Pomology
Fatemeh Javan; Yahya Selahvarzi; Maryam Kamali
Abstract
Introduction
Today, in the commercial production of strawberries, short day cultivars are used due to having large fruits of desirable quality. Among the short day cultivars available in Iranare Camarosa, Atabaki, Gaviota, Queen Aliza, Paros and McDonance, which can be cultivated ...
Read More
Introduction
Today, in the commercial production of strawberries, short day cultivars are used due to having large fruits of desirable quality. Among the short day cultivars available in Iranare Camarosa, Atabaki, Gaviota, Queen Aliza, Paros and McDonance, which can be cultivated at greenhouse. Titanium dioxide (TiO2) nanoparticles are one of the metal oxides that exist in three forms of rutile, brookite and anatase, which affect growth, enzymatic activity and photosynthesis. Reported titanium nano dioxide in the highest concentration used (11.5 mg/l) increases fruit formation percentage, leaf chlorophyll content, vitamin C content, fruit ripening index, fresh and dry weight of roots and shoots and yield of strawberries. In another study, it was shown that titanium dioxide treatment under drought stress can increase photosynthetic pigments, total soluble solids, vitamin C, phenol, flavonoid, anthocyanin, and antioxidant activity, and it also improved plant performance. increase the strawberry cultivar Ventana compared to the control treatment. In a research found that spraying titanium increases the biomass, fertility and quality of peach fruit. It has alsow been showed that the pomegranate size of flowers and fruits increased with using titanium nano dioxide, and this can increase the quantity and quality of Alberta peach cultivar. Foliar application of titanium nano dioxide in cucumber has been reported to increase photosynthesis and phenolic content and reduce lipid peroxidation. In a research, it was shown that titanium dioxide nanoparticles increased photosynthesis rate, water conductivity and transpiration rate in tomato leaves. Despite the effect of titanium dioxide nanoparticles on the quantitative and qualitative improvement of some agricultural products, the researches conducted on strawberry plants were not complete or were only conducted on a specific variety. Therefore, with the aim of investigating and comparing the morphological and biochemical traits of some commercial strawberry cultivars under the effect of foliar spraying with titaniumdioxide, the above research was conducted.
Materials and Methods
This research was conducted to investigate the effect of nano titanium dioxide foliar spraying on four strawberry cultivars in the hydroponic greenhouse of the Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad in 2020-2021. Experimental treatments included 4 levels of titanium nano dioxide (0, 5, 10 and 20 mg/l) and 4 strawberry cultivars (Sabrina, Paros, Gaviota and Camarosa) with 4 replications. The research was done in a factorial manner based on a completely random design. JMP 8 software was used to perform variance analysis and compare the averages of the measured traits. Means were compared using Tukey test at 5% probability level and graphs were drawn using Excel 2010 software.
Results and Discussion
According to the tables of mutual effects of titanium dioxide nano treatments and varieties, it can be found that the application of titanium dioxide nanoparticles had a positive effect on the desired characteristics in all four studied strawberry varieties. So that the application of different levels of titanium dioxide nano particles causes a significant increase in quantitative traits (number of leaves, leaf area, root length, fresh and dry weight of aerial and root parts, photosynthetic pigments) The yield-dependent traits compared to the control plants were found in strawberry-strawberry cultivars. Nano titanium dioxide had an effect in increasing the number of fruits and vegetative traits of all investigated cultivars, in such a way that, on the one hand, with a balanced increase in vegetative growth, and on the other hand, improving the efficiency of photosynthesis and absorption through the roots and increasing the percentage of fruit formation. , increased the yield per plant. Also, sprinkling of titanium nanoparticles on all levels caused a significant increase in juice pH, TSS, TA, vitamin C, anthocyanin, total phenol, flavonoid and in general qualitative traits compared to the control. In the treatment of nano titanium dioxide, especially at the level of 10 mg/liter, better results were observed.
Conclusion
According to the results, the use of Paros and Gaviota cultivars is recommended to farmers and agricultural researchers due to its high yield and good quality.
Postharvest physiology
Vahid Anisi; Yahya Selahvarzi; Maryam Kamali; Bahram Abedi
Abstract
Introduction
Cucumber is a vegetable with a low capacity for storage; it usually loses quality 14 days from the beginning of storage. The benefits of cold storage are not the same for all the fruit or vegetables, some given vegetables are more suitable for cold storage than others. However, pre-cooling ...
