as preserving the aromatic substances inside the fruit, covering the wound and cuts and it is possible to add substances such as vitamins and essential oils to this gel. Due to the antibacterial properties of aloe vera, adding aloe vera gel to edible coatings can increase the antibacterial properties of this biodegradable coating. On the other hand, using nano technology can increase the efficiency, consistency and better quality of food coatings.
Materials and Methods
The aim of the present study was to prepare and produce an oral coating of nanoecapsule containing Ziziphora tenuior L. essential oil. The components of the nanocapsule of Aloe vera gel was water, toewin and Ziziphora tenuior L. essential oil. Fresh Aloe vera leaves were used to prepare gel. Zeta-average diameter, particle size distribution, scattering index (PDI) and zeta potential (particle surface charge) were measured. Transmission electron microscopy (TEM) imaging was used to evaluate the morphology of the nanocapsule. The stability of produced nanocapsule was evaluated by measuring the particle size changes for 3 months.
Results and Discussion
21 compounds were identified in the essential oil of Ziziphora tenuior. The main and important constituents of Ziziphora tenuior L. essential oil were Pulegone, Menthofuran and 1,8-Cineole. The results showed that the particle size of nanocapsule containing essential oil was 84.46 nm and zeta potential was -16.02 mV. The results of transmission electron microscope (TEM) photos showed that the size of the particles is less than 200 nanometers and the shape of the particles is almost spherical. The outer surface of the capsules is completely smooth and uniform. Stability studies of particle size and zeta potential for 3 months showed that nanocapsule containing essential oils had good stability. In this formulation, the zeta potential was about -16 mV, which is due to the non-ionic parts of the surfactant on the surface of the nanocapsule, which contributes to the repulsion force and caused the stability of the size of the nanocapsules. In order to determine the amount of essential oil in the nanocapsule, spectrophotometric method was used. The percentage of essential oil in nanocapsule was 83.25%.
Conclusion
Nanoencapsulation of essential is one of the ways to reduce the limitations of essential oil aplication. In the present study, a nancapsule with natural and biodegradable materials (Aloe vera gel) containing Ziziphora tenuior L. essential oil was prepared and the results showed that Ziziphora tenuior L. essential oil was successfully encapsulated in Aloe vera gel. In general, the results of the present study showed that the nanocapsule of Aloe vera gel is a suitable carrier for Ziziphora tenuior L. essential oil and can be used as an oral coating to preserve fruits and vegetables.

کلیدواژه‌ها [English]

  • Edible coating
  • Electron microscope
  • Essential oil
  • Nano particle
  • Particle size
  1.  

    1- Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456, pp. 544-545). Carol Stream: Allured publishing corporation.

    2- Aswathanarayan J.B., & Vittal R.R. (2019). Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems 3: 95. https://doi.org/10.3389/fsufs.2019.00095.

    3- Choi, S., & Chung, M.H. (2003, March). A review on the relationship between Aloe vera components and their biologic effects. In Seminars in integrative medicine (Vol. 1, No. 1, pp. 53-62). WB Saunders.

    4- Davidson, P.M., & Zivanovic, S. (2003). The use of natural antimicrobials. In: Foodpreservation techniques. Woodhead Publishing(pp. 5-30). Woodhead Publishing.

    5- Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M.J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry 91(4): 751-756. https://doi.org/10.1016/j.foodchem.2004.07.002

    7- Jafari, S.M., Beheshti, P., & Assadpour, E. (2013). Emulsification properties of a novel hydrocolloid (Angum gum) for d-limonene droplets compared with Arabic gum. International Journal of Biological Macromolecules 61: 182-188. https://doi.org/10.1016/j.ijbiomac.2013.06.028.

    7- Karimi Sani, I., Alizadeh, M., Pirsa, S., & Moghaddas Kia, E. (2019). Impact of operating parameters and wall material components on the characteristics of microencapsulated Melissa officinalis essential oil. Flavour and Fragrance Journal 34(2): 104-112. https://doi.org/10.1002/ffj.3482.

    8- Martínez-Romero, D., Alburquerque, N., Valverde, J. M., Guillén, F., Castillo, S., Valero, D., & Serrano, M. (2006). Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: a new edible coating. Postharvest Biology and Technology 39(1): 93-100. https://doi.org/10.1016/j.postharvbio.2005.09.006.

    9- Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., & McClements, D.J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry 194: 410-415. https://doi.org/10.1016/j.foodchem.2015.07.139.

    10- Nasseri, M., Golmohammadzadeh, S., Arouiee, H., Jaafari, M. R., & Neamati, H. (2016). Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iranian Journal of Basic Medical Sciences 19(11): 1231-1237. https://doi.org/10.22038/ijbms.2016.7824.

    11- Ozturk, B., Argin, S., Ozilgen, M., & McClements, D.J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry 188: 256-263.

    12- Pirhayati, A., Gholami, M., Mirzakhani, A., & Khalilzadeh Ranjbar, G. (2019). Application of Aloe vera gel coating enriched with golpar essential oil on the shelf life of peach fruit) Prunus persica var, Zafarani. Iranian Journal of Nutrition Sciences & Food Technology 13(4): 75-88. http://nsft.sbmu.ac.ir/article-1-2490-en.html.

    1. Rastegae, M. (2019). Investigation of the Physical and Chemical Properties of Zataria multiflora Essential oil Nano Emulsions on the Preservation of Agaricus Bispporus Button Mushroom. Journal of Food Science and Technology (Iran) 16(87): 79-86.

    14- Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R. L., & Darzi, G.N. (2019). Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arabian Journal of Chemistry 12(8): 3225-3230. https://doi.org/10.1016/j.arabjc.2015.08.024.

    15- Tadros T., Izquierdo P., Esquena J., & Solans C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 108–109: 303–318. https://doi.org/10.1016/j.cis.2003.10.023.

    16- Thumula, P. (2006). Studies on storage behaviour of tomatoes coated with chitosan-lysozyme films.

    17- Wang, S. H., Smith, D., Cao, Z., Chen, J., Acosta, H., Chichester, J. A., & Baker Jr, J.R. (2019). Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 37(12): 1591-1600. https://doi.10.1016/j.vaccine.2019.02.002.

     

     

CAPTCHA Image