Yaser Esmaeilian; Mohammad Behzad Amiri; Sadegh Askari Naeeni; Jalil Moradi Sadr; Farhad Heidari
Abstract
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient ...
Read More
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient in long-term in tropical ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of agrochemicals in agricultural systems is also known to have irreversible effects on soil and water resources. Vermicompost is currently being promoted to improve soil quality, reduce water and fertilizer needs and therefore increase the sustainability of agricultural practices in tropical countries. Vermicomposting is a process which stabilizes organic matter under aerobic and mesophilic conditions through the joint action of earthworms and microorganisms. The products of vermicomposting have been successfully used to suppress plant pests and diseases, as well as increase crop productivity. Cow manure is an excellent fertilizer containing nitrogen, phosphorus, potassium and other nutrients. It also adds organic matter to the soil which may improve soil structure, aeration, soil moisture-holding capacity, and water infiltration. Biofertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help plants' nutrients uptake by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes in soil which augment the extent of availability of nutrients in a form easily assimilated by plants. Very often microorganisms are not as efficient in natural surroundings as one would expect them to be and therefore artificially multiplied cultures of efficient selected microorganisms play a vital role in accelerating the microbial processes in soil. Garlic (Allium sativum L.) is a very powerful medicinal plant that is often underestimated. Garlic is easy to grow and can be grown year-round in mild climates. Garlic cloves are used for consumption (raw and cooked) or for medicinal purposes. They have a pungent characteristic, spicy flavor that mellows and sweetens considerably with cooking.
Materials and Methods: In order to evaluate the effect of biofertilizers and organic and chemical fertilizers on yield and yield components of garlic (Allium sativum L.), a split plot experiment based on RCBD with three replications was conducted in 2015-2016 growing seasons, in Gonabad University, Iran. Main plot included different organic and chemical fertilizers (1- vermicompost, 2- cow manure, 3- chemical fertilizer and 4- control) and sub plot included plant growth promoting rhizobacteria (nitroxin, biophosphorous and control). In order to determine physic-chemical properties of soil, sampling was performed at the depth of 0 to 30 cm. Before cultivation, 7 and 30 t.ha-1 vermicompost and cow manure were added to the soil, respectively. Nutrient requirement of garlic for nitrogen, phosphorous and potassium from the chemical source was considered 40, 50 and 60 kg.ha-1. For application of biofertilizers, bulblets inoculated with plant growth promoting rhizobacteria for 15 minutes. Distance in and between rows was considered 10 and 20 cm, respectively. Weeds were controlled manually three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of data variance was performed by using SAS software (Ver 9.1).
Results and Discussion: The results showed that simple effect of chemical fertilizer on bulb diameter was not significant but combined application of chemical fertilizer and biophosphorous increased bulb diameter as much as 18% compared to control. Combined application of nitroxin and cow manure increased bulblet weight per plant by 41% compared to single application of nitroxin. Biophosphorous plus vermicompost, cow manure and chemical fertilizer increased biological yield, respectively, by 25, 18 and 15% compared to single application of these fertilizers. The highest economic yield obtained in treatment of nitroxin plus cow manure. Organic and biological fertilizers are among the most significant resources for improvement of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that these ecological inputs provide favorable conditions for plant growth and development through improvement of physical, chemical and biological properties of the soil (10, 39), therefore, it can be concluded that improvement in most studied traits in the present study was due to the use of organic fertilizers. Fallahi et al. (22) reported the positive effects of organic and biological fertilizers on the improvement of quantitative and qualitative characteristics in chamomile (Matricaria chamomilla L.).
Conclusion: In general, the results of this research showed that combined use of organic and biological inputs can improve quantitative characteristics of plant, and thus decrease the environmental risks of chemical inpus.
Mohammad Behzad Amiri; Alireza Koocheki; Mahdi Nasiri Mahalati; Mohsen Jahan
Abstract
Introduction: Increasing usage of chemical fertilizers imposes irreparable damages to the environment. Disadvantages of chemical fertilizers has led to more attention to the application of organic fertilizers and manures. The use of organic fertilizers and livestock, especially in nutrient poor soils, ...