Read More
Introduction
Cucumber is a vegetable with a low capacity for storage; it usually loses quality 14 days from the beginning of storage. The benefits of cold storage are not the same for all the fruit or vegetables, some given vegetables are more suitable for cold storage than others. However, pre-cooling is always advisable, because the products takes profit from the benefits of low temperatures in cold storage rooms. Due to the short shelf life of cucumber and the high speed of reducing its quality, various methods are used to maintain the quality of cucumber, such as edible coatings. Propolis, also called “bee-glue,” is a natural resinous substance produced by honeybees from plant exudates, beeswax, and bee secretions in order to defend the hives. Propolis has an important role in prevention of food loss weight and waste, thus helping to ensure food safety and security. The concoction of aqueous propolis extracts has a lower cost as compared to hydroalcoholic extracts and it is believable that both, aqueous and hydro alcoholic extracts, present similar concentrations of phenolic compounds resulting in a product of appropriate functional characteristics. Herein, the biochemical composition and efficacy of propolis in maintaining the postharvest storability of food products were discussed to provide a comprehensive guide to farmers and food processing and storage sectors and to scientists.
Materials and Methods
In order to investigate the effect of two factors of hydro cooling and propolis as an edible coating on cucumber shelf life, this study was conducted in the spring and summer of 2019 in the laboratories of horticultural sciences, Faculty of Agriculture, Ferdowsi University of Mashhad. The factorial experiment was based on a completely randomized design. Experimental treatments included three levels of propolis alcoholic extract (0, 4 and 8%) and two temperature treatments (4 (hydro cooling temperature) and 25 ° C) in 4 replications.
Weight loss, tissue firmness, extract pH, total soluble solids, chlorophyll a, chlorophyll b, total chlorophyll, total phenol and antioxidant activity were measured. The experimental data were analyzed using Jump-8 statistical software and the means of treatments were compared by LSD test at 5% probability level.
Results and Discussion
Results showed that the interaction of treatments had an effect on fruit weight loss percentage, firmness, and antioxidant activity, chlorophyll and total soluble solids. Thus, the highest percentage of fruit weight loss was observed in the control treatment (without propolis) in 4°C (5.02%). Foliar application of fruits led to an increase in firmness of fruit tissue with propolis in both concentrations of 4 and 8% compared to the control treatment (no foliar application with propolis) in both temperature treatments. The highest total chlorophyll content was in 8% propolis treatments + temperature of 24 °C (8.96 mg / gfw), treatment of 8% propolis + temperature of 4 °C (8.68 mg/gfw) and treatment of 4% propolis + temperature of 4 oC (7.93 mg/gfw) significantly. In addition, antioxidant activity increased in the treatments of 4 °C+ foliar application with propolis 4 and 8%. In general, although fruits treated with 24 ° C showed more weight loss than 4 °C, the use of both concentrations of propolis improved the above trait, reducing the amount of fruit phenol and tissue firmness and other biochemical traits. Studies have shown that the chemical composition of the propolis samples which a certain breed of bees (Apis mellifera intermissa) made have 17 different chemical compounds. They noted that the main phenolic compound was caffeic acid (0.85 mg·g−1 EAP) and the main flavonol compound was pinocembrin (0.82 mg·g−1 EAP). Significant (P ≤ 0.05) differences were observed in dragon fruit quality when treated with different concentrations of ethanolic extract of propolis (EEP) (0.25, 0.50, 0.75 and 1.0%) and stored at 20 ± 2 °C and 80 ± 5% relative humidity (RH) for 20 days, which matched our results. Passos et al. (2016) reported test panel did not detect significant differences amongst coated and not coated cv. Prata bananas up to six days of storage. Propolis extracts.
Conclusion
In addition to a broad spectrum of antimicrobial activity, contain hydrophobic composites that assist in ameliorating attributes as biodegradable films on fruits.
Yahya Selahvarzi; Someyeh Sarfaraz; Mohsen Zabihi; Maryam Kamali
Abstract
Introduction: Drought is known as one of the most important factors limiting the growth and production of plants in urban landscape. Drought has limited production of 25% of the world's agricultural lands. Water allocated to the landscape irrigation has high value and should be used optimally ...
