Medicinal Plants
Majid Azizi; Somayye Beigi; Zeynab safaei; Meysam Mansouri
Abstract
IntroductionMedicinal plants are economical important plants that are used in traditional medicine and industry as raw or processed materials. Valerian (Valeriana officinalis L.) is one of the important medicinal plants which belong to Valerianaceae family. The valerian rhizome and roots have been considered ...
Read More
IntroductionMedicinal plants are economical important plants that are used in traditional medicine and industry as raw or processed materials. Valerian (Valeriana officinalis L.) is one of the important medicinal plants which belong to Valerianaceae family. The valerian rhizome and roots have been considered as a valuable medicinal plant that essential oil content (between 0.1 to 2 percent) varied according to climatic conditions of production location. Valerian needs a lot of water during the growth period and enough moisture around the roots and rhizome increase root yield. Iran is located in arid and semi-arid region. If the least water requirement of plant does not provide, plant face to drought stress and irreparable damage is imported to the product. Nowadays, the use of superabsorbent polymers is one of the ways to increase irrigation efficiency. They are made of hydrocarbons, can store high water or aqueous solutions in root zone of plants and to reduce negative effects of drought stress. So, improvement of plant growth, increasing of irrigation intervals, reducing water loss and costs of irrigation are due to application of superabsorbent polymers. Generally, water efficiency, dry matter production and root development, are positive reactions to the use of superabsorbent. In this regard, Stockosorb® copolymer is potassium-based nutrients that have a high ability to absorb water and nutrients and high strength polymer maintained the water has been proven. The aims of this investigation were to study the effects of Stockosorb® hydrophilic polymers, on some morphological (root dry weight and yield, leaf area), biochemical (chlorophyll a, b), physiological (electrolyte leakage, leaf relative water content) characteristics and essential oil content and yield of valerian under drought stress.Materials and MethodsThis research was conducted in field (1×1 m2) at Department of Horticultural Science‚ College of Agriculture‚ Ferdowsi University of Mashhad. The research was set out in a factorial experiment on the basis of completely randomized block design. The Stockosorb® hydrophilic polymer at four concentrations (0, 100, 200, 300 gr/m2) and two irrigation period (6 and 10 day) with three replications were set as treatments and leaf area, root dry weight and yield, chlorophyll a, b, electrolyte leakage, leaf relative water content and essential oil content and yield were evaluated at the end of the growth period. The seeds of Valeriana officinalis were sown in protected open field for seedling production and the seedling were transplanted to the field at four-leaf stage (12 plant per plot). Stockosorb® mixed with soil, after weighing the polymers based on determined concentration. After seedling establishment, all plots were irrigated with a determined amount and equal of water.Results and DiscussionThe results showed, using Stockosorb® superabsorbent polymer be useful for water supply the plant in water stress condition. Application of this substance on some morphological, biochemical and physiological characteristics and valerian essential oil, was significant at 1% and superior to the control. According to the results obtained, Stockosorb® 300gr/m2 with irrigation period 6 day interval, increased leaf area, root dry yield, leaf relative water content, chlorophyll a and essential oil yield. While, the highest valerian root dry weight and essential oil content were obtained with application of Stockosorb® 200gr/m2 and irrigation period of 6 days interval. The highest electrolyte leakage was related to control and irrigation period 10 days interval and the maximum chlorophyll b was belonged to Stockosorb® 100 gr/m2 with irrigation period 10 days interval.ConclusionSince final goal in cultivation of valerian as other essential oil bearing plants is providing the best conditions for increasing the yield and quantity of essential oil at the same time, according to the results of this study superabsorbent polymer in higher concentrations and less irrigation period, controlled the drought stress and improved all measured characteristics. The highest root dry weight under drought stress was related to more accessible and preservatives water in the root zone and it found by using the middle concentrations (200 gr/m2) super absorbent polymer and irrigation period shorter (6 day). Using of mentioned treatments, according to the middle water stress, leads to increased valerian essential oil. The best root dry yield and essential oil yield, with sufficient amounts of water and better growth conditions were achieved by application of 300 gr/m2 Stockosorb® and irrigation period 6 days interval. In general, superabsorbent polymer was able to increase irrigation period and this was evident in qualitative and quantitative results related to the valerian in the treatment of 300 gr/m2 with irrigation period 10 day and 100 gr/m2 of polymer 6 day irrigation period.
