Pomology
Fatemeh Javan; Yahya Selahvarzi; Maryam Kamali
Abstract
Introduction
Today, in the commercial production of strawberries, short day cultivars are used due to having large fruits of desirable quality. Among the short day cultivars available in Iranare Camarosa, Atabaki, Gaviota, Queen Aliza, Paros and McDonance, which can be cultivated ...
Read More
Introduction
Today, in the commercial production of strawberries, short day cultivars are used due to having large fruits of desirable quality. Among the short day cultivars available in Iranare Camarosa, Atabaki, Gaviota, Queen Aliza, Paros and McDonance, which can be cultivated at greenhouse. Titanium dioxide (TiO2) nanoparticles are one of the metal oxides that exist in three forms of rutile, brookite and anatase, which affect growth, enzymatic activity and photosynthesis. Reported titanium nano dioxide in the highest concentration used (11.5 mg/l) increases fruit formation percentage, leaf chlorophyll content, vitamin C content, fruit ripening index, fresh and dry weight of roots and shoots and yield of strawberries. In another study, it was shown that titanium dioxide treatment under drought stress can increase photosynthetic pigments, total soluble solids, vitamin C, phenol, flavonoid, anthocyanin, and antioxidant activity, and it also improved plant performance. increase the strawberry cultivar Ventana compared to the control treatment. In a research found that spraying titanium increases the biomass, fertility and quality of peach fruit. It has alsow been showed that the pomegranate size of flowers and fruits increased with using titanium nano dioxide, and this can increase the quantity and quality of Alberta peach cultivar. Foliar application of titanium nano dioxide in cucumber has been reported to increase photosynthesis and phenolic content and reduce lipid peroxidation. In a research, it was shown that titanium dioxide nanoparticles increased photosynthesis rate, water conductivity and transpiration rate in tomato leaves. Despite the effect of titanium dioxide nanoparticles on the quantitative and qualitative improvement of some agricultural products, the researches conducted on strawberry plants were not complete or were only conducted on a specific variety. Therefore, with the aim of investigating and comparing the morphological and biochemical traits of some commercial strawberry cultivars under the effect of foliar spraying with titaniumdioxide, the above research was conducted.
Materials and Methods
This research was conducted to investigate the effect of nano titanium dioxide foliar spraying on four strawberry cultivars in the hydroponic greenhouse of the Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad in 2020-2021. Experimental treatments included 4 levels of titanium nano dioxide (0, 5, 10 and 20 mg/l) and 4 strawberry cultivars (Sabrina, Paros, Gaviota and Camarosa) with 4 replications. The research was done in a factorial manner based on a completely random design. JMP 8 software was used to perform variance analysis and compare the averages of the measured traits. Means were compared using Tukey test at 5% probability level and graphs were drawn using Excel 2010 software.
Results and Discussion
According to the tables of mutual effects of titanium dioxide nano treatments and varieties, it can be found that the application of titanium dioxide nanoparticles had a positive effect on the desired characteristics in all four studied strawberry varieties. So that the application of different levels of titanium dioxide nano particles causes a significant increase in quantitative traits (number of leaves, leaf area, root length, fresh and dry weight of aerial and root parts, photosynthetic pigments) The yield-dependent traits compared to the control plants were found in strawberry-strawberry cultivars. Nano titanium dioxide had an effect in increasing the number of fruits and vegetative traits of all investigated cultivars, in such a way that, on the one hand, with a balanced increase in vegetative growth, and on the other hand, improving the efficiency of photosynthesis and absorption through the roots and increasing the percentage of fruit formation. , increased the yield per plant. Also, sprinkling of titanium nanoparticles on all levels caused a significant increase in juice pH, TSS, TA, vitamin C, anthocyanin, total phenol, flavonoid and in general qualitative traits compared to the control. In the treatment of nano titanium dioxide, especially at the level of 10 mg/liter, better results were observed.
Conclusion
According to the results, the use of Paros and Gaviota cultivars is recommended to farmers and agricultural researchers due to its high yield and good quality.
Ornamental plants
Vahid Ghasemi; Abdollah Ehtesham Nia; Abdolhossein Rezaei Nejad; Hassan Mumivand
Abstract
Introduction
Salinity stress impairs the absorption of elements such as potassium, leads to decrease in water and minerals, or due to an increase in Na+ effects the absorption of other elements. Salinity of water and soil is one of the obstacles to the expansion of agriculture in most part of ...
