Medicinal Plants
Mehdi Moradi; Bahram Abedi; Hossein Arouiee; Sasan Aliniaeifard; Kamal Ghasemi Bezdi
Abstract
Background and objectives
Light is the main environmental factor for plant growth and development. Different attributes of light such as intensity, quality and duration affect plant growth and productivity. Light spectrum of growing environment is a determinant factor for plant growth ...
Read More
Background and objectives
Light is the main environmental factor for plant growth and development. Different attributes of light such as intensity, quality and duration affect plant growth and productivity. Light spectrum of growing environment is a determinant factor for plant growth and photosynthesis. The photosynthetic reactions are directly affected by various light parameters including its spectrum and intensity. Photosystem I and II (PSI and PSII) in the electron transport chain of photosynthetic apparatus are involved in converting solar energy to chemical compounds in plants. It has been found that the PSII is sensitive to light quality. Using The OJIP test, we can investigate the efficiency of various biological phases of the electron transport system. Light sources such as metal-halide, fluorescent, high-pressure sodium, neon lamps and light-emitting diode (LED) can be used for production of plants in closed environments instead of sunlight. Manipulation of the light spectrum of the lamps could trigger potential benefits by enhancing plant growth. Nowadays, by using the LED technology, it is possible to study the physiological effect of different light spectra for optimization of growth conditions and for increase the production of plants in controlled environments. This research was conducted to investigate photosynthetic apparatus, growth parameters, stomatal characteristics, transpiration rate and essential oil content of Salvia officinalis under different light spectra.
Materials and Methods
In this study, the effects of different light spectra were implemented and performed as a pot experiment using soilless media in the plant growth chamber based on a completely randomized design with 6 lighting spectra including White, Blue, Red and three combinations of R and B lights (R30:B70, R50:B50 and R70:B30) with three replications. The light intensity in all growth chambers was adjusted to photosynthetic photon flux density (PPFD) of 250 ±10 μmol m-2s-1 and light spectrum were monitored using a sekonic light meter (Sekonic C-7000, Japan). Growth condition was set at 14/10 h day/night cycles, 25/22oC day/night temperatures and 40% relative humidity. Three month following plant growth under different light spectra, the plants were evaluated for their growth parameters, stomatal characteristics (stomatal length, stomatal width, pore length or aperture) transpiration rate (E), relative water content (RWC), photosynthetic apparatus (evaluation of OJIP) and essential oil content. Data analysis of variance (ANOVA) was performed using IBM SAS software (Version 9.1) and the differences between means were assessed using Duncan’s multiple range tests at p≤ 0.05.
Results
The results showed that the stomata characteristics, photosynthetic performance, growth characteristics and essential oil content of Salvia officinalis were affected by different light spectra. Increasing the ratio of red light especially combined Red and Blue lights (R70:B30) led to the improvement of growth characteristics. Transient induction of chlorophyll fluorescence showed that the highest fluorescence intensities at all OJIP steps were detected in Red light. The lowest Fv/F0 and Fv/Fm were obtained in plants grown under Red light. Occurrence of leaf epinasty and decrease in Fv/Fm indicative of phenomenon of red light syndrome in the plants under Red treatment. Red light caused a reduction in performance index per absorbed light efficiency of (PIABS) and increase in quantum energy dissipation (ΦD0), light absorption (ABS/RC) and electron trapping (TR0/RC) per reaction center. The highest Fv/F0, Fv/Fm and PIABS were obtained under combination of Red and Rlue light. The highest ΦE0 was also detected in combination of Red and Blue light. The narrow and large stomatal apertures were detected under Red and Blue light, respectively. The highest transpiration rate was achieved in plants grown under Blue light LED. Increasing the ratio of Red light resulted in reduction in transpiration rate and improvement of leaf capacity to control water loss via reducing the opening of stomata. The highest amount of essential oil (1/75% v/w) was achieved in plants exposed to combination of Red:Blue light spectra (R70:B30).
Conclusion
light spectrum during plant growth can change plant metabolism, LED can be used in favor of producing good-quality food in controlled environment agriculture due to their ease of application, waveband manipulation and limited heat production. Our result showed that photosynthetic apparatus, growth parameters, stomatal characteristics, transpiration rate, relative water content and essential oil content of plants were considerably influenced by light spectra. Using OJIP test confirmed that plants grown under monochromatic Red and Blue lights were less efficient to successfully transfer the excitons and most of the absorbed energy by the photosystems was dissipated as heat. In conclusion, combined Red and Blue lights (especially R70:B30) caused favorable growth, photosynthetic functionality and maximum essential oil content of Salvia officinalis. Therefore, combination of R and B lights (R70:B30) should be considered for production of Salvia officinalis under artificial light systems during commercial controlled environment production of plants.