Medicinal Plants
Zeinab Safaei; Majid Azizi; Gholamhossein Davarinejad; Hossein Arouiee
Abstract
IntroductionThe ever-increasing tendency to the use of medicinal plants in the world has grown concerns about their cultivation and production processes. As medicinal plants are more compatible with the nature, special interest and attention has recently been given to herb therapy, and use of medicinal ...
Read More
IntroductionThe ever-increasing tendency to the use of medicinal plants in the world has grown concerns about their cultivation and production processes. As medicinal plants are more compatible with the nature, special interest and attention has recently been given to herb therapy, and use of medicinal plants, being limited by the rise of pharmaceutical drugs, has become again common and widespread due to a number of reasons. Nigella sativa L. is one of the herbs that has a variety of uses and has been being used in iran’s traditional medicine since old times. Today this plant is considered as one of the most important kinds of medicine. Therefore, it is of great importance to conduct some researches on the herbs around the country due to different ecological requirements. N. sativa belonging to buttercup family, with the scientific name of Ranunculaceae, is an annual, dicotyledonous, herbaceous plant. In several studies, N. sativa has been reported to have anti-oxidative, anti-inflammatory, strengthening of immune system, and anti-histamine and oil extract properties. Furthermore, several effects such as lowering blood sugar, lipids, and hypertension, excretion of bile and uric acid, protection of liver, kidney and cardiovascular tissues as well as anti-seizure, anti-cancer, anti-microbial and anti-parasitic effects related to this plant have been reported. The aim of the present study is to improve the yield and yield components and oil of medicinal plant N. sativa by anti-transpiration compounds under drought stress conditions. Materials and MethodsAn experiment was conducted at Research Station,Faculty of Agriculture, Ferdowsi University of Mashhad, in 2012-2013. The research was performed using a split plot experiment based on a randomized complete block design with three replications. The irrigation intervals (8 and 16 days) in main plots and anti-transpiration compounds of chitosan (0.25, 0.5 and 1%), Plantogopsyllium mucilage (0.5, 1 and 1.5%) and arabic gum (0.25, 0.5 and 0.75 %) were put in subplots with three replications. Also, the distance between the main plots in each block and distance between the two blocks were assigned as 100 cm and 200 cm, respectively; so that the moisture content of a plot had no effect on the adjacent plots. Planting date was April16 and planting was performed by hand in 0.5cm-deep furrows. Throughout the growing season, anti-transpiration compounds were applied concurrently with the imposition of drought stress, administered weekly at sunset until the flowering stage. Subsequently, yield, yield components, and oil content were measured. Results and Discussion Results showed that irrigation intervals had significant effects on all studied characteristics with the exception of 1000 seed weight. ncreasing irrigation intervals reduced percentage yield and yield components and oil of black cumin grains. Anti-transpirants compounds did have significant effects on percentage of oil and yield and yield components of black cumin grains. There were significant difference between different anti-transpirants compounds in terms of oil and yield components yield and of black cumin grains. The 8 days irrigation interval produced more grain yield compared with 16 days irrigation intervals (621.56 vs. 484.23 kg/ha). The highest oil (27.74%) and lowest (21.74%), respectively, at treatment anti-transpirants compound chitosan1 percent With 8 days irrigation interval and gam arabic 0.25 percent was obtained with 16 days irrigation interval and chitosan stimulating abscisic acid synthesis in the treated plant would result in stomatal closure, reduction of stomatal conductance, transpiration rate and water content. They also pointed out that the anti-transpiration effect of chitosan was because of its stimulatory effect in increasing abscisic acid concentration in the treated leaves of bean plant. As the above compounds are natural and biodegradable, as well as safer and less expensive than other chemical anti-transpiration compounds, they can serve as a good alternative to the chemical compounds. Cognition and expertise in water relations of plant and drought stress tolerance is considered as the main program in agriculture and the ability to withstand this stress is of great economic importance. Conclusion The anti-transpiration compounds led to significant changes in terms of all the studied traits compared to the control, indicating the effectiveness of theses natural compounds. Providing the appropriate conditions, 1% chitosan treatment can enhance the yield under drought stress. Spraying by arabic gum did not improve the growth conditions. According to this experiment, 1% chitosan treatment and 1.5% Plantago psyllium mucilage is considered the most appropriate strategy to enhance the yield of Nigella sativa under drought stress.