Read More
Introduction
Salinity stress impairs the absorption of elements such as potassium, leads to decrease in water and minerals, or due to an increase in Na+ effects the absorption of other elements. Salinity of water and soil is one of the obstacles to the expansion of agriculture in most part of the world. Salinity causes several physiological and morphological changes in plants and affects growth and photosynthesis. Salinity stress also affects the absorption of nutrients, and finally the plants sensitivity to stress increases. High concentrations of Nacl in rhizosphere reduce the water potential and cause physiological drought stress. In addition, salinity stress can cause ion toxicity and imbalance, which can damage the plant. Salinity stress has been shown to reduce plant biomass by decreasing photosynthetic capacity and chlorophyll content. As stress increases, stomatal conductance and CO2 assimilation decrease, which both negatively impact photosynthesis and lead to a decrease in plant growth. Dianthus is an annual or perennial plant that produces velvety flowers in various colors. Due to its resistance to cold and wide range of colors, it is commonly used in landscaping. However, limited research has been conducted on the response of Dianthus to environmental stress, making it important to investigate its behavior under such conditions.
Material and Method
This research was conducted at greenhouse of municipality of Khomein, Iran. The statistical design was used in the factorial experiment based on CRD. Experimental factors included salinity stress (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 mM) and cultivars (Barbarin and Diana). After preparing the seeds, it is first disinfected using sodium hypochlorite and then planted in plastic pots containing soil, sand and manure. At the end of the experiment, morphological traits, stomatal conductance, photosynthesis rate, Na+, K+ and Na+/K+ was also examined. Gas exchanges were measured using an exchange measuring device (LCA4, ADC Bioscientific,Ltd., Hoddesdon, England). At the time of measuring gas exchanges, the temperature under chamber was 26-29 C and relative humidity was 58-62%. (stomatal conductivity is based on mmol/m2/s and photosynthesis in µmol/m2/s). To measure the concentration of Na+ and K+, the leaf first turned to ash (at 550 C). Then 5 ml of hydrochlorid was added to dissolve the sample and the volume of the filtered solution was reduced to 50 ml with distilled water and the concentration of Na+ and K+ was measured with flame meter. In order to measure the fresh weight of leaves and roots, plant components were separated. Fresh weight was recorded with a scale and then samples were placed in the oven (for 48 h) and weighted again to measure dry weight. Leaf area was measured with a leaf guuge device (A30325) and plant height and root length using a ruler. Statistical analysis of data was performed using Mini Tab and Excel software.
Results and Discussion
Results showed that salinity stress generally affected the growth of both carnation cultivars and reduced vegetative and reproductive growth. According to the results obtained from the study, fresh and dry weight of shoot, root and leaves, root length, plant height, stem diameter, diameter and number of flower, lateral shoot number, stomatal conductance, photosynthesis rate, K+ concentration in Diana and Barbarin cultivars decreased with increasing salinity level. Na+ concentration and Na+/K+ increased with increasing salinity and these two traits were higher in Diana than Barbarin cultivar, which indicates lower resistance of Diana cultivar. The plant's first response to stress is to reduce its leaf area, which reduces the supply of photosynthetic material to the growing parts and consequently hinders growth and flowering. Salinity stress and high osmotic potential in the rhizosphere greatly affect photosynthesis as they decrease pore conductivity. Moreover, excessive absorption of Na+ can interfere with the absorption of other elements, thereby restricting plant growth. Potassium (K+) is an essential inorganic molecule that plays a crucial role in increasing plant resistance to stress. It helps in maintaining turbidity, promoting cell development, and regulating stomatal function. In this study, salinity stress affected the growth and yield of both carnation cultivars, and with increasing stress, all morphological traits decreased. This stress also reduce photosynthesis by reducing stomatal conductance and subsequently reduce other growth characteristics. Growth reduction was observed at high salinity stress concentrations in both cultivars. However, barbarin cultivar showed higher resistance than Diana
Ornamental plants
Badri Gholamian Dehkordi; Saeid Reezi; Masud Ghasemi Ghehsareh
Abstract
Introduction Cyclamen persicum is a genus of Primulaceae family and is a winter pot plant that can be marketed within seven months under proper growing conditions. In recent years, the rapid development of lighting technology has increased the use of several types of LED lamps ...
