Pomology
H. R. Karimi; N. Biniyaz; A.A. Mohammadi Mirik; M. Esmaeilizade; Z. Hatamean
Abstract
IntroductionPomegranate (Punica granatum L.) from the family Punicaceae, is an important and exportable fruit crop in Iran. At present, Iran is the leading producer of this fruit followed by India, Turkey and Spain. As the main area under pomegranate cultivation in Iran are located in arid and semi-arid ...
Read More
IntroductionPomegranate (Punica granatum L.) from the family Punicaceae, is an important and exportable fruit crop in Iran. At present, Iran is the leading producer of this fruit followed by India, Turkey and Spain. As the main area under pomegranate cultivation in Iran are located in arid and semi-arid adjacent to desert regions. Low irrigation water quality, lime induced Fe chlorosis, soil salinity, nutrient imbalance and soil-borne diseases are the most limiting factors in this areas. Currently about 760 genotypes and cultivars of pomegranate have been identified, collected and growth in Pomegranate Research Institute in Yazd province, central Iran. In rich collection, it is likely that some genotypes are tolerant to adverse environmental conditions but neglected due to their low quality fruits. These genotypes could be evaluated and used as potential rootstocks. ‘Rabab-e-Neyriz’ is one of the most important pomegranate cultivar that is planted in parts of western south of Iran to gather ‘Khafr-e-Jahroom’ cultivar. Fruits in ‘Rabab-e-Neyriz’ cultivar are big with dark red color arils. In the last decades, there has been a tremendous towards using grafted/budded plants in fruit orchards. Moreover, the available reports indicate that rootstock could affect the tolerance of scion to soil borne diseases, lime-induced Fe-deficiency chlorosis and salinity stress that they can control with grafting on tolerance rootstocks. There are inadequate formations on the effects of rootstock on scion of pomegranate. The aim of the study was effects of three rootstocks; ‘Gorj-e-Dadashi’, ‘Gorj-e-Shahvar’ and ‘Post Ghermaz-e-Aliaghai’ on nutrient concentration of two pomegranate cultivars; ‘Rabab-e-Neyriz’ and ‘Khafr-e-Jahroom’; as scion.Material and MethodsIn order to investigate the interaction of rootstock and scion on nutrient uptake in two pomegranate cultivars ‘Rabab-e-Neyriz’and ‘Khafr-e-Jahroom’, research was performed in the form of a factorial experiment in complete randomized blocks design with scion factors at two levels (‘Rabab-e-Neyriz’and ‘Khafr-e-Jahroom’) and the rootstock on four levels (‘Post Ghermaz-e-Aliaghai’, ‘Gorj-e-Dadashi’, ‘Gorj-e-Shahvar’and without graft) with five repetitions. Omega grafting method was used to production grafting plants. One year grafting plants were planted on farm with 2.0 m apart within rows and 4.0 m apart between rows. Non grafting cuttings of scions that rooted same time with rootstocks were planted in farm as control. In the first summer leaf samples were collected to determine macro and micro elements. Results and DiscussionThe results showed that the interaction of rootstock and scion is effective on the uptake of elements. The concentration of elements in the scion varied depending on the type of graft combination. The highest levels of phosphorus, potassium, and calcium of leaves were observed in the grafting plants of ‘Rabab-e-Neyriz’ scion on ‘Gorj-e-Dadashi’ rootstock, ‘Khafr-e-Jahroom’ scion on ‘Gorj-e-Dadashi’ rootstock, and ‘Rabab-e-Neyriz’ scion on ‘Gorj-e-Shahvar’ rootstock, respectively. Also, the highest amounts of iron (75 mg/g dry weight), manganese (65 mg/g dry weight), and copper (25 mg/g dry weight) were obtained from the grafting plants of ‘Rabab-e-Neyriz’ scion on ‘Gorj-e-Dadashi’ rootstock, ‘Khafr-e-Jahroom’ scion on ‘Gorj-e-Dadashi’ rootstock and, in both scions on ‘Gorj-e-Shahvar’ rootstock compared to non-grafted plants. ConclusionThe results of this research have shown that the amount of nutrients in the leaves of grafted pomegranate cultivars is not only influenced by the rootstock, but also by the genetics of the scion. The concentration of mineral elements in the scion is mainly related to the characteristics of the root system of rootstock, including the lateral and vertical expansion of the root, which increases the absorption of water and minerals. Due to the weaker root system, the ‘Post Ghermaz-e-Aliaghai’ has a lower concentration of mineral elements in the cultivars grafted on this rootstock. According to the results of the present study, the reason for the higher nutritional elements in plants grafted with the rootstocks of ‘Gorj-e-Dadashi’ and ‘Gorj-e-Shahvar’ can be attributed to the greater growth power of these roots and their extensive root system. He attributed that wider research is recommended in this field.