Zeinab Safaei; Majid Azizi; Hossein Arouiee; Gholamhossein Davarynejad
Abstract
Introduction: Nowadays Nigella Sativa plant is considered as a one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction of active ingredients in medicinal plants, depend on water. Lack of absorbable water by plants can lead to the morphological, ...
Read More
Introduction: Nowadays Nigella Sativa plant is considered as a one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction of active ingredients in medicinal plants, depend on water. Lack of absorbable water by plants can lead to the morphological, physiological and biochemical changes, including decrease of cell swelling and growth and thus reduction of leaf area and plant height, stomatal closure and photosynthesis restriction, increase in the soluble compounds for regulating the osmotic pressure, reduction of nutrient absorption and ultimately reduction of crop production. The use of anti-transpiration compounds is considered as a promising tool for the regulation of transpiration in respect of water conservation at an optimal level, where the strategies such as the use of anti-transpiration compounds have the potential for transpiration regulation. The aim of the present study is to improve the biochemical characteristics of medicinal plant N. sativa by anti-transpiration compounds under drought stress conditions. Materials and Methods: The research was done using a split plot experiment based on a randomized complete block design with three replications. The irrigation intervals (8 and 16 days) in main plots and anti-transpiration compounds of chitosan (0.25, 0.5 and 1 %), Plantago psyllium mucilage (0.5, 1 and 1.5 %) and Arabic gum (0.25, 0.5 and 0.75 %) were put in subplots with three replications. The distance between the main plots in each block and distance between the two blocks were also assigned as 100 cm and 200 cm, respectively; so that the moisture content of a plot had no effect on the adjacent plots. Anti-transpiration compounds were sprayed simultaneously with applying drought stress till the flowering stage once a week at sunset. Phenolic compounds, proline, chlorophyll, carotenoids, essential oil were measured. Results and Discussion: The results showed that there were significant differences between treatments in all studied traits. The best rate of the measured traits was observed at 8-day irrigation interval and chitosan treatment. The results obtained from the study showed that the effect of irrigation intervals and anti-transpiration compounds on the measured traits were significant. The best rate of the measured traits was observed at 8-day irrigation interval and chitosan treatment. The amount of phenolic compounds, proline, chlorophyll and carotenoids increased at 16-day irrigation interval, in which the increase is considered a type of drought tolerance mechanism. Different levels of anti-transpiration compounds decreased the chlorophyll, carotenoids, phenolic compounds, proline, essential oil percentage and yield. Conclusion: The important processes, including nutrition, photosynthesis, stomatal opening and closure and growth are all influenced by water. Plants are constantly living in tension and develop morphological and physiological changes in the structures and compositions and chemical processes for coping with this tension. In this study, it was observed that the level of phenols, proline, chlorophyll and carotenoids would increase at 16-day irrigation interval, where the increase is considered as a drought tolerance mechanism. The anti-transpiration compounds also led to the significant changes in terms of all the studied traits compared to the control, indicating the effectiveness of theses natural compounds. As the above compounds are natural and biodegradable, as well as safer and less expensive than other chemical anti-transpiration compounds, they can serve as a good alternative to the chemical compounds. Cognition and expertise in water relations of plant and drought stress tolerance is considered as the main program in agriculture and the ability to withstand this stress is of great economic importance.
Zeinab Safaei; Majid Azizi; Hossein Arouiee; Gholamhossein Davarynejad
Abstract
Introduction: Nigella sativa L. is one of the herbs that has a variety of uses and has been used in Iran’s traditional medicine since old times. Today this plant is considered as one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction ...