Read More
Introduction Cyclamen persicum is a genus of Primulaceae family and is a winter pot plant that can be marketed within seven months under proper growing conditions. In recent years, the rapid development of lighting technology has increased the use of several types of LED lamps because of their efficient roles to generate visible light via a lot of wavelengths. Application of some plant growth regulators (PGRs) like GA3 is well-known as an environment-friendly growth regulatorwhich is extensively employed to increase the productivity and and changing the phenotypic features of several ornamental plants.Materials and Methods In this experiment, cyclamen large red flower seeds, i.e. the Halios series, were planted in early May, and then kept in a dark and cool greenhouse for one month. After germination and the emergence of cotyledonary leaves, transplants exposed to two levels of the LED light spectrum for 4 months consisting of the ratios of 70:20:10 and 40:40:20 via white:red and blue with the same intensity 100 µmol/m2/s subjected to a 16-hour photoperiodic conditions. At the end of the third month of growth, GA3 was sprayed on the leaves at four concentrations of 0, 20, 40, and 60 mg/l three times around the experiment. NPK fertilizer with a ratio of 10-52-10 was then applied once a week and a ratio of 20-19-19 fertilizer until the roots were fully established. Afterwards, the leaf area was measured using Digimizer version 5.4.3 software, in which the flowering date was calculated from of transferring time the plants of each treatment under light. In the following, chlorophyll and carotenoid contents were measured using Lichtenthaler and Wellburn method. Leaf soluble sugar was measured using the Oregon method and the chlorophyll fluorescence indices were measured using FluorPen FP 100.Results and Discussion According to the results, the highest leaf number of cyclamen seedlings in the treatment of 40:40:20 was equal to seven, whereas the highest leaf area (9.8 cm2) observed under the light treatment of 70:20:10. the blue LED light can affects on differentiation of leaf mesophilic cells as well as the development of intercellular spaces, and the red light affects the production of a plant hormone so-called Meta-Topolin, which stimulates cell division and leaf expansion. Here, it should be noted that adding white LED light to the composition spectrum increases both growth and photosynthesis because of its deeper penetration into the plant canopy. The maximum root length was achieved at a concentration of 60 mg/l GA3 equal to 5.1 cm. It should be mentioned that GA3 is effective to increase the growth of cells in different parts of the plant (such as roots) by stimulating mitotic division. The closest date to cyclamen flowering time (90 days) was obtained in 70:20:10 treatment. . The highest amount of chlorophyll b was achieved from the interaction of light treatment 40:40:20 and concentration of 0 mg/l GA3 equal to 0.35 mg/g. Results showed that the red light is needed for the photosynthesis, whereas the blue light is needed for chlorophyll and chloroplast synthesis, stomatal opening, and photomorphogenesis. The highest amount of leaf soluble sugar of cyclamen seedlings was achieved from the interaction of 40:40:20 and the concentration of 0 mg/l GA3 equal to 0.53 mg/ml. Carbohydrates mostly accumulate in the leaves under blue light, whereas the red light can cause them to accumulate by preventing the transferring the photosynthetic products from the leaves. Among chlorophyll fluorescence indices, the highest VJ index was obtained from 40 mg/l GA3 concentration equal to 0.51. VJ was measured from the first light pulse, in which its increase via increasing the performance of the photosynthetic apparatus reveal the ability of seedlings to make better use of environmental conditions applied to produce more carbohydrates as well as to enhance the growth quality. The highest values of φ-E0 and Ψ-0 indices in GA3 0 treatment were 0.44 and 0.54, respectively, indicating that increasing them improves the performance index of the photosynthetic apparatus. The external GA3 increases only the amount of chlorophyll and soluble protein content in the leaves of some plants, and interferes with the greater light reflection, chlorophyll fluorescence and eventually the performance of photosystem II. In this regard, the highest amount of ABS/RC index was observed in the interaction of 40:40:20 and concentration of 60 mg/l GA3 equal to 2.27, which is equal to increasing the performance index of photosynthetic device. During the plant growth, the use of monochromatic LED light compared to the full visible spectrum or red + blue lights would lead to creating some defects in the electron transport chain.Conclusion An increase in PI (Plant Photosynthetic Performance Index) means that the plant is operating under conditions of normal photosynthesis. In general, an increase in this index indicates the ability of seedlings or mature plants to make better use of environmental conditions to produce more carbohydrates and improve growth quality. The relationship between increasing the amount of chlorophyll b, leaf soluble sugar and ABS / RC index all in 40:40: 20 treatment while confirming this correlation, shows that since most of the light absorption by chlorophyll is in the red and blue light spectrum. 40: 40: 20 is better than 70: 20: 10 with more red and blue light. The effect of light of any quality or GA3 at any concentration on the qualitative traits of seedling or adult plant growth is directly related to plant genotype and no specific effects can be determined for them. The use of complementary LED light may in some respects lead to a further increase in the quality of Cyclamen seedlings, but it is only reasonable to use them if it compensates for other production costs, including electricity consumption. Finally, chlorophyll fluorescence indices are also independent of each other in terms of their effect on the performance of the photosynthetic apparatus.
Yahya Selahvarzi; Someyeh Sarfaraz; Mohsen Zabihi; Maryam Kamali
Abstract
Introduction: Drought is known as one of the most important factors limiting the growth and production of plants in urban landscape. Drought has limited production of 25% of the world's agricultural lands. Water allocated to the landscape irrigation has high value and should be used optimally ...