Growing vegetables
Mahboobeh Zamanipour
Abstract
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area ...
Read More
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area under tomato cultivation was 121203 hectares, with an average yield of 43.30 tons per hectare, and annual production of 5248904 tons. Vitamins are made from natural ingredients and are suitable for the growth, function and improvement of plant nutrition. The aim of this study was to investigate the effects of different levels of pyridoxine (50, 100 and 150 mgL-1), thiamine (50, 100 and 150 mgL-1) and folic acid (50, 100 and 150 mgL-1) and the combination of these vitamins on the plant growth, yield and chemical properties of tomatoes.
Materials and Methods: This study was conducted as randomized complete block design with three replications in the greenhouse of Iranshahr University during the years 2019 to 2020. The tomato cultivar was Delphus, the seedling of which was purchased from Pakan Bazr Isfahan Company. In August, with the beginning of the tomato planting period in the greenhouse, seedlings were planted and the harvest lasted until December. Seedlings were planted in rows of 75 cm wide and 40 cm apart. Irrigation was performed in the greenhouse with a drip system. The first irrigation was carried out immediately after planting and the second and third irrigations were carried out one day later for one hour and the subsequent irrigations were carried out in proportion to the growth of seedlings, every other day, every four days. At the 7-8 leaf stage, the plants were guided vertically on the thread. The greenhouse temperature was 25 to 32 °C during the experiment and 18 to 24 °C at night and the relative humidity was about 50%.
Results and Discussion: The results showed that all used concentrations of pyridoxine, thiamine and folic acid increased the growth parameters compared to the control, so that the highest plant height (271 cm), stem diameter (7 cm), number of leaves (31) fresh weight (502 g) and dry weight (341.66 g) were produced at a concentration of 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid. Interaction of B vitamin levels at low, medium and high levels had a significant effect on the reproductive parameters of tomato plants, so that the highest number of flowers (41.33), number of fruits (29.55), number of clusters (9.77), fruit diameter (22.44 mm), fruit fresh weight (158 g) and fruit dry weight (10.81 g) and yield (5688.9667 g/plant) at a concentration of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 was observed per liter of folic acid. Increasing of yield can be due to increased nutrient uptake and assimilation, and increased growth due to the presence of vitamins. Similar results by El-Gharmany et al. (2005) stated that foliar application of vitamins (B1, B6 and B12) in appropriate concentrations in cowpea significantly increased the number of pods per plant and total yield compared to the control. Shabaly and El-Ramady (2014) and Shabana et al. (2015) found that some natural ingredients have increased yield of garlic and tomatoes. Also, all concentrations of pyridoxine, thiamine and folic acid used increased biochemical parameters compared to the control. Maximum pH (4.78), acidity (0.28%), soluble solids (3.93%), lycopene (2.64 mg/100 g fresh weight), total phenol content (66.66 mg/100 g fresh weight, vitamin C (13.36 mg/100 g fresh weight), chlorophyll a (1.98 mg/g fresh weight), chlorophyll b (0.98 mg /g fresh weight) and carotenoids (3.33 mg/g fresh weight) were obtained by using a combination of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 folic acid. Foliar application of vitamin treatments may play an important role in physiological and metabolic processes that affect the process of photosynthetic metabolism and lead to an increase in soluble solids and minerals. The interaction of vitamins improves the action of biochemicals on amino acid metabolism and nucleic acid synthesis. However, Abdel-Halim (1995) reported that foliar application of some vitamins improved leaf growth, increased chlorophyll, chemicals, and internal hormones in tomatoes during the winter. El-Ghamriny (2005) reported that foliar application of B vitamins (B1, B6 and B12) increased leaf chlorophyll in cowpea compared to the control, and Burguieres et al. (2007) found that folic acid at a concentration of 50 mgL-1 increased minerals in peas. Hendawy and Ezz El-Dinn (2010) reported that vitamin B complex as a coenzyme in enzymatic reactions such as carbohydrates, fatty acids and proteins involved in photosynthesis and respiration. In addition, Abd El-Hakim (2006) reported that some antioxidants improve biochemical properties in some beans.
Conclusion: The results showed that the use of pyridoxine, thiamine and folic acid vitamins alone or in combination with each other improved the growth, reproductive and biochemical characteristics of Delphi greenhouse tomatoes. The highest growth rate, yield and biochemical properties were obtained at 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid.
Reihane Mesgari; Taher Barzegar; Zahra Ghahremany
Abstract
Introduction: Cucumber is one of the most important vegetable crops for the local consumption and exportation. The use of grafted vegetable seedlings has been popular in many countries during recent years. Growing fruit-bearing vegetables, chiefly tomato, cucumber and watermelon through grafted seedlings ...