Read More
Introduction: Nigella sativa L. is one of the herbs that has a variety of uses and has been used in Iran’s traditional medicine since old times. Today this plant is considered as one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction of active ingredients in medicinal plants, depend on lack of absorbable water by plants can lead to the morphological, physiological and biochemical changes, including decrease of cell swelling and growth and thus reduction of leaf area and plant height, stomatal closure and photosynthesis restriction, increase of soluble compounds for regulating the osmotic pressure, reduction of nutrient absorption and ultimately reduction of crop production. The use of anti-transpiration compounds is considered as a promising tool for the regulation of transpiration in respect of water conservation at an optimal level, where the strategies such as the use of anti-transpiration compounds have the potential for transpiration regulation. The aim of the present study is to improve the yield and yield components of medicinal plant N. sativa by anti-transpiration compounds under drought stress conditions.
Materials and Methods: The research was done using a split plot experiment on a randomized complete block design with three replications. The irrigation intervals (8 and 16 days) in main plots and anti-transpiration compounds of chitosan (0.25, 0.5 and 1 %), Plantago psyllium mucilage (0.5, 1 and 1.5 %) and arabic gum (0.25, 0.5 and 0.75 %) were put in subplots with three replications. Also, the distance between the main plots in each block and distance between the two blocks were assigned as 100 cm and 200 cm, respectively; so that the moisture content of a plot had no effect on the adjacent plots. Planting date was April 16 and planting was performed by hand in 0.5cm-deep furrows. Anti-transpiration compounds were sprayed simultaneously with applying drought stress till the flowering stage once a week at sunset. Plant height, leaf area index, irrigation water efficiency index, leaf temperature and stomatal conductance were measured.
Results and Discussion: The results showed that there were significant differences between treatments in all studied traits. The best rate of the measured traits was observed at 8-day irrigation interval and chitosan treatment. Providing plant favorite conditions such as reducing plant temperature, increasing morphological traits comparing to rainfed at 16-day irrigation interval. Applying arabic gum did not improve growth but acted as a growth inhibitor. Anti-transpiration compounds led to significant changes in all the studied traits compared to the control, indicating the effectiveness of these natural compounds. Chitosan stimulating abscisic acid synthesis in the treated plant would result in stomatal closure, reduction of stomatal conductance, transpiration rate and water content. It also pointed out that the anti-transpiration effect of chitosan was because of its stimulatory effect in increasing abscisic acid concentration in the treated leaves of bean plant. As the above compounds are natural and biodegradable, as well as safer and less expensive than other chemical anti-transpiration compounds, they can serve as a good alternative to the chemical compounds. Cognition and expertise in water relations of plant and drought stress tolerance is considered as the main program in agriculture and the ability to withstand this stress is of great economic importance.
Conclusion: The important processes, including nutrition, photosynthes is, stomatal opening and closure and growth are all influenced by water. In this study, it was observed canopy temperature and stomatal conductance would increase at 16-day irrigation interval, where the increase is considered as a drought tolerance mechanism. Also, the anti-transpiration compounds led to significant changes in terms of all the studied traits compared to the control, indicating the effectiveness of theses natural compounds. Providing the appropriate conditions, 1% chitosan treatment can enhance the yield under drought stress. Spraying by arabic gum did not improve the growth conditions. According to this experiment, 1% chitosan treatment and 1.5% Plantago psyllium mucilage is considered the most appropriate strategy to enhance the yield of Nigella sativa under drought stress.
Majid Azizi; Zainab Safaei
Abstract
Introduction: The ever-increasing tendency to the use of medicinal plants in the world has grown concerns about their cultivation and production processes. As medicinal plants are more compatible with the nature, special interest and attention have recently been given to herb therapy, and use of medicinal ...