Growing vegetables
R. Najafi; T. Barzegar
Abstract
Introduction
Cauliflower is one of the world’s most important vegetable crops. The edible head of the cauliflower is called curd, which is composed of many florets formed of aborted floral meristems. Curd has various components with high nutritional value including glucosinolates, vitamin ...
Read More
Introduction
Cauliflower is one of the world’s most important vegetable crops. The edible head of the cauliflower is called curd, which is composed of many florets formed of aborted floral meristems. Curd has various components with high nutritional value including glucosinolates, vitamin A and C, phenolic compounds, and carotenoids, which exert beneficial effects on our health. Calcium is an essential macronutrient that plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. Several researches have explored the effects of calcium salts on plant growth and quality in many horticulture crops. Various studies indicate that Ca2+ reduced peroxidation of lipid, increased activity of antioxidant enzyme and improve osmotic adjustment of cell membranes. Plant roots absorb calcium from the soil solution in the form of Ca2+ ions. The mobility of calcium in plant is low, and the root uptake from fertilized soils is poorly effective in increasing the calcium content in leaves and fruits. Deficiency of Ca will appear in younger leaves and in fruits, due to its low rate of transpiration. Thence, it is necessary to have a constant supply of calcium to continue growing. The direct application of liquid source of calcium on leaves and fruits may offer an alternative solution. The efficiency of foliar application with Ca depends on the source of Ca and applied dosage. To our knowledge, however, little information is available regarding the effect of different calcium sources on cauliflower. Thus, the aim of this study was to investigate the effect of foliar spray of calcium sources on quality and antioxidant properties of cauliflower cv. Romansco.
Material and Methods
In order to evaluate the effect of different sources of calcium on antioxidant properties and quality of cauliflower cv. Romansco, the field experiment was carried out as a randomized complete block design with three replication during 2018 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Cauliflower plants (cv. Romanesco) were cultivated by applying conventional farming practice for growing in open air conditions. Different calcium sources including calcium nitrate (Ca(NO3)2, 0.5, 1 and 1.5 %), calcium chloride (CaCl2, 0.3, 0.6 and 0.9 %) and calcium lactate ( C6H10CaO6, 0.5, 1 and 1.5 g L-1) were sprayed in vegetative stage and 10 days after curd formation for 2 times onto the leaves and curd until runoff using a mechanical mist sprayer. Distilled water was used as a control. Potassium, phosphorus, total soluble content, titratable acidity, ascorbic acid content, total phenols and flavonoids, free radical scavenging activity (DPPH) were measured. Statistical analyses were performed with SPSS software package v. for Windows, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion
The results showed that foliar spray of different Ca sources significantly increased K content and decreased P content. The highest amount of K (5.6 µg mg-1DW) was achieved in CaCl 0.9% treatment. The highest value of flavonoids (0.86 and 0.85 %) was found in plants treated with CaL 1.5 g L-1 and CaCl 0.9%, respectively. In this study, also it was found that foliar spray of CaN 1.5% and CaCl 0.9% increased respectively 49.3 and 40.4% vitamin C content compared to control plants. Ca application with increasing phenolic compound and vitamin C contents, improved antioxidant capacity and the maximum antioxidant capacity (26.19%) was found in CaL 1.5 g L-1 and CaN 1.5% treatments. Application of Ca sources increased TA and TSS content. The highest TSS content (12.5 and 13.3 ºB) was achievd in CaCl 0.9% and CaL 1.5 g L-1 and the maximum TA (28.8%) was found in plant treated with CaCl 0.9%. In this regard, foliar application of high level of calcium sources was more efficient than of lower levels on cauliflower quality. Therefore, the leaf application of calcium can be effective in improving the quality of vegetables, especially cauliflower.