Read More
Introduction: Increasing usage of chemical fertilizers imposes irreparable damages to the environment. Disadvantages of chemical fertilizers has led to more attention to the application of organic fertilizers and manures. The use of organic fertilizers and livestock, especially in nutrient poor soils, it is necessary to maintain soil quality. Plant growth promoting rhizobacteria (PGPR) occupy the rhizosphere of many plant species and have beneficial effects on the host plant. They may influence the plant in a direct or indirect manner. A direct mechanism would be to increase plant growth by supplying the plant with nutrients and hormones. Indirect mechanisms on the otherhand, include, reduced susceptibility to diseases, and activing a form of defese referred to as induces systematic resistance. Examples of bacteria which have been found to enhance plant growth, include Pseudomonas, Enterobacter and Arthrobacter. Biofertilizers contain organic compounds that increase soil fertility either directly or as a result of their decay (9, 10). Tomato (Lycopersicon esculentum L.) belongs to the nightshade family, Solanaceae. The plant typically grow 1-3 meters in height and a weak stem. It is a perennial in its native habitat, although often grown outdoors in temperate climates as an annual. An average common tomato weighs approximately 100 grams. Tomatoes contain the carotene lycopene, one of the most powerful natural antioxidants. In some studies, lycopene, especially in cooked tomatoes, has been found to help prevent prostate cancer. Lycopene has also been shown to improve the skin’s ability to protect against harmful UV rays. Tomatoes might help in managing human neurodegenerative diseases. The lycopene has no effect on the risk of developing diabetes, but may help relieve the oxidative stress of people who already have diabetes. The purpose of this study was the possibility of replacing chemical fertilizers with biofertilizers, reducing production costs and increasing product quality.
Materials and Methods: In order to study the effects of different fertilizers on the quantity and quality characteristics of tomato (Lycopersicon esculentum Mill.), a split plot experiment based on RCBD design with three replications was conducted in 2009-10 growing season in research farm of Ferdowsi University of Mashhad, Iran. Two levels of poultry manure (zero and 20 ton ha-1) and five different fertilizers (nitroxin (A), phosphate solubizing bacteria (B), A+B, nitrogen and phosphorous chemical fertilizers and control) were considered as the main and sub factors, respectively. Studied traits were fruit number and weight per plant, total yield, marketable yield, spad number, brix index, c vitamin and lycopene content.
Results and Discussion: The results showed that poultry manure increased total yield of tomato compared with control. Chemical fertilizers led to the production of highest total yield. Biophosphorous+nitroxin and biophosphorous increased marketable yield by 17 and 11 percent compared to control, respectively. The highest and the lowest contents of vitamin C were observed in nitroxin and chemical fertilizer, respectively. Biofertilizers and chemical fertilizers increased lycopene content compared with control, so that the maximum content of lycopene was obtained in the biophosphorous with 2.38 mg per 100 g sample, Also, the fruit yield of tomato was more in the first stage of harvesting rather than the second stage. It seems organic fertilizers and biofertilizers increased morphological characteristics and yield of tomato due to provide better conditions to absorption and transportation of nutrient to the plant. It has been reported that this ecological inputs provide favorable conditions for plant growth and development through improvement of physical, chemical and biological properties of the soil, therefore, it can be concluded that improvement of most of studied traits in the present study were due to use of organic fertilizers and biofertilizers.
Conclusions: The cost of this study has been funded by Research and Technology Deputy of Ferdowsi University of Mashhad, Faculty of agriculture, the financial supports is appreciated.
Parviz Rezvani Moghaddam; Mohammad Behzad Amiri; Hamid Reza Ehyaee; Mohammad Behzad Amiri
Abstract
In recent years the use of organic and biological modifier as an environmental friendly replacement for chemical fertilizers has been used more. In order to study the effect of different levels of biological fertilizers and mushroom compost on flower yield and characteristics of saffron corms (Crocus ...
Read More
In recent years the use of organic and biological modifier as an environmental friendly replacement for chemical fertilizers has been used more. In order to study the effect of different levels of biological fertilizers and mushroom compost on flower yield and characteristics of saffron corms (Crocus sativus L.), a split plot experiment based on RCBD design with three replications was conducted in 2009-2011 growing season in research farm of Ferdowsi University of Mashhad, Iran. Plant growth promoting rhizobacteria (use and non-use of Nitroxin) and spent mushroom compost levels (SMC) (0, 20, 40, 60, 80, 100 t ha-1) were considered as the main and sub factors. The results showed that Nitroxin had positive effect on all studied traits, for example the use of Nitroxin increased number of buds per corm by 12 percent compared to the control. Based on the results, levels of 20, 60, 80 and 100 t ha-1 of mashroom compost increased the total weight of corm without scale by 48, 24, 30 and 29 percent respectively compared to the control. Interaction effect of plant growth promoting rhizobacteria and different levels mushroom compost was significant on flower yield, so that in condition of use and non-use of Nitroxin, levels of 60 and 100 t ha-1 mashroom compost were better than other treatments. According to the results, Nitroxin in combine with 40, 60 and 80 t ha-1 mushroom compost increased stigma yield 77, 66 and 30 percent, compared to the same levels in condition of non-use of Nitroxin. In general, the results showed that it seems use of biological fertilizers and appropriate amount of mushroom compost in addition to the maintaining stability of agroecosystems, can improve quantitative and qualitative characteristics of saffron.