Read More
Introduction: Cucumber is one of the most important vegetable crops for the local consumption and exportation. The use of grafted vegetable seedlings has been popular in many countries during recent years. Growing fruit-bearing vegetables, chiefly tomato, cucumber and watermelon through grafted seedlings become a widespread practice worldwide. Grafting is a valuable technique to avoid soil-borne diseases, provide biotic and abiotic stress tolerance, enhance nutrient uptake, optimize water use, and increase fruit yield and quality. Vegetable grafting is a new topic in Iran and there are a limited number of studies on grafted vegetable production. However, attention to grafting by researchers has recently increased. Suitable rootstocks should be identified and characterized for the effective utilization of grafting. The rootstock's vigorous root system increases the efficiency of water and nutrient absorption, and may also serve as a source of endogenous plant hormones, thus leading to increased growth and yield in addition to disease control. In the present study, we investigated the response of two Cucurbita sp. and an Iranian melon as rootstocks for cucumber.
Materials and methods: In order to study the effect of cucurbit rootstocks and grafting method on growth, yield and fruit quality of cucumber (Cucumis sativus cv. Super Dominus), an experiment was conducted as a factorial design in the base of RCBD with three replications in the greenhouse and research farm, University of Zanjan. Treatments were included three rootstocks (Cucurbita moschata L., Lagenaria siceraria and Cucumis melo L.) and ungrafted plants (control) and two grafting method (hole insertion and splice grafting). Seeds were sown simultaneously in plastic pots. For obtaining the same stem diameter of scion and rootstocks, cucumber seeds were planted four days earlier than rootstocks seeds. The seedlings were grown in an environment-controlled greenhouse with 25/20 day/night temperatures. When seedlings reached the first true leaf stage (diameter of the leaf was about 2 cm) the grafting was performed. After grafting, grafted plants were transferred to a mist chamber for post-graft care (>95% RH, 27-30 °C) for 10 days, after which the relative humidity was reduced gradually for acclimatization. After 20 days of grafting, surviving grafted plants and ungrafted plants were transplanted to the field. Common agricultural practices like fertilizer application, insects and disease control were adopted. Vegetative growth, yield and fruit quality were measured. Data were analyzed using the SAS statistical program (SAS Institute Inc., Cary, NC, USA), and means were compared by Duncan’s multiple range tests at the 5% probability level.
Results and Discussion : The result showed that rootstocks had a significant effect on growth indexes. Cucumber was grafted on cucurbita moschata L. rootstock had the highest stem length and leaf numbers, while, the lowest values of plant height, leaf area, leaf number and yield were recorded with grafted plant on melon rootstock. Fruit numbers were significantly influenced by rootstock. The highest fruit number per plant was observed in cucumber plants that were grafted on cucurbita moschata rootstock. The results of the study showed that cucumber grafting on suitable rootstocks had positive effects on the yield. But rootstock had no significant effects on fruit quality like flesh firmness and total soluble solid. The Soluble solid content of fruit was reported to decrease in tomato, cucumber and eggplant due to grafting. chlorophyll content of leaf showed significantly different between grafted and non-grafted plants. The highest amount of leaf area was obtained from non-grafted plants. Grafting methods had no significant difference in growth, yield and fruit quality. Nitrogen and potassium leaf contents of grafted cucumber and ungrafted plants had no significant difference. The interaction between rootstocks and grafting method had no significant effect on yield and the other growth indexes.
Conclusion: Our findings showed that vegetative growth and yield of cucumber were affected by grafting. On the basis of these results, Cucurbita moschata rootstock had the highest effect on growth and yield of cucumber. It may also be concluded that the grafting method had relatively same growth response. Although the cost of a grafted seedling is surely one of the main concerns of growers, especially since grafted seedling costs from three to five times more than non-grafted seedling. However, investigation proved that, on-farm grafted cucumber transplant production can be successful and the results indicate that grafting of cucumber onto cucurbit rootstocks can increase on-farm net returns due to improve growth and yield.
Ali Salehi Sardoei; Parviz Rahbarian
Abstract
Introduction: One factor that is of great importance to the cultivation of flowers and ornamental plants, is the media. Planting plants in containers as an important component of the nursery technology has grown. Compared with farm volume, growth media used for each plant greatly reduce plant growth ...
Read More
Introduction: One factor that is of great importance to the cultivation of flowers and ornamental plants, is the media. Planting plants in containers as an important component of the nursery technology has grown. Compared with farm volume, growth media used for each plant greatly reduce plant growth that largely influence by the physical and chemical properties of growth media used. Therefore, good management of potted plants bed will cause the plants have good quality. A good growth media with optimal physical and biological properties, relatively inexpensive, stable and style enough to work should be available. The Burgers showed that composted green waste can be used as substrates for soilless cultivation and improve the water-holding capacity of soil. The garden has a range of materials including hardwood and softwood bark, leaves, soil, waste, sewage sludge and coconut (cocopeat) that has been used as a seed bed. According to the economic issues and increasing moisture storage, palm peat substrates are primary material that can be prepared as a good growth medium for the producing's presented level Country. Peat moss is not applicable to all plants because of high cost and poor absorption characteristics like low pH and low water holding capacity . This study was conducted to investigate the possibility of replacing peat moss palm waste and the effect of it on growth characteristics were studied.