Conclusion
Study results suggest that spraying different Ca source improved quality and antioxidant properties of cauliflower cv. Romanesco, so that with the application of Ca salts increase K, vitamin C, phenol and flavonoids contents. Among the calcium treatments used, higher levels of all three salts of CaCl, CaN and CaL had the most influence, so these calcium treatments are recommended to improve the quality and antioxidant properties of Romanesco cultivar.
Medicinal Plants
M. Shamsaddin saied; M. Ramroudi
Abstract
Introduction: Biochar is a carbonaceous substance obtained from heating plant residues and wastes in an oxygen-containing medium with or without oxygen. Thermal decomposition of biomass in an oxygen-free medium is called thermophilicity (pyrolysis). Temperature is one of the factors influencing the characteristics ...
Read More
Introduction: Biochar is a carbonaceous substance obtained from heating plant residues and wastes in an oxygen-containing medium with or without oxygen. Thermal decomposition of biomass in an oxygen-free medium is called thermophilicity (pyrolysis). Temperature is one of the factors influencing the characteristics of biochar. One of the objectives of this experiment is to investigate the effect of different temperatures on the biochar characteristics of cattle manure. The use of biochar as a soil conditioner and source of organic carbon in agricultural soils with minimal environmental damage is considered. Marigold is an annual plant that is used in industry and pharmacy in addition to food. Another aim of this experiment is to investigate the effect of biochar use from different temperatures on marigold under salinity stress.Materials and Methods: For biochar preparation, after collecting cattle manure from Bardsir farms, air drying and sieving were used for pyrolysis process for four hours at different temperatures (300, 400, 500, 600 °C). Then pH, EC, carbon stability, ash and biochar performance were measured. In order to evaluate the effects of biochar resulting from different heat-treated temperatures on salinity tolerance of marigold, a factorial experiment was conducted in a completely randomized design in the greenhouse. The two factors studied included salinity levels (0, 4, 8 and 12 dS.m-1) and biochar resulting from different thermocouple temperatures (0, 300, 400, 500 and 600 °C). The biochar rate was considered to be 20%. One month after salinity treatment, seedlings were evaluated for osmotic metabolites activity and growth characteristics of marigold seedlings.Results and Discussion: The results of ANOVA showed that all biochar properties were significantly affected by temperature factor. With increasing the pyrolysis temperature from 300 to 600 °C, pH and EC increased by 16.29% and 60.37%, respectively, and the ash content increased by 1.5 folds, but biochar performance and bulk density decreased by 52.28% and 48.1%, respectively. The highest carbon stability was observed at 500 °C, which increased by 20% compared to 300 °C. The results showed a significant negative effect of salinity stress on stem height, number and area of marigold leaves, so that with increasing salinity to 12 dS.m-1, 31.09, 17.28 and 45.7% decrease were observed in these traits, respectively. The physiological characteristics of marigold were significantly affected by the simple and interaction effects of salinity and biochar stress. In salinity treatments (0, 4, 8 and 12 dS.m-1) with increasing pyrolysis temperature from 300 to 600 °C 2.2, 2.04, 1.97 and 1.92 folds increase in leaf potassium concentration and 1.54, 2.26, 3.00 and 2.45 folds less than the control treatment in the amount of leaf proline was observed, respectively. The activities of catalase, ascorbate peroxidase and guaiacol peroxidase enzymes were also significantly affected by the interaction of salinity stress and heat temperature. The highest enzyme activity in biochar was from 600 °C, which increased up to 8 dS.m-1 for catalase and up to 4 dS.m-1 for ascorbate peroxidase and guaiacol peroxidase.Conclusion: In general, biochar salinity is its most important undesirable properties, which increases with increasing pyrolysis temperature, so the recommendation of biochar application in saline soils requires further studies. In the present study, the use of biochar under salinity stress did not have a significant positive effect on the development of marigold resistance and salinity stress tolerance.