Read More
Introduction: Drought is known as one of the most important factors limiting the growth and production of plants in urban landscape. Drought has limited production of 25% of the world's agricultural lands. Water allocated to the landscape irrigation has high value and should be used optimally with high efficiency. Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods such as the hydrometer method. Soil texture has agricultural applications such as determining crop suitability and predicting the response of the soil to environmental and management conditions such as drought or calcium (lime) requirements. Soil texture focuses on the particles that are less than two millimeters in diameter which include sand, silt, and clay. Soil texture affects the water content and drainage ability of soils. This is because texture controls the nature of soil pores, i.e. the voids or spaces between the mineral particles in a clay soil. For example, there are many minute pores or micro pores between the tiny clay particles. Being small, they tend to retain water but to exclude air. As a result, clay soils are prone to drain poorly and to become waterlogged. By contrast, sandy soils are dry soils. On the other hand, application of new techniques to maintain soil moisture is essential. One of these techniques for increasing soil water retention is use of natural moisture absorbing materials such as zeolite. Zeolites are one of the new and effective substances to improve the soil water retention and preserve water and minerals in the soil. Zeolites contain elements such as potassium, calcium, sodium, silicon, aluminum, magnesium, iron and phosphorus that can be considered as the best dietary supplement and fertilizer and play an important role in the utilization and production of the most agricultural products. Ligustrum vulgar L., belongs to the Oleaceae family, is native to warm regions, European and Asian countries including Iran. This plant is one of the most widely used perennial plants in the landscape spaces. This study was designed to investigate the effects of drought stress and soil texture on growth and some qualitative and quantitative traits of the Ligustrum vulgare. Materials and Method: In order to investigate the effect of zeolite and soil texture on quantitative and qualitative traits of Ligustrum vulgare under drought stress, a factorial experiment was conducted based on completely randomized design with three replications, in the greenhouse of Agricultural Faculty, Ferdowsi University of Mashhad in 2019. The treatments consisted of four types of soil texture (100% soil, 100% sand, 80% soil + 20% zeolite, 80% sand + 20% zeolite) and three levels of irrigation (25, 50 and 100% field capacity). Plant height, number of leaves, number of lateral branches, maximum root length, root volume, shoot and root dry weight and length of lateral branches were measured in each pot. Physiochemical traits such as relative water content, electrolyte leakage and photosynthetic pigments were also measured. Statistical analysis of data was analyzed by JMP8 software. Graphs were plotted using excel and all mean comparisons were performed by LSD test at p < 0.05%. Results and Discussion: According to the results, decreasing irrigation levels reduced vegetative traits such as fresh weight and dry weight. Relative water content also decreased, but ion leakage increased by decreasing irrigation levels. The highest stem fresh weight (18 g), root fresh weight (29 g), total fresh weight (56 g) and total dry weight (20 g) were observed in soil + zeolite, and the highest leaves fresh weight, root volume and plant height were obtained in soil and soil + zeolite treatments. The lowest root volume was observed in sand and zeolite treatments which had no significant differences. In addition, ion leakage was lower in the treatments containing zeolite than the other treatments. The highest amount of SPAD (72) and chlorophyll b (31.5 mg / g fresh weight) were observed in sand + zeolite treatment and 25% field capacity. According to the results, it seems that soil and soil + zeolite in low irrigation conditions were more suitable environment for growth of Ligustrum vulgare and sandy bedding would reduce plant growth in normal conditions as well as under drought stress.
Mansour Fazeli Rostampour
Abstract
Introduction: Yaghooti grape (Vitis vinifera L.) is an important variety in Iran and also it is the most important horticultural product of Sistan region. This variety is of interest for economical aspect. Because continuous drought in Sistan region has been a serious threat to the grape production, ...
Read More
Introduction: Yaghooti grape (Vitis vinifera L.) is an important variety in Iran and also it is the most important horticultural product of Sistan region. This variety is of interest for economical aspect. Because continuous drought in Sistan region has been a serious threat to the grape production, local farmers have to manage the problem by reducing the volume and irrigation intervals. The canopy plays a key role in radiation energy capture via photosynthesis apparatus, water use as regulated by transpiration, and microclimate of ripening grapes and also grape yield, quality, vigor, and the prevention of grape diseases. Since vines has high vegetative growth makes them compete with the reproductive growth, therefore vines be pruned every year.