Read More
Introduction: Drought is known as one of the most important factors limiting the growth and production of plants in urban landscape. Drought has limited production of 25% of the world's agricultural lands. Water allocated to the landscape irrigation has high value and should be used optimally with high efficiency. Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method. Soil texture has agricultural applications such as determining crop suitability and predicting the response of the soil to environmental and management conditions such as drought or calcium (lime) requirements. Soil texture focuses on the particles that are less than two millimeters in diameter which include sand, silt, and clay. Soil texture affects the water content and drainage ability of soils. This is because texture controls the nature of soil pores, i.e. the voids or spaces between the mineral particles in a clay soil. For example, there are many minute pores or micro pores between the tiny clay particles. Being small, they tend to retain water but to exclude air. As a result, clay soils are prone to drain poorly and to become waterlogged. By contrast, sandy soils are dry soils. On the other hand, application of new techniques to maintain soil moisture is essential. One of these techniques for increasing soil water retention is use of natural moisture absorbing materials such as zeolite. Zeolites are one of the new and effective substances to improve the soil water retention and preserve water and minerals in the soil. Zeolites contain elements such as potassium, calcium, sodium, silicon, aluminum, magnesium, iron and phosphorus that can be considered as the best dietary supplement and fertilizer and play an important role in the utilization and production of the most agricultural products. Ligustrum vulgar L., belongs to the Oleaceae family, is native to warm regions, European and Asian countries including Iran. This plant is one of the most widely used perennial plants in the landscape spaces. This study was designed to investigate the effects of drought stress and soil texture on growth and some qualitative and quantitative traits of the Ligustrum vulgare. Materials and Method: In order to investigate the effect of zeolite and soil texture on quantitative and qualitative traits of Ligustrum vulgare under drought stress, a factorial experiment was conducted based on completely randomized design with three replications, in the greenhouse of Agricultural Faculty, Ferdowsi University of Mashhad in 2019. The treatments consisted of four types of soil texture (100% soil, 100% sand, 80% soil + 20% zeolite, 80% sand + 20% zeolite) and three levels of irrigation (25, 50 and 100% field capacity). Plant height, number of leaves, number of lateral branches, maximum root length, root volume, shoot and root dry weight and length of lateral branches were measured in each pot. Physiochemical traits such as relative water content, electrolyte leakage and photosynthetic pigments were also measured. Statistical analysis of data was analyzed by JMP8 software. Graphs were plotted using excel and all mean comparisons were performed by LSD test at p < 0.05%. Results and Discussion: According to the results, decreasing irrigation levels reduced vegetative traits such as fresh weight and dry weight. Relative water content also decreased, but ion leakage increased by decreasing irrigation levels. The highest stem fresh weight (18 g), root fresh weight (29 g), total fresh weight (56 g) and total dry weight (20 g) were observed in soil + zeolite, and the highest leaves fresh weight, root volume and plant height were obtained in soil and soil + zeolite treatments. The lowest root volume was observed in sand and zeolite treatments which had no significant differences. In addition, ion leakage was lower in the treatments containing zeolite than the other treatments. The highest amount of SPAD (72) and chlorophyll b (31.5 mg / g fresh weight) were observed in sand + zeolite treatment and 25% field capacity. According to the results, it seems that soil and soil + zeolite in low irrigation conditions were more suitable environment for growth of Ligustrum vulgare and sandy bedding would reduce plant growth in normal conditions as well as under drought stress.
Yahya Selahvarzi; Maryam Kamali; Jafar Nabati; Hamid Ahmadpour Mir
Abstract
Introduction: Each year, with the onset of cold season and severe drop in temperature, the probability of frost bite and frost damage is a problem for landscaping plants. Many plant species, especially tropical and subtropical species, are damaged when exposed to frostbite, causing damage to ...