Ali Akbar Shokouhian; Ali Asghari; Hadi Mahmoodi
Abstract
Introduction: Kiwifruit (Actinidia Sp) is one of the fruits that it is considered as an appropriate food source, because it is rich in vitamins, especially vitamins c, E, A, B1 and also in the form of potassium. Humic substances are contained nutrients that improve the soil nutrients and are increases ...
Read More
Introduction: Kiwifruit (Actinidia Sp) is one of the fruits that it is considered as an appropriate food source, because it is rich in vitamins, especially vitamins c, E, A, B1 and also in the form of potassium. Humic substances are contained nutrients that improve the soil nutrients and are increases the availability of food and therefore plant growth and yield. Studies have shown that adding certain amount of humic acid fertilizer can improve the growth of root, stem and leaves of plants and enhances yield and quality of products and increases the efficiency of nitrogen fertilizer consumption. According to pervious findings, recent research was performed aimed to achieving the best combination of humic acid and its application method for improving yield and organic fruits production in Kiwifruit cv. Hyvard.
Materials and methods: In order to investigate the effects of humic acid concentration and application method on nutrient uptake and quality and quantity of fruit indices, of Kiwifruit CV Hyvard an experiment based on complete block design with four replications was conducted during 2015-2016 in Talesh city, Gilan province. Experimental treatments included soil drenching method and foliar spraying of different levels (control, 2, 4 and 6 kg. ha-1) of humic acid. In this study traits such as absorption indexes of nutrient elements consisting nitrogen, potassium, phosphorus, calcium, zinc, magnesium, manganese, copper and iron content of leaves and quantitative and qualitative traits of fruit (yield, Tissue firmness, vitamin C, total soluble solids of fruits and leaf area and leaf chlorophyll content) were measured. Phosphorus was measured by spectrophotometer at 430 nm and potassium was measured by flame photometer. Atomic absorption was used to determine the amount of calcium (at wavelength of 422.7 nm) and magnesium (at wavelength of 285.2 nm). Nitrogen was also measured by Kjeldahl method. Micro elements were determined by flame atomic absorption method. Standard samples and treatments were cloudy with a blue acetylene flame and the adsorption of iron, manganese, zinc and copper were read at wavelengths of 243/3, 288.5, 213.9, 327.7 nm, respectively. This study was carried out in a randomized complete block design with seven treatments (0%) and application of humic acid at concentrations of 2, 4, 6 kg.ha-1 as spraying on leaves and soil application on Hayward cultivar with four replications. Data from this study were analyzed by using Jmp statistical software and graphs were drawn using Excel 2013 software.
Results and Discussion: Results of analysis of variance showed that different concentration of humic acid had significant effect on nutrient uptake and quality and quantity of fruit indices at 1% probability level. Results of this research indicated that using of humic acid caused increasing in nutrient elements uptake and improving the quality and quantity of fruit in Hyvard cv. of Kiwifruit. Comparison of means showed that the highest value of nitrogen (1.8%) of foliar application of 2 kg.ha-1 and 4 kg.ha-1 to soil of humic acid, phosphorus (0.3%) obtained by foliar application of 2 and 4 kg.ha-1, calcium (3.5%) by foliar and soil application of 4 kg.ha-1. The highest value of potassium (1.92) with soil application of 6 kg.ha-1, manganese (0.33%) and copper (12.8 Mg.Kg Dw-1) of foliar application of 4 kg.ha-1,iron (226 Mg.Kg Dw-1) of soil application 6 kg.ha-1 humic acid and the highest value of magnesium (34.7 Mg.Kg Dw-1) uptake index obtained from adding 6 kg.ha-1 humic acid to soil. The results indicated that foliar spraying of 2 kg.ha-1 humic acid had higher efficiency for zinc uptake (21.7 Mg.Kg Dw-1). Comparison of means showed that the lowest value of measured elements obtained in control treatment. Based on the results, the concentration of four kilograms per hectare of humic acid with soil and leaf application methods had the highest effect on quantitative and qualitative indices of kiwifruit.
