Yaser Esmaeilian; Mohammad Behzad Amiri; Sadegh Askari Naeeni; Jalil Moradi Sadr; Farhad Heidari
Abstract
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient ...
Read More
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient in long-term in tropical ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of agrochemicals in agricultural systems is also known to have irreversible effects on soil and water resources. Vermicompost is currently being promoted to improve soil quality, reduce water and fertilizer needs and therefore increase the sustainability of agricultural practices in tropical countries. Vermicomposting is a process which stabilizes organic matter under aerobic and mesophilic conditions through the joint action of earthworms and microorganisms. The products of vermicomposting have been successfully used to suppress plant pests and diseases, as well as increase crop productivity. Cow manure is an excellent fertilizer containing nitrogen, phosphorus, potassium and other nutrients. It also adds organic matter to the soil which may improve soil structure, aeration, soil moisture-holding capacity, and water infiltration. Biofertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help plants' nutrients uptake by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes in soil which augment the extent of availability of nutrients in a form easily assimilated by plants. Very often microorganisms are not as efficient in natural surroundings as one would expect them to be and therefore artificially multiplied cultures of efficient selected microorganisms play a vital role in accelerating the microbial processes in soil. Garlic (Allium sativum L.) is a very powerful medicinal plant that is often underestimated. Garlic is easy to grow and can be grown year-round in mild climates. Garlic cloves are used for consumption (raw and cooked) or for medicinal purposes. They have a pungent characteristic, spicy flavor that mellows and sweetens considerably with cooking.
Materials and Methods: In order to evaluate the effect of biofertilizers and organic and chemical fertilizers on yield and yield components of garlic (Allium sativum L.), a split plot experiment based on RCBD with three replications was conducted in 2015-2016 growing seasons, in Gonabad University, Iran. Main plot included different organic and chemical fertilizers (1- vermicompost, 2- cow manure, 3- chemical fertilizer and 4- control) and sub plot included plant growth promoting rhizobacteria (nitroxin, biophosphorous and control). In order to determine physic-chemical properties of soil, sampling was performed at the depth of 0 to 30 cm. Before cultivation, 7 and 30 t.ha-1 vermicompost and cow manure were added to the soil, respectively. Nutrient requirement of garlic for nitrogen, phosphorous and potassium from the chemical source was considered 40, 50 and 60 kg.ha-1. For application of biofertilizers, bulblets inoculated with plant growth promoting rhizobacteria for 15 minutes. Distance in and between rows was considered 10 and 20 cm, respectively. Weeds were controlled manually three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of data variance was performed by using SAS software (Ver 9.1).
Results and Discussion: The results showed that simple effect of chemical fertilizer on bulb diameter was not significant but combined application of chemical fertilizer and biophosphorous increased bulb diameter as much as 18% compared to control. Combined application of nitroxin and cow manure increased bulblet weight per plant by 41% compared to single application of nitroxin. Biophosphorous plus vermicompost, cow manure and chemical fertilizer increased biological yield, respectively, by 25, 18 and 15% compared to single application of these fertilizers. The highest economic yield obtained in treatment of nitroxin plus cow manure. Organic and biological fertilizers are among the most significant resources for improvement of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that these ecological inputs provide favorable conditions for plant growth and development through improvement of physical, chemical and biological properties of the soil (10, 39), therefore, it can be concluded that improvement in most studied traits in the present study was due to the use of organic fertilizers. Fallahi et al. (22) reported the positive effects of organic and biological fertilizers on the improvement of quantitative and qualitative characteristics in chamomile (Matricaria chamomilla L.).
Conclusion: In general, the results of this research showed that combined use of organic and biological inputs can improve quantitative characteristics of plant, and thus decrease the environmental risks of chemical inpus.
Masoud Azimi; Majid Azizi; Mohammad Farsi; Seyyed Hossein Nemati
Abstract
Introduction: Nowadays, mushroom and fungi are one of the most promising organisms which are used in biotechnology research (industry, medicine and agriculture). In the meantime, medicinal mushroom (mostly consumed as edible and medicinal products) have become a valuable biological resourcesin the pharmaceutical ...