Materials and Methods: In order to evaluate the effects of irrigation regime and green pruning on some physiological traits and fruit yield of Yaghooti grape, the present research was conducted in the research and extensional garden of Zahak city during 2017-2018. An experiment was carried out in the form of a split plot based on randomized complete block design with three replications. Three irrigation regimes of 100, 75 and 50 percent of the grape water requirement based on the potential evapotranspiration of grape and green pruning with three levels including the control plot or the local practice of not green pruning (P1), pruning the green branches starting from the sixth leaf above the last grape bunch (P2) and pruning the green branches starting from the sixth leaf above the last grape bunch along with green pruning of the green branches without fruit and pruning the unproductive brunches (P3) were allocated to main and sub-plots, respectively. ‘Yaghooti vines were 8 years old and trained as a traditional system. The vines were spaced 3 × 3 m. Water requirement of grape was determined according to the FAO method using data from a Class A evaporation pan. The analysis of variance for each variable was performed with the PROC GLM procedure in SAS 9.4. Multiple linear regression was used to determine the relationships of leaf relative water content, proline, soluble sugars, relative membrane permeability, chlorophyll index, and leaf area to fruit yield.
Results and Discussion: By reducing water consumption from 100 to 75% of grape water requirement, leaf relative water content, fruit juice acidity, chlorophyll index, leaf area and fruit yield decreased 10.1, 6.5, 8.6, 11 and 18.8%, respectively and also proline, soluble sugars and relative membrane permeability increased 67.3, 8.75 and 44.84%, respectively. The P3 treatment compared to control induced an increase in relative leaf water content, chlorophyll index, and fruit yield by 14.7, 12.2 and 25%, respectively as well as a reduction in proline, soluble sugars, relative membrane permeability, fruit juice acidity and leaf area index by 18.34%, 12.1%, 6.8%, 8.3% and 21.3%, respectively. Also the results indicated that providing the 100% of the water requirement combined with pruning the green branches starting from the sixth leaf above the last grape bunch in combination with green pruning of the green branches without fruit and pruning the unproductive brunches (P3) caused the highest grape fruit yield (7797 kg ha-1). Also the interaction effect of meeting 75% of the water requirement and the green pruning had the same result as that of meeting 100%of water requirement under no green pruning conditions. In other words, the green pruning could result in saving 25% of water used by the grape cv. Yaghooti without reducing fruit yield. The multiple linear regression analysis indicated that proline and leaf area were the most important traits impacting fruit yield in Yaghooti cultivar.
Conclusion: Reducing the water potential of vine causes different responses. The most important are a decrease in number cells of fruit, vegetative growth, leaf area, relative leaf water content, chlorophyll content, fruit yield, and increase in the compatible osmolytes. The growing shoots are a strong sink for the consumption of photosynthetic materials. The above mentioned effect causes an increase in the branch overgrowth and its overshadowing. All this factors compete with vine fruit production. So, green pruning and removal of apical dominance eliminates a strong place of nutrient absorption. In other words, green pruning results in a greater accumulation being used by flowers and fruits, causing sufficient light penetration into the crown and reducing evapotranspiration, leading to an increased water consumption and fruit yield.
Mahsa Fateh; Taher Barzegar; Farhang Razavi
Abstract
Introduction: Sweet pepper (Capsicum annuum L.) is a worldwide used vegetable, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in ...
Read More
Introduction: Sweet pepper (Capsicum annuum L.) is a worldwide used vegetable, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in scavenging reactive oxygen species (ROS), and enzyme cofactor. In recent years, the application of exogenous AsA has received much attention for use as a biologically safe compound for postharvest quality maintenance of many horticulture crops. Calcium is an essential micronutrient that plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. To our knowledge, however, little information is available regarding the effect of ascorbic acid and calcium lactate on pepper fruits. Thus, the aim of this study was to investigate the foliar application of ascorbic acid and calcium lactate on growth, yield and fruit quality of sweet peppers.