Read More
Introduction: The ever-increasing tendency to the use of medicinal plants in the world has grown concerns about their cultivation and production processes. As medicinal plants are more compatible with the nature, special interest and attention have recently been given to herb therapy, and use of medicinal plants, being limited by the rise of pharmaceutical drugs, has become again common and widespread due to a number of reasons. In a sustainable agriculture system, application of the fertilizers which are nature friendly and suitable for plants is essential. This becomes more important when dealing with medicinal plants. Doing studies over the effect of nanopharmax and humic acid fertilizer on the plant, no research findings were obtained. So, in order to use less chemical fertilizers to prevent environmental pollution and encourage farmers to use more organic fertilizer, the present study was carried out to evaluate the effect of foliar application of humic acid and nano-pharmax fertilizer on the growth index, yield, yield components, essential oil content of N. sativa.
Materials and Methods: The experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2012-2013. Land preparation was done in October. The land area was 80 square meters in which three blocks were designed. Eight plots were prepared within each block and each plot was planted with 4 lines. Furrow sowing operations were carried out on October 29. The plants were thinned in 4-6 leaf stage. First irrigation after planting, and subsequent ones were done every 7 days until the end of the growing season. No herbicides were applied in this plan and weeding was done by hand. The test treatments included humic acid and nanopharmax fertilizer with the levels of 0, 1, 3 and 6 mg per liter and 0 and 1 ml per liter, respectively. Fertilizer treatments was applied at the 8-10 leaf stage and continued once every two weeks, three times until after flowering. Foliar application continued until the plants were well treated with the solution. Plant height, leaf area index, dry weight, the number of branches, and the number of capsules per plant, the number of seeds per capsule, seed weight, seed yield, biological yield, essential oil content and yield were measured. The factorial experiment was conducted in a completely randomized block design with three replications. For the variance analysis of test data and drawing graphs, Excel and Minitab-16 software was used. All the averages data were compared at the 5 and 1% level, according to LSD test.
Results and Discussion: Different levels of humic acid imposed a significant effect on plant height, leaf area index, dry weight, the number of branches, and the number of capsules per plant, the number of seeds per capsule, seed weight, seed yield, biological yield, essential oil content and yield. Nano fertilizer application significantly increased the yield and essential oil content of Nigella sativa. Combined treatment at various levels had significant effect on dry weight, seed weight, biological yield and essential oil content and yield. According to the results, it can be concluded that the levels of 6 mg.l-1 of humic acid and Nano fertilizer (Farmks®) application the treatments were more effective in the increase of growth index, yield, yield components, essential oil content on other traits. The increased seed yield affected by humic acid and nano fertilizer can be attributed to the better vegetative growth, canopy development and consequently, more appropriate use of solar radiation and high photosynthesis. Using nano fertilizer, the time and speed of nutrients dispersion is coordinated by food requirements of the plant and thus, the plant will be able to absorb the maximum amount of nutrients and therefore, while reducing the leaching of nutrients and the crop yield increases.
Conclusion: The results showed that the use of nano fertilizer and humic acid can have positive effects on yield components and yield of N. sativa. Application of nano fertilizer and humic acid concentrations of 6 mg/l showed higher yield than other treatments. Intensifying the vegetative growth, these treatments increased the yield in N. sativa species. The combined treatments significantly increased the seed weight, growth index, seed yield, biological yield essential oil content and yield. Therefore, on the basis of the results of current study, it sounds like that nano fertilizer and humic acid can reduce the use of chemical fertilizers and environmental pollution. They also play an important role in achieving the goals of sustainable agriculture.
Majid Azizi; Zeinab Safaei; Somaye Mirmostafaee; Shadi Bolorian; Negar Rahimi
Abstract
Introduction: Fresh-cut produce graduated to retail during the1990s, especially for lettuce, cabbage, carrots and other similar vegetables. The high microbial loads of these products after harvest can be substantially reduced through a cleaning in flowing chlorinated water and adistribution under ensured ...