Read More
Introduction: Each year, with the onset of cold season and severe drop in temperature, the probability of frost bite and frost damage is a problem for landscaping plants. Many plant species, especially tropical and subtropical species, are damaged when exposed to frostbite, causing damage to their cells, tissues, and organs. Research has shown that by altering membrane properties during cold stress, metabolic balance is disturbed and with the increase in toxic metabolites, secondary damage to the plant can occur. At low temperature, decreases the efficiency of energy transfer to the center of the photosystem II. In addition, low temperatures are the main cause of the formation of reactive oxygen radicals. Also, lowering the temperature in the presence of light, due to the imbalance between light absorption and photosynthesis, increases the risk of light oxidation. Low temperature also reduces the activity of Rubisco. The amount of free proline in many plants increases significantly in response to environmental stresses such as frost stress, and stabilizes the membrane during cold stress.On the other hand, the use of some organic materials such as organic mulches increase temperature of the soil, and thus helps plant from frostbite. Use of organic mulch is widespread in agriculture due to the positive effect in soil temperature, weed control and moisture retention. Also, these mulches are effective in height, growth and flowering, early maturity and total yield of the products. Mulches in the warm seasons reduces soil temperature. Use of mulch can also help plants to withstand frostbite. Organic mulch decomposition in appropriate temperature and humidity conditions, liberates the nutrients gradually and provides for root plant and microorganisms of the soil. Organic mulches can reduce the effect of salt toxicity on plant growth and actively increase soil desalination. The most important benefit of mulch is the increase in soil temperature in the seed area, which accelerates the growth and yield of the product. Use of straw as mulch resulted in accelerated germination in cucumber. Use of straw mulch leads to an increase in temperature at night, thus protecting plants from temperature stress that has a positive effect on the growth and development of wheat.
Material and methods: In order to investigate the effect of freezing stress and using different types of organic mulch for Aquilegia plant, this experiment was conducted as a factorial experiment based on completely randomized design with four replications at Faculty of Agriculture, Ferdowsi University of Mashhad. The experimental treatments included four types of mulch (control (without mulch), 50% soil + 50% manure, 50% soil + 50% leaf needle + 50% soil + 50% rice bran) and five levels of freezing temperature (0, -5, -10, -15 and 20). Characteristics such as percentage of electrolyte leakage, relative water content, chlorophyll index and total chlorophyll, leaves number, leaf area, plant dry weight and proline leaf content were considered.
Results and Discussion: The results showed with decrease of temperature from 0 to -20 °C, stem diameter, leaf area and leaf number in bran mulch treatment decreased by 42.6%, 73.4%, 21.2% respectively, also stem diameter, leaf area and leaf number in mulch of leaf needle were 35.2%, 9/64%, 47.6%, in manure mulch were 20.20%, 46.4%, 7.8% and in the control of mulch decreased, 32.8%, 79.7%, 30.7%, respectively. At -5 °C, the amount of proline was 26% in the leaf and at -20°C, the amount of proline increased 50% compared to the control. Also, the lowest proline (0.73 μmol / g fresh weight) was obtained from the plants that treated with bran mulch. With application of, electrolyte leakage reached 63.6%, 68%, 61% and 57% in control conditions bran, needle and manure, respectively. In short, the least electrolyte leakage was observed in manure. On the other hand, when temperature dropped from 0 to -20 °C, the percentage of electrolyte leakage increased in Aquilegia. Relative water content of the leaf were 24% at 0°C, 38% at -15 °C and 23% at -20 °C. In terms of non-use of mulch, the relative water content was 36% and reached a 42% and 40% with application of manure and needle using mulch. By measuring the total carbohydrate found in Aquilegia leaf, it was observed that the amount of this trait was increased under frost stress. In general, although frost stress reduced the morphological traits of Aquilegia, use of organic mulch resulted in the improvement of these traits. The best results were observed in manure mulch.
Maryam Kamali; Mahmood Shoor; Seyyed Hossein Nemati; Amir Lakzian; Hamidreza Khazaie
Abstract
Introduction: Water deficiency is one of important abiotic stresses that severely effects on plant growth. The effects of drought range from morphological to molecular levels and are evident at all phenological stages of plant growth at whatever stage the water deficit takes place. Growth is accomplished ...
Read More
Introduction: Water deficiency is one of important abiotic stresses that severely effects on plant growth. The effects of drought range from morphological to molecular levels and are evident at all phenological stages of plant growth at whatever stage the water deficit takes place. Growth is accomplished through cell division, cell enlargement and differentiation, and involves genetic, physiological, ecological and morphological events and their complex interactions. The quality and quantity of plant growth depend on these events, which are affected by water deficit. Cell growth is one of the most drought-sensitive physiological processes due to the reduction in turgor pressure. Under severe water deficiency, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. Impaired mitosis, cell elongation and expansion result in reduced plant height, leaf area and crop growth under drought. Chlorophyll content is one of the major factors affecting photosynthetic capacity changing in chlorophyll content of plant under drought stress has been observed in different plant species and its intensity depends on stress rate and duration. Chlorophyll content of leaf is indicator of photosynthetic capability of plant tissues. In the mid-80s, RWC was introduced as a best criterion for plant water status which, afterwards was used instead of plant water potential as RWC referring to its relation with cell volume, accurately can indicate the balance between absorbed water by plant and consumed through transpiration.