Materials and Methods: To study the effect of foliar application of calcium lactate (Ca) and Ascorbic acid (AsA) on growth, yield and fruit quality of sweet pepper, the field experiment was carried out from June to September 2016 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Pepper plants (cv. California Wonder) were cultivated by applying conventional farming practice for growing in open air conditions. 210 plants (30 plants for each treatment) were selected for uniform size and fruit load, and were sprayed three times (0, 15, 30 days after full bloom) with an aqueous solution containing different concentrations of Ca (0, 0.5, 1 and 1.5 g L-1) and AsA (100, 200 and 300 mg L-1). Each treatment was carried out with three replicates. Pepper fruit were harvested at commercial maturity stage, and transferred to the laboratory on the same day. Leaf area was recorded whit measurement leaf area (DELTA-T DEVICEC LTD, ENGLAND). After fruit harvested, plant length was measured. Fruit was weighted after harvest to determine mean fruit weight. The fruit number per plant and fruit yield per plant was measured to determine of total yield. The total yield expressed in kg ha–1. Flesh firmness was determined with penetrometer (model Mc Cormic FT 32), using an 8 mm penetrating tip. Results were expressed in kg cm-2. The pH values of solutions were monitored with pH meter. TSS was measured in the extract obtained from three fruit of each replicate with a digital refractometer Atago PR-101 (Atago Co., Ltd., Tokyo, Japan) at 20◦C. Total ascorbic acid content was expressed as mg per 100 g of juice. Antioxidant activity was measured using the free radical scavenging activity (DPPH) and calculated according to the following formula: RSA%= 100(Ac-As)/Ac. Statistical analyses were performed with SPSS software package v. 20.0 for Windows, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion: The results showed that foliar application of AsA had significant effects on growth and fruit yield. The highest fruit yield (897.1 g plant-1) was achieved at 300 mg L-1 AsA that had no significant difference with 200 mg L-1 AsA. Foliar application of AsA markedly increased vitamin C content, and also the highest value of total soluble solid (5.7 °B) was recorded from 300 mg L-1 AsA. Ca had no significant effects on growth and fruit yield but significantly improved fruit firmness. The highest fruit firmness (2.13 and 2.16 kg cm-1) was obtained from 1 and 1.5 g L-1 Ca. The maximum antioxidant activity was achieved with application of 300 mg L-1 AsA and 1.5 g L-1 Ca. The fresh sweet peppers were an important source of ascorbic acid for human consumption. AsA significantly increased the amount of vitamin C in the plum and sweet pepper fruits. Foliar treatment of Ca increased vitamin C content. Increasing vitamin C content in fruits after treatment with Ca could be related to inhibiting action of calcium on the activities of ascorbic acid oxidase that use ascorbate as a substrate. The results indicated that treatment of Ca produced fruits with higher firmness compared to control and other treatments. Firmness and resistance to softening can be increased by the addition of Ca, due to interaction of calcium with pectate acid in the cell wall to form calcium pectate and retarding polygalacturonase activity. Differences in the percentage of TSS content at the time of harvest indicated the AsA and Ca effects on carbohydrate accumulation in fruits, which had different potential on respiration rates and consequently storability of plants. The exogenous application of AsA and Ca in sweet pepper plants indicated that treatments had significant effects on ascorbic acid content of sweet peppers. The antioxidant activity has positive correlation with total phenolic content, flavonoids and content of ascorbic acid.
Conclusion: The results of our research indicated that per-harvest foliar application of AsA increased plant growth, fruit number and weight. Also, AsA and Ca treatments improved fruit quality attributes including vitamin C, fruit firmness, TSS and antioxidant activity. These results suggest that AsA and Ca treatments, especially AsA 300 mg L-1 and Ca 1.5 g L-1, may be proposed to improve fruit quality.
Saba Nejatie Zadeh; Saeid Malekzadeh Shafaroudi; Ali Reza Astaraei; Nasrin Moshtaghi
Abstract
Introduction: An emerging field of nanotechnology in recent years is the use of nanoparticles and nanomaterials in agricultural systems which is due to their excellent mechanical, electrical, optical, surface properties, crop protection and nano-fertilizers. Titanium dioxide (TiO2) is a class of nanoparticles ...
Read More
Introduction: An emerging field of nanotechnology in recent years is the use of nanoparticles and nanomaterials in agricultural systems which is due to their excellent mechanical, electrical, optical, surface properties, crop protection and nano-fertilizers. Titanium dioxide (TiO2) is a class of nanoparticles which widely used in the food industry, cosmetics, papers, pharmaceuticals, plastics and industrial raw materials. The widespread industrial application of TiO2 is due to its white pigment, ultraviolet blocking property, and chemical features commonly used to alleviate pollutants concentration in water, soil and air. Owing to its increasing use in the industry, a large part of TiO2 residues are released into the environment, and currently, TiO2 nanoparticles are being considered an emerging environmental contaminant. However, there have been a number of studies reporting beneficial effects of TiO2 on growth and physiological traits of crops. It has been postulated that the TiO2-induced improvement of crop growth is not merely related to the promotion of photosynthesis; other biochemical processes especially nitrogen metabolism are also involved in this event. Ethylene diamine tetraacetic acid (EDTA) is a widely used as a chelating agent, i.e., the chemical is able to sequester metal ions such as Ca2+ and Fe3+. EDTA is used as nitrogen source for doping of TiO2 nanoparticles which improves TiO2 photocatalytic features. The present study was conducted to investigate the effects of TiO2 nanoparticles and EDTA on growth indices and biochemical parameters in spinach (Spinacia oleracea). For detailed evaluation of treatment effects, different concentrations of TiO2 nanoparticles were sprayed on spinach leaves and the samples were collected in a time course.