Conclusion: Results showed that application of humic acid caused increasing in absorption of nutrients and improving the quality and quantity of fruit in Hyvard CV of Kiwifruit. Comparison of meanings showed that the application, soil application of 4 kg.ha-1 of humic acid, was more effective in absorption indices of nitrogen elements, phosphorus, calcium and quantitative and qualitative indices of kiwifruit. Treatment of 6 kg.ha-1 soil increased the adsorption of manganese and iron elements and soil treatment of 2 kg ha-1 humic acid had the highest absorption of magnesium. Data analysis showed that zinc and copper elements were more adsorbed in humic acid by 2 and 4 kg.ha-1 in spray application. In this study the lowest value of measured elements obtained in control trait.
Hosein Nazari Mamaqani; Seyyed Jalal Tabatabaie
Abstract
Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption ...
Read More
Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome) and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield.
Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100)andnickelattwo levels of0and2mg per liter (Ni0, Ni2)ofnickelsulfate(NiSO4)in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo). Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots) were separated and each separate simultaneous freshweight wasmeasured. Dry weight of organs wasmeasured afterit was oven-dried at 80ºCfor 72h. Leavesoven-dried andthenpowdered, and weredigested(usingacid) tomeasure theelements. Extracts from thedigestionmethodwere used for determination ofnickelusingDimethylglyoximemethod.Spectrophotometer used to cover the wavelength at 530nm. Potassium was measured by Flame Photometer410.Totalnitrogenwas measuredbyKjeldahlmethod.Thehomogeneouspowders of dried leaves with hot water were extractedwithnitratemeter(Horiba, Japan)and they were used to measuretheirnitrate content. Analysis was performed usingthe Software Statistical Package for the Social Science (SPSS) v. 16.0. Individual treatment means were compared with a Duncan’s test to determine whether they were significantly different at the 0.05 probability.
Results and Discussion: U50treatedwith 1.8 fold increasecompared with thecontrol groupshowed thehighestfresh weight. The yield increased with increasing concentration to 50 mg/l urea, butat higher urea concentrations, 50 mg/l,yieldsignificantlydecreased, althoughitwas significantlyhighercompared to control. .Enhanced growth and yield in two levels of U25 and U50were coerced. It was duo tohydrolysis urea with the help nickel stored in seed endosperm and also contamination application of nickel fertilizers in nutrient solutionsthat led to release of urea nitrogen.The highestandthelowest concentration ofnickelinleaveswith11-fold increase,were observedatconcentrations ofU50andU100, respectively. Dilution phenomenon occurred with increasingurea concentrationmore than U50.Nickelconcentration inleaveswassignificantlyincreased that this is theopposite offresh weightanddry weight. In U50 treated K concentration was 1.6-fold higher compared to control. With increasing urea concentration more than U50,K concentration decreased. Applyingthe Ni, 8 percent decreased K concentration in leaf tissues. With increasing urea innutrientsolution, totalnitrogenconcentration of leaf tissuealsoincreased,so that theplantsU100 have 1/1-foldmoretotalnitrogencomparedwithU25plants. Theinteractions betweenthe treated also showed that plantsU0Ni2compared to control(U0Ni0), have 1.2-fold moretotalnitrogen. Concentration ofnitrateinplantsleavesthat showednickelwas 1.2 fold highercompared to the plants withoutnickel.Interactive effectofureaconcentration andapplication ofnickelalso showedthat treated plants hadU0Ni0 2.6-fold more nitratethanU0Ni2plantsleaftissues.
Conclusion: Urea was hydrolyzed in low and middle concentrations (U25 and U50) and led to increasing yield. An inhibition of NO3- uptake can result from the action of Ni on H+- ATPase pump, though it can also affect the carrier of H+/NO3symport. Moreover, proteins of the NO3- uptake system contain -SH groups, and due to that they are sensitive to heavy metals including Ni.
Hamed Doulati Baneh; Mehdi Taheri; Aziz Majidi; Mohsen Taheri
Abstract
Introduction: Grapevine (Vitis vinifera L.) is one of the oldest and most important perennial crops in the world. Several native grapevine genotypes, highly appreciated for their organoleptic characteristics and commercial potential are still cultivated in Iran. Developing viticulture requires the conservation ...