Materials and Methods: To study the effects of drought stress on three varieties of petunia, a factorial experiment based on randomized complete block design with four replications was conducted. The treatments consisted of four irrigation levels ((100% control), 80%, 60% and 40% of field capacity) and three varieties of petunia (Supercascade, Tango blue and Tango white). After planting and transplanting and after full deployment in the pot, water stress treatments were applied on three varieties of petunias. At the end of each week fully blossomed flowers were counted, flower diameter, peduncle length and corolla length were measured. In order to determine the stability of the cell membrane electrolyte leakage index was measured. Specific leaf area (SLA) was determined. The amount of chlorophyll a, b, total and carotenoid and relative water content in the leaves were measured. Statistical analysis was performed using the software MSTAT-C. EXCEL was used for diagramming software. Means were compared using LSD test with a 0.05 significance level.
Results and Discussion: Results indicated that interaction impacts of variety and irrigation on dry weight, leaf area, flower number, flower diameter, length Corolla, chlorophyll content, electrolyte leakage, relative water content and proline content was significant. The most shoot dry weight (76/1 g) was in control stress (100% FC) and Tango White variety. Also the most leaf dry weight (07/2 g) and root dry weight (g 43/0) were in Tango Blue variety. With increasing drought stress from 100% FC to 40% FC, leaf area decreased in Supercascade from 314 to 49, in Tango Blue from 405 to 44 and in Tango White from 459 to 69 cm2. In 80% FC, electrolyte leakage increased in all varieties (Supercascade variety 2%, Tango Blue 10% and in Tango White 3%) compared to control. Also electrolyte leakage increased in Supercascade 17%, in Tango Blue 9% and in Tango White10% in 40% FC compared to control. Comparison of interaction effects of drought stress and variety also showed the most proline had accumulated in Tango White and drought 40% of field capacity and then in Tango Blue and stress 40% of field capacity. Generally two varieties of Tango Blue and Tango White in control irrigation had better growth and also in low irrigation were more resistant.
Maryam Kamali; Mahmood Shoor; Hassan Feizi
Abstract
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications ...
Read More
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications in agricultural research, such as in reproductive science and technology, the transfer of agricultural and food waste to energy and other helpful by-products through enzymatic nanobioprocessing.
An important effect of titanium compounds on plants used for improvement of yield (about 10–20%) in various crops. Other effects of titanium on plants are increasing contents of some essential elements in plant tissue; an increase in enzyme activity such as peroxidase, catalase, and nitrate reductase activities in plant tissue, and research has shown increased chlorophyll content in paprika (Capsicum anuum L.) and green alga (Chlorella pyrenoidosa). Nanotechnologyapplication is now widely distributed throughout life, and especially in agricultural systems. Nano particles, because of their physicochemical characteristics, have been considered the potential candidates for modulating the redox status and changing in seed germination, growth, performance, and quality of plants.nano-TiO2 has shown to be potential for agricultural application because of its photocatalytic disinfection and photobiological effects. Also,stalinizationof soils or waters is one of the world’s most serious environmental problemsin agriculture. During initial exposure to salinity, plants experience water stress, which in return reduces leaf expansion. during long-term exposure to salinity, plants experience to ionic stress, which can lead to premature senescence of adult leaves, which led to a reduction in the photosynthetic area available to support plants growth.However,a few studies have been done on the effects of nanoparticles on ornamental plants. Nanosized TiO2 is a frequently used nanoparticle, consequently there has been an exponential increase in data collection on the effects of TiO2 nanoparticles on different species. There is much less information on the effects of nanoparticles on plants compared to animals. Studies of the effects of TiO2 nanoparticles on plants provide information about the positive and stimulating effects as well as any negative impact. In this study, weaimedto findout the phytotoxicity or positive effects of different concentrations of Bulk TiO2 and nanosized TiO2 on plant growth of Petunia hybridain salinity stress.