Materials and Methods: A factorial experiment was carried out in the form of completely randomized design (CRD) with three replications. Soil samples were taken before cultivation of spinach (S. oleracea) seeds (Var VIROFLAY) and analyzed for nutrients’ concentration. Treatments include different levels of TiO2 (T1=0, T2=0.05mg/l and T3=0.1mg/l) and two concentrations of EDTA (E1=0 and E2=130mg/l) sprayed on spinach plants in research greenhouse of agriculture faculty, Ferdowsi University of Mashhad. Aqueous solutions of nanoparticles were treated by ultrasound for 10 min to enhance homogeneity. The solutions were sprayed on the plant at six- leaves stage. The plant samples were taken before reproductive phase for measurement of biochemical parameters. Nitrogen content of plant samples was measured by PDV 500 Macro- Kjeldahl device; Potassium content was determined by 310c flame photometer; phosphorus concentration in plant samples was measured by spectrophotometer model 2100. Chlorophyll and carotenoid contents were measured by the method proposed by Lichtenthaler (1978). For analysis of growth parameters, plant samples were taken a week after TiO2 treatments and leaf area, shoot fresh/dry weight, stem length, internode length, root area, root fresh/dry weight and total root diameter were measured.
Results and Discussion: Application of 0.05mg/l of TiO2 nanoparticles without EDTA resulted in 13.5% and 9.48% increase in nitrogen and protein; respectively, however by increasing nanoparticles to 0.1mg/l, nitrogen and protein content in the treated plants were respectively reduced to 21% and 19.57% of those of control group (p
Maryam Kamali; Mahmood Shoor; Hassan Feizi
Abstract
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications ...
Read More
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications in agricultural research, such as in reproductive science and technology, the transfer of agricultural and food waste to energy and other helpful by-products through enzymatic nanobioprocessing.
An important effect of titanium compounds on plants used for improvement of yield (about 10–20%) in various crops. Other effects of titanium on plants are increasing contents of some essential elements in plant tissue; an increase in enzyme activity such as peroxidase, catalase, and nitrate reductase activities in plant tissue, and research has shown increased chlorophyll content in paprika (Capsicum anuum L.) and green alga (Chlorella pyrenoidosa). Nanotechnologyapplication is now widely distributed throughout life, and especially in agricultural systems. Nano particles, because of their physicochemical characteristics, have been considered the potential candidates for modulating the redox status and changing in seed germination, growth, performance, and quality of plants.nano-TiO2 has shown to be potential for agricultural application because of its photocatalytic disinfection and photobiological effects. Also,stalinizationof soils or waters is one of the world’s most serious environmental problemsin agriculture. During initial exposure to salinity, plants experience water stress, which in return reduces leaf expansion. during long-term exposure to salinity, plants experience to ionic stress, which can lead to premature senescence of adult leaves, which led to a reduction in the photosynthetic area available to support plants growth.However,a few studies have been done on the effects of nanoparticles on ornamental plants. Nanosized TiO2 is a frequently used nanoparticle, consequently there has been an exponential increase in data collection on the effects of TiO2 nanoparticles on different species. There is much less information on the effects of nanoparticles on plants compared to animals. Studies of the effects of TiO2 nanoparticles on plants provide information about the positive and stimulating effects as well as any negative impact. In this study, weaimedto findout the phytotoxicity or positive effects of different concentrations of Bulk TiO2 and nanosized TiO2 on plant growth of Petunia hybridain salinity stress.
Material and Method: experiments were done to assess the effect of different concentrationsof bulk and nanosized TiO2 on petunia growthin salinity stress in a factorial test based on completely randomized design with 3 replications in agriculture faculty of Ferdowsi University, Mashhad. There were 3 factors, including1- three concentrations (0, 75 and 150 mM) of NaCl, 2- bulk and Nanosized titanium dioxide and 3- six concentrations (0, 5, 10, 15, 20 and 40 ppm) of TiO2. Titanium dioxide treatments for foliar application was applied 5 times with intervals of seven days (three times before, and twice after starting salinity stress). The experiment was performed at the College of Agriculture, Ferdowsi University of Mashhad. during the flowering, flower number, corolla length, flower diameter and flower fresh weight were measured. At the end of the flowering phase, parameters such as leaf area, shoot and leaf fresh weight, lateral shoot number, leaf number, chlorophyll a, b, total and cartenoidwere measured. The data were subjected to Analysis of Variance, was done using Mstat-C statistical. The means were separated, using LSD test.
Results and Discussion: Results showed that interaction of salinity, bulk and nanosized titanium dioxide and titanium dioxide concentrationsweresignificanton total chlorophyll, cartenoides, biomass, leaf area and flower number. The highest amount of total chlorophyll concentrations was measured in 20 and 40 ppm TiO2 and 5 ppm Nano treatments, respectively. The highest leaf area (608 cm2) was in 15 ppm Nano treatment. Among levels of nano TiO2,foliar application with 5 ppm had the best flower diameter in general, foliar application of nano titanium dioxide and titanium dioxide have been effective in improving the effects of salinity stress. In addition, the use of titanium dioxide in the highest level (40 ppm) and use of nano titanium dioxide in less concentration in Petunia plant had better effect on morphological traits. An important effect of titanium compounds on plants used for various crops is yield improvement. The positive effects of TiO2 could be probably due to the antimicrobial properties of engineered nanoparticles, which can enhance strength andresistance of plants to stress.