Read More
Introduction: Fresh-cut produce graduated to retail during the1990s, especially for lettuce, cabbage, carrots and other similar vegetables. The high microbial loads of these products after harvest can be substantially reduced through a cleaning in flowing chlorinated water and adistribution under ensured controlledrefrigeration. Therefore, a good number of convenient ready-to-use greens were launched to the market in the past decade. Nowadays, theuse of this technology to achieve similar results in fruit products is one of the most challengingtargets for processors. However, there is anumber of issues that still need to beovercomebeforefresh-cut fruit commodities can be sparked off to anoutstanding position in the segment of lightly-treatedrefrigerated foods. The importance of freshly cut products increases day by day. Tissue and cell rupture leads to a decrease in the shelf life of these products. On the other hand, these products due to increased enzyme activity, respiration rate and microbiological considerations that affect the health of these productsrequires highly attention.To increase the shelf life of the products and prevent undesirable changes in cut slices of fruit or vegetables a coating on the surface of these products has been suggested. Mucilages and essential oils of herbs are natural compounds that can be used to create such covers. The advantages of these coatings are their bactericidal effect, maintenanceof pleasant taste and other physical and chemical characteristics of the product and even decrease of environmental pollution. In this research, the effect of natural compounds such as Zataria multiflora essential oil (EO) and Plantagopsyllium mucilage on storage life and microbial load of fresh cut carrot was studied.
Materials and Methods: The research was conducted in two separate experiments on fresh-cut carrot: In the first experiment, the effect of different concentrations of Plantago psyllium mucilage (0,100, 200, and 400mgL-1) and four concentrations of Zataria multiflora essential oil (0,100, 250,and 500 mgL-1), in a factorial experiment on the basis of completely randomized designwith16treatments and three replications was evaluated. In the second experiment application of essential oil and mucilage on microbial load of fresh-cut carrot was examined in a split plot experiment on the basis of randomized complete blocks design with six treatments and three replications which Zataria multiflora EO (500 mgL-1) and Plantago psyllium mucilage (400 mgL-1) was set as main plot and storage time was set as subplot. The serial dilution technique and cultivation in special culture media were used to determine the microbial load. Treated samples were then packaged in polyethylene trays (175mL) and were stored at 4°C. After10 days of treatment different parameters such as weight loss, total soluble solids (TSS), titratable acidity (TA), pH, color, organoleptic properties, the amount of skin whitening and microbial load were evaluated.Means were compared using LSD test at the significant 5% probability level.
Results and Discussion: The results showed that the treatments had a significant effect on weight loss. Essential oil and mucilage treated samples with different concentrations and also a combination of the two had less weight loss than the control. Different concentrations of essential oil and mucilage individually significantly affected titra table acidity, soluble solids and pH. Samples treated with 100 and 250 mgL-1essential oil, and with 100 and 200 mgL-1 mucilage had the highest acidity, and showed significant increase compared to the control. A little color changes occurred in the treated samples and their colors were very close to the control. Combination treatment with 100 mg.L-1essentialoil plus 100 mgL-1mucilagesignificantlyreduced skin whitening of fresh cut carrot. Analysis of variance indicates significant effect of treatments on all microbial contaminations which were evaluated. The means of aerobic mesophilic bacterial contamination and the coliform bacterial contamination were 6.67 log CFU/g and6.37 log CFU/g, respectively. Only mold and yeast contamination significantly increased during storage and was more pronounced in samples treated with psylliummucilage. After 10 days of storage, although some bacterial contamination increased, this increase was not significant. Fungal contamination starts at 5.35 log CFU/g and endsat 6.64 log CFU/g, which is approximately 1.3 log CFU/g increased. E. coli contamination was not observed in samples.According to the standards threshold, in this experiment, aerobic mesophilic bacteria contamination of the samples (except for samples coated with mucilage after 10 days of storage which their contamination exceeded) was in the standard threshold.However, coliform bacteria, mold and yeast contamination in all samples exceeded.
Conclusion: In general, results of this study showed that application of natural compounds of medicinal plants as edible coatings improved the quality and -extend the shelf life of fresh cut carrot. .However, disinfection of the product in this experiment was not sufficient to reduce the microbial contamination properly and treatments used could not reduce it at the standard limits, appropriate disinfection methods such as radiation and higher concentrations are also investigated in order to export this recommended product