Material and Method: experiments were done to assess the effect of different concentrationsof bulk and nanosized TiO2 on petunia growthin salinity stress in a factorial test based on completely randomized design with 3 replications in agriculture faculty of Ferdowsi University, Mashhad. There were 3 factors, including1- three concentrations (0, 75 and 150 mM) of NaCl, 2- bulk and Nanosized titanium dioxide and 3- six concentrations (0, 5, 10, 15, 20 and 40 ppm) of TiO2. Titanium dioxide treatments for foliar application was applied 5 times with intervals of seven days (three times before, and twice after starting salinity stress). The experiment was performed at the College of Agriculture, Ferdowsi University of Mashhad. during the flowering, flower number, corolla length, flower diameter and flower fresh weight were measured. At the end of the flowering phase, parameters such as leaf area, shoot and leaf fresh weight, lateral shoot number, leaf number, chlorophyll a, b, total and cartenoidwere measured. The data were subjected to Analysis of Variance, was done using Mstat-C statistical. The means were separated, using LSD test.
Results and Discussion: Results showed that interaction of salinity, bulk and nanosized titanium dioxide and titanium dioxide concentrationsweresignificanton total chlorophyll, cartenoides, biomass, leaf area and flower number. The highest amount of total chlorophyll concentrations was measured in 20 and 40 ppm TiO2 and 5 ppm Nano treatments, respectively. The highest leaf area (608 cm2) was in 15 ppm Nano treatment. Among levels of nano TiO2,foliar application with 5 ppm had the best flower diameter in general, foliar application of nano titanium dioxide and titanium dioxide have been effective in improving the effects of salinity stress. In addition, the use of titanium dioxide in the highest level (40 ppm) and use of nano titanium dioxide in less concentration in Petunia plant had better effect on morphological traits. An important effect of titanium compounds on plants used for various crops is yield improvement. The positive effects of TiO2 could be probably due to the antimicrobial properties of engineered nanoparticles, which can enhance strength andresistance of plants to stress.
Morteza Goldani; Maryam Kamali; Mohammad Ghiasabadi
Abstract
Introduction: Salinity tolerance in plants can increase the importance of it as a result of the decreasing availability of high-quality irrigation water. Saline irrigation water can have many negative effects on crops. When irrigation water has high salinity, the salt may precipitate on the leaves as ...
Read More
Introduction: Salinity tolerance in plants can increase the importance of it as a result of the decreasing availability of high-quality irrigation water. Saline irrigation water can have many negative effects on crops. When irrigation water has high salinity, the salt may precipitate on the leaves as the water evaporates. Thus it can result in foliar uptake and phytotoxicity. The irrigation water may also cause accumulation of salt in the substrate, which may lead to salt uptake by the plants. Salt injury occurs when too much NaCl accumulates in the substrate. When excessive concentrations of NaCl are present in the soil, water uptake may be inhibited and it causing a physiological drought stress. However, potassium is required by plants in amounts (in kg unit) of similar or greater than nitrogen (N). K Uptake by the plant is highly selective and closely coupled to metabolic activity. At all levels in plants, within individual cells, tissues and in long-distance transport via the xylem and phloem, K exists as a free ion in solution or electrostatically bound cation. Potassium takes part in many essential processes such as enzyme activation, protein synthesis, photosynthesis, phloem transport, osmoregulation, cation-anion balance, stomatal movement and light-driven nastic movements. Potassium Chloride (KCl) is used as a source of nutrients in agricultural development and also used as relieve salinity stress.
Materials and Methods: In order to study the mitigation effects of KCl on salinity (NaCl) in mustard plant (Parkland and Goldrush), an experiment was carried out at the Research Greenhouse, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. The experiment was managed as a factorial arrangement based on completely randomized design in three replications. Treatments were included NaCl (0, 30, 60 and 90 mM) and KCl (0 and 20 mM) and two cultivars.
Relative water content was calculated by the following formula using leaf disc obtained from a young leaf of each plant.
(DW+ FW/ DW+ TW)*100FW=fresh weight, DW=dry weight, and TW=turgid weight
Electrolytic leakage was calculated by the following formula:
EL=L1/L2 where L1 is electric conduction of leaf after putting in the deionized water in 25°C and L2 is the electric conduction of the autoclaved samples.
Leaf area was measured by Leaf area meter. Shoot and root dry weights were determined after drying the samples in 75°C for 48 h.