Read More
Introduction: Grapevine (Vitis vinifera L.) is one of the oldest and most important perennial crops in the world. Several native grapevine genotypes, highly appreciated for their organoleptic characteristics and commercial potential are still cultivated in Iran. Developing viticulture requires the conservation of autochthonous varieties that have evolved several mechanisms enabling them to cope with the local bioclimatic and edaphic conditions. Nutrition is a key component of vineyard management that has the potential to influence various factors in vine production that includes fruit set and quality. To develop suitable nutrient plant growers need to have an understanding of the factors such as cultivars, rootstocks, soil type, irrigation type and nutrients that they are applying in the vineyard. The uptake of nutrients from the soil depends on different factors namely; their soluble content in it, soil pH, plant growth stage, plant genetics and types of soil and fertilizers. Plant species have a variety of capacities in removing and accumulating elements. Vigorous genotypes are more capable of finding the necessary nutrients from the surrounding soil environment. This indicates that it does not require as much nutrient as poor vigor genotypes. So, for sustainable viticulture, it is important to know the interactive influences of cultivars, soil characters, climatic conditions, and irrigation type on vine productivity.
Materials and Methods: To evaluate and compare the amount of macronutrient elements (N, P, K, Mg and Ca) and micronutrient elements (B, Zn and Mn) in petiole of some Iranian grapevine cultivars including Bidanesefid Qazvin- Peikany Kashmar- Khalili Shiraz-Rasha and four foreign cultivars Thompson seedless, Flame seedless, Perlette and Black seedless,This study was carried out as –randomized complete blocks design -with-four replications in the Kahriz Horticulture Research station -.A total of 30 adult leaves per cultivar were taken from lower, middle and upper regions of the vines bulked together and transported directly to the laboratory. They were oven-dried for 48 h at 70 °C and grounded to pass through a 1 mm diameter sieve. The concentrations of the -mineral elements were determined using an atomic absorption and spectrophotometer.
Results and Discussion: The results showed there was significant difference among study cultivars in respect of elements concentration in petiole-. Among 8 cultivars, the highest and the lowest petiole N concentration were recorded in Flame seedless-and Peikany and Rasha cultivars respectively. P -concentration in Bidane sefid Qazvin was significantly higher than all tested cultivars. The highest and the lowest Mg amounts were measured in Peikany and Bidanesefid Qazvin, respectively. In petiole of cultivars B concentration was in the range of toxicity except Rasha that had the concentration less than -other cultivars. Iranian cultivars had lesscap ability to absorb Zn than abroad cultivars. The highest and lowest Zn were recorded in petioles of Thompson seedless and Peikany cultivars, respectively. It was reported that the mineral content of a grapevine is a combined result of the root systems ability to absorb, trans locate and accumulate the different nutrients. Previous investigations had clearly stated the differences in nutrients uptake and content of many grape cultivars. Furthermore, grape cultivars have shown differences in their nutrients uptake and distribution. These differences may be explained in different ways. First, cultivar may have different absorption capability or tendency for some specific minerals. Second, differences exist in translocation and distribution of nutrients and third, hormone synthesis of cultivar roots and their translocation is done. Finally, some nutrients might be assimilated mostly by roots; thus reducing the amount translocated to the shoots. In addition, some grape varieties may alter soil chemical characters and play a role in improving nutrients uptake. The rootstocks of V. labruscaand scions grafted on them achieve a higher ability in uptaking iron, even in markedly alkaline soils. Such tolerant varieties can mobilize iron by reducing soil pH at root level, thanks to their ability to emit H+ and/or organic acids.In the latter case, iron is absorbed and transferred as a complex. Roots of some cultivars can also reduce Fe3+ to Fe2 + encouraging its migration from roots to leaves.
Conclusion: The studied grapevine cultivars displayed a considerable level of variability based on mineral content analysis. The results suggested that significant differences existed in the leaf petioles elemental concentrations among the grapevine cultivars analysis that might be in due part to the ability of the cultivar to accumulate metals. This study could be also used as a reference for grape growers to help them decide the best varieties that might grow under their soil conditions giving the best growth and yield productivity.