Materials and Methods: The experimental design was completely randomized design with four replications of eight treatments. The compressed unit (block) was supplied and commercial cocopeat was used because of reducing the cost of transportation. Before applying this material, the amount of water was added for opening up and voluminous and become it completely uniform.. In treatments containing sand + perlite, these four types volume ratio of 1:1 and mixed with sand + perlite were used. First, wooden cuttings of pandanus in a bed of sand rooted in the greenhouse, then the rooted cuttings were transferred to pots with a diameter of 17cm. The pots were filled with the examined material. After planting in pots in a greenhouse with temperature of 20-25°C in winter and 30-35°C in summer were kept on planting plans. The indicators of growth including stem diameter, stem length and lateral shoot number, leaf area and chlorophyll index were measured. Analysis was performed on data using SPSS 16. Comparisons were made using one-way analysis of variance (ANOVA) and Duncan’s multiple range tests. Differences were considered to be significant at P < 0.05.
Results and Discussion: Vegetative characteristics of pandanus plants were significantly different from each other. Results showed that the mean media of cococheps and 50% peat palm + 25% sand + 25% perlite had the highest leaf area with 413.97 and 378.69cm2 respectively and non-significant difference was showed. Means followed by same letter are not significantly different at P
Fateme Zafari; Mohammad Esmaeil Amiri; Ali Vatanpour Azghandi
Abstract
This study was conducted to find out the influence of in vitro salinity on growth parameters shoot length, number of leaves, number of new buds, the chlorophyll, chlorosis and necrosis and absorption of sodium, chloride, potassium, nitrogen and phosphorus of pear (Pyrus communis cv. Dargazi) in vitro ...
Read More
This study was conducted to find out the influence of in vitro salinity on growth parameters shoot length, number of leaves, number of new buds, the chlorophyll, chlorosis and necrosis and absorption of sodium, chloride, potassium, nitrogen and phosphorus of pear (Pyrus communis cv. Dargazi) in vitro propagated shoots. The experiment was conducted as a complete randomized design with 5 salinity levels; (control), 40, 80, 120 and 160 mM of sodium chloride in 2013 at Zanjan University, Zanjan, Iran. Different mentioned parameters were assessed after 6 weeks of culture. Shoot length and leaf number per explant decreased and number of chlorotic and necrotic leaves increased with increasing salinity. Increasing salinity levels also decreased nitrogen and potassium content of plant tissues while their sodium and chloride contents increased. Phosphorus was not affected by salinity.
M. Oraei; jalal tabatabaei; E. Fallahi; A. Imani; L.S. Fatemy
Abstract
Boron (B) toxicity is an important disorder that can limit plant growth in arid and semi-arid environments. It has been proven that use of tolerant rootstocks impede B uptake or transport to the aerial portions of plants. This may alleviate B toxicity in the scion, consequently improves the tolerance ...
Read More
Boron (B) toxicity is an important disorder that can limit plant growth in arid and semi-arid environments. It has been proven that use of tolerant rootstocks impede B uptake or transport to the aerial portions of plants. This may alleviate B toxicity in the scion, consequently improves the tolerance to excess B in the root zone. An experiment was conducted to find the effects of B toxicity on vegetative growth, physiological characteristics and B distribution of almond tree (Prunus dulcis Mill.) cv. “Ferragnes” grown in the controlled environment. Three levels of B (0.25, 10, 20 mg/L) from H3BO3 and two almond rootstocks (GF677, Tuono) were factorially combined in a completely randomized design with four replications. The results showed that B toxicity had significant effects on vegetative growth, physiological characteristics and B distribution in almond tree. With increasing B levels in nutrient solution, vegetative characteristics including leaf production percentage and main shoot elongation was decreased significantly. However, Fr/Tuono was affected less than Fr/GF677. Also, physiological characteristics such as electrolyte leakage percentage, proline content and leaf necrosis percentage were increased significantly in two scion-rootstock combinations. On the basis of these results, GF677 because of an inability to restrict uptake and/ or transport of excess B from root system to aerial parts of scion, have a higher sensitivity to B toxicity. Instead, Tuono via mechanism of preferential distribution of B in roots inhibited the accumulation of high concentration of B either in young leaves or meristematic tissues partially and protected these susceptible organs against injury caused by B toxicity. In conclusion, it seem that under excess B conditions Tuono rootstock have higher tolerance than GF677.