Chlorophyll concentration was calculated by the fallowing formula:
Chla (μg/ml) = 15.65A666 – 7.340 A653
Chlb (μg/mml) = 27.05A653 – 11.21 A666
Analysis of variance was calculated using MSTAT-C.1software and means were compared by LSD test at probability level of 5%.
Results and Discussion: The results showed that the treatments of NaCl, KCl and interactions with cultivars were significantly different on dry weight, leaf area, photosynthesis, stoma conductivity and chlorophyll rate. The maximum shoot dry weight (3.44 g/plant) and photosynthesis rate was obtained from T2 (20 mMKCl and without NaCl). The maximum membrane stability index was obtained in Goldrush cultivar and T2. The minimum of these traits were observed in zero mMKCl and 90 mMNaCl. High level of NaCl (60 and 90 Mm) and increasing application of KCl could not improve all traits. According to the result of the analysis of variance increasing density of sodium chloride in planting areas has a special effect on the size of leaves, weight of dried plant and each leaf and dried root. This effect shows a meaningful variation between the weight of dried leaves and its dried root and shoots. The salty areas have a lot of negative ions like Magnesium, Chlorine, sodium and sulfate. These materials are harmful by themselves or cause affective disorder in plants metabolism. Salinity treatments applied to significant influence (p≤0.01) on the characteristics of photosynthesis, stomatal conductance and number of stomata was read out by SPAD. For example, sodium and potassium competition and chlorine and nitrate competition impairs the absorption of nutrients. The result of this reaction is that the plant needs more energy for producing organic matter so it loses most of its energy to resist against salt. This situation causes a low activity of the root and the growing of shoot consequently reduces. Also, weight and length of plant would reduce too. For example, existing potassium in salty lands causes the reduction of sodium in the shoot of plants. This research was done in a pot with the same amount of salt. Potassium causes the reduction of toxicity effects of sodium. This research showed that the potassium can regulate osmotic pressure and permeability of plant cell membranes and also cause to increase plant tolerance to salinity.
Conclusion: In salty condition, increasing the amount of sodium causes the reduction of potassium, compared with sodium. As a matter of fact this kind of reaction causes the reduction of potassium compared with sodium. We know that potassium can cause a suitable osmotic pressure and reduce the destructive effect of oxidation. So, amount of potassium more than sodium in salty lands is known as the standard resistance. In general, increasing the salinity of sodium chloride can decrease morphological and physiological traits of mustard. The use of potassium chloride in T2 treatment showed the best result. However, Goldrush cultivar showed better results compared with Parkland cultivar in salt tolerance.
Morteza Goldani; Hossein Zare; Maryam Kamali
Abstract
Introduction: Purple coneflower with scientific name Echinacea purpurea (L.) is an herbaceous perennial plant native to North America and is the one of the most important medicinal plants in the world. Root of Echinacea purpurea is commonly used around the world for stimulation of immune system. It is ...
Read More
Introduction: Purple coneflower with scientific name Echinacea purpurea (L.) is an herbaceous perennial plant native to North America and is the one of the most important medicinal plants in the world. Root of Echinacea purpurea is commonly used around the world for stimulation of immune system. It is used as herbal medicine in respiratory infections, against malignant tumors and several inflammatory conditions However, nitrogen and phosphorus are the main elements that make up the proteins in plants and herbs for natural growth, especially is necessary in their productive organs. The results showed that nitrogen and phosphorus are important in continuation of flowering, the flowers fresh and dry weight and in essential oil. Fertilization of E. purpurea plants indicated that in absence or at low levels of nitrogen fertilization (0 and 100 kg acre-1), the addition of 50 and 100 kg acre-1 of potassium increased aerial parts, flower heads and root yield. Another report indicated that highest aerial biomass and root yield in E. purpurea was obtained with 100 kg ha-1 of nitrogen at constant rates of phosphorus and potassium. Polyphenol content was not influenced by nitrogen fertilization and values fluctuated between 2.4 and 5.4 % in the aerial part at flowering and between 1.6 and 3.5 % in the roots. Fertilization with nitrogen caused a decrease in the concentrations of echinoside. Echinoside content was 1.16 % without nitrogen fertilization, and 0.94 % with nitrogen fertilization.