Read More
Introduction: Nowadays, mushroom and fungi are one of the most promising organisms which are used in biotechnology research (industry, medicine and agriculture). In the meantime, medicinal mushroom (mostly consumed as edible and medicinal products) have become a valuable biological resourcesin the pharmaceutical industry. Ganoderma the most legendary species of fungi in China with a long history dating back more than two thousand years.Ganodermalucidum (Fr.) Karst isa species belonging to the order of Aphyllophorales and family Basidiomycetes. The mushroom only growth on two or three types of trees among 10,000 known trees in the world and therefore is very rare. Ganoderma fruiting bodies and spores contain about 400 different bioactive compounds, which mainly includeTriterpenes, polysaccharides, nucleotides, sterols, steroids, fatty acids, proteins andpeptides. The mushroom polysaccharides, in addition to cancer treatment have showed antiviral properties, anti-inflammatory, anti-diabetic, anti-hypertensive and prevent blood clotting. Tavana et al (1) in the evaluation of the use of some agricultural and forest wastes material for production of the mushroom stated that the residue are suitable as a helpful supplements for the activity. Gonzalez-Matute et al (11) used sunflower seed shell after oil extraction as a substrate. They concluded that the sunflower seed shell can be used as the main energy source in the substrate to grow the mushroom. There are different agricultural wastematerials which are good sources for growing mushroom in our country. The use of agricultural residues has attracted much attention in recent years. To the best of our knowledge there are a few published studieson the production of Ganoderma in the field condition. This study was performed on Reishi mushroom (Ganodermalucidum) to investigate the effects of different agricultural wastes on some morphological characteristics (growth rate, fresh weight and dry weight of mycelia, biological yield andcrude polysaccharide content) and polysaccharide contents of fruits.
Material and Methods:The main portion of the medium for production of Ganodermalucidum was wood chips as 5-10 mm long that supplemented with different agricultural wastes included black seed waste, tea waste, hazelnut waste, coconut waste, almond wasteand sesame waste, with two types of bran (wheat and rice). The statistical design was afactorial experiment on the basis of completely randomized design with threereplications. The treatment were included
Wood chips (80 percent) + black seed waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + tea waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + sesame waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + hazelnut waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + coconut waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + black seed waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + almond waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + sesame waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + hazelnut waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + coconut waste (10 percent) + wheat bran (10 percent)
At first Wood chips soaked in water for 2 days until the their moisture reached60-65 then the other agricultural waste materials added on the basis of the treatments and the autoclavable propylene bags filledwith the mixture and autoclaved for 2 hours at 121ºC. After cooling, all bags inoculated with wheat spawn of the Ganodermalucidium and the bags putunderdark condition in growth chamber with 85-95% humidity at 30ºC. After full colonization of the bags, they transfer to the light condition (200-500 Lux) at 25ºC until primordial formation. Then the light increased to 500-700 Lux until fruiting body formation.
Results and Discussion: The results of analysis of variance showed that the use of these agricultural wastes had a significant effect (P≤0.01) on growth rate, fresh weight, dry weight of myceliumand biological yield. The highest growth rate of mycelia (on the basis of days after inoculation to medium colonized completely) was detected in media enriched with tea waste, hazelnut waste, coconut waste and almond waste (15.33, 16.67, 15.33 and 14.33 days, respectively). The lowest growth rate of mycelium was detected in media enriched with black seed waste (30.33 days). The substrate supplemented with almond waste produced the highest amount of fresh fruit weight (31 g) and the lowest fresh fruit weight (15.74 g) was detected under coconut waste treatment. The highest amount of fruit dry weight (6.51 g) observed under the almond waste treatment and the lowest one observed under the coconut waste treatment (3.75 g). The media supplemented with almond wastes produced the highest biological yield (7.75%), but tea waste, hazelnut waste and coconut waste treatments had the lowest biological yield (4.75, 5.32, 5.27 and 3.93 percent, respectively) without significant differences (P≤0.01).