Materials and Methods: To evaluate the effect of different levels of nitrogen and phosphorus on growth and yield of coneflower, a factorial experiment in a completely randomized design with three replications was conducted in Ferdowsi University of Mashhad. Treatments were included three levels of nitrogen (0, 1 and 2 gr urea per kilogram of soil) and three levels of phosphate fertilizer (0, 0.75 and 1.5 gr of phosphate (P2O5) per kg of soil). Nitrogen fertilizer was applied to the soil before planting and one month after transplanting seedlings and phosphorus fertilizer was added to the soil after transplanting.
Results and Discussion: A difference in plant height at different levels of nitrogen was significant. By increasing the amount of nitrogen to 1 gr, plant height from 69.44 increased to 81.11 cm. Number of lateral shoots wasn’t significant in any levels of nitrogen and phosphorus. Increasing of nitrogen from 0 to 2 grams per kg of soil increased leaf weight from 2.4 to 7.5 g. However, with increasing levels of phosphorus, weight and leaf area increased. So that the treatment without phosphorus, dry weight was 4.37 grams and in 1.5 grams of phosphorus was the highest leaf dry weight with 5.77 gr. With increasing levels of nitrogen from 0 to 1 gram, shoot dry weight increased and with increasing nitrogen from 1 to 2 grams of weight shoot dry weight was low. Treatment with 1 gr of nitrogen per kilogram of soil had the highest stem dry weight per plant with 8.7 grams and showed significant differences with other treatment. Based on the results, the effect of nitrogen fertilizer treatments in the number of flowers and flower dry weight was significant at 1%, the effect of phosphorus on flower dry weight was significant. But the interaction of nitrogen and phosphorus fertilizer treatments in any levels was not significant. The highest SPAD index in1.5 gr of phosphorus and lowest (53.74) in the treatment without phosphorus was observed. Different levels of nitrogen fertilizer had not significant effect on the length and diameter of the root but a significant effect of phosphorus on root length was showed. It seems nitrogen in 1 gr per kg is related to increase photosynthesis and the growth of organs. Nitrogen with increasing in meristem cell division can increase vegetative growth and plant size. Zeinali et al (1387) reported that phosphorus can increase carbohydrates and mineral combinations in the shoots, flowers and roots. As a result increase in shoots, roots and flowers dry weight is related to nitrogen and phosphorus.
Conclusion: In general the results showed that with increasing nitrogen fertilizer height, flower number and shoot dry weight was significantly increased. Also, increasing the amount of phosphorus up to 1.5 gr per kilogram leads to an increase in plant roots. Due to the interactions of nitrogen and phosphorus in leaf dry weight and root dry weight, nitrogen and phosphorus in 2 and 5.1 gr per kg of soil had the best results.
Maryam Kamali; Mahmood Shoor; Yahya Selahvarzi; Morteza Goldani; Ali Tehranifar
Abstract
To evaluate the effects of various concentration of carbon dioxide and salinity stress on morphophysiological characteristics of Amaranthus tricolor L. an experiment was conducted in greenhouse conditions in Faculity of Agriculture Ferdowsi University of Mashhad. the experiment was split plot based on ...
Read More
To evaluate the effects of various concentration of carbon dioxide and salinity stress on morphophysiological characteristics of Amaranthus tricolor L. an experiment was conducted in greenhouse conditions in Faculity of Agriculture Ferdowsi University of Mashhad. the experiment was split plot based on completely randomized design with three levels of CO2 (380, 700, 1050 µl/L) and three concentrations of sodium chloride (0,150, 300 mM) with 3 replications. The results showed that in control carbone dioxide (380 µl/L), application of salinity to 300 mM, reduced shoot dry weight, plant height and leaf area from 9.34, 53.83 and 1001 to 3.71, 35.3 and 158 respectively. Interaction effects of salinity and carbon dioxide showed that in control salinity and 1050 µl/L carbon dioxide, shoot dry weight and plant height increased 46 and 38% respectively. in level of 150 mM sodium chloride, with increasing concentrations of carbon dioxide from 380 to 700 µl/L, leaf area increased from 134 to 358 cm2. at this salinity level, in concentration of 1050 µl/L carbon dioxide, leaf area was 287 cm2. The final results showed that increasing concentrations of carbon dioxide improves adverse effects of salinity. in characteristics such as leaf area and electrolyte leakage, carbon dioxide in 700 µl/L and in characteristics such as root dry weight, shoot dry weight and plant height concentrations of 1050 µl/L carbon dioxide showed a better reaction to salinity.