Farzaneh Badakhshan; Farideh Sedighi Dehkordi; Seyyed Mohammad Hassan Mortazavi
Abstract
Introduction: Basil (Ocimum basilicum L.), is considered as one of the main edible crops of Lamiaceae family. In addition of consuming as a leafy vegetable, basil is known as a medicinal plant due to its aromatic and phytochemical compositions. The common edible basil has two main varieties i.e. Green ...
Read More
Introduction: Basil (Ocimum basilicum L.), is considered as one of the main edible crops of Lamiaceae family. In addition of consuming as a leafy vegetable, basil is known as a medicinal plant due to its aromatic and phytochemical compositions. The common edible basil has two main varieties i.e. Green and Opal. Although the production of this plant is highly happened in open farms during hot seasons, recent changes in agricultural policies in terms of year-round production, using less water and increasing the yield and quality, have encouraged the production of basil under controlled environments such as hydroponic systems. The main criteria to proceed a successful hydroponic culture are selecting proper cultivar, planting density and nutrition management. Optimum plant density alleviates the competition between plants and as a consequence, sufficient light and nutrient can lead to higher quantity and quality. This study aimed to discover the impact of plant density on the quality and yield properties of two main varieties of basil under hydroponics system.
Material and Methods: The experiment was done at Shahid Chamran University of Ahvaz during 2015-2016 growing season. A pot experiment was conducted based of Split-plot in time design with three replications. Cultivar (Green and Opal) and planting density (150, 200 and 250 plants per m2) were considered as the main and sub plot respectively. The plants were cut twice and different morphological and biochemical properties including number of leaves, leaf area, leafy parts yield, chlorophyll, carotenoids, soluble solid content, titrable acidity, total phenolic content, antioxidant capacity and essential oil content were analyzed.
Result and Discussion:The results showed that among applied treatments, the highest number of leaves (30.61), leaf area (26140 mm2) and stem fresh weight (3.28 g) were recorded for the var. Green with 150 p/m2 planting density at second cut. In contrast, this treatment had the lowest number of leaves (12.33) and leaf area (10810 mm2) at first cut. While maximum leaf fresh weight (5.84 g) was obtained for second cut of 150 p/m2 planting density, minimum leaf and stem fresh weight (3.09 and 2.01 g respectively) were found for second cut of 200 p/m2 planting density. Total fresh yield as an important criteria for a leafy vegetable was affected by both variety and planting density factors. The highest amount of yield (1427 g/m2) was recorded at second cut when plants were at 250 p/m2. In contrast, the plants of 150 p/m2 had the minimum yield at first cut (1020 g/m2). The chlorophyll content was higher in Opal variety surprisingly and the plants of 250 p/m2 and 150 p/m2 had around 2.09 mg/g chlorophyll at second cut. Similar findings were obtained for total phenolic content of leaves that was around 104.3 mg/Kg fresh weight for these treatments. Lowest levels of chlorophyll (1.29 mg/g FW) and total phenolic content (6.158 mg/kg) were seen in the leaves of var. Green when they were planted at 150 plant/m2 density. The data for total carotenoids content showed that the level of this pigments were affected by both parameters of variety and planting density. The leaves of var. Opal of 250 p/m2 density had the highest (6.252 mg/g fresh weight) carotenoids content. The highest (2.021 mmol Fe II/g FW) and lowest (0.69 mmol Fe II/g) amount of antioxidant capacity was recorded in Opal and Green varieties respectively, when they were at 150 plant/m2 density. The taste related parameters including total soluble solids, titrable acidity and essential oil content were not affected by planting density and variety. However, the level of acidity was increased by increasing plant density. On the other hand, a significant difference was seen in terms of TSS, acidity and essential oil between first and second cuts.
Conclusion: Overall and based on obtained data, it can be said that the var. Opal at 150 and 250 plants/m2 density showed the best results in terms of evaluated morphological and qualitative traits and can be recommended for hydroponics basil cultivation. Basil is harvest in 2-3 cuts and this experiment showed that for almost all vegetative parameters, the second cut had better results. The improved yield and quality at second cut could be attributed to the better establishment of roots and providing higher levels of nutrients.
Morteza Goldani; Maryam Kamali; Mohammad Ghiasabadi
Abstract
Introduction: Salinity tolerance in plants can increase the importance of it as a result of the decreasing availability of high-quality irrigation water. Saline irrigation water can have many negative effects on crops. When irrigation water has high salinity, the salt may precipitate on the leaves as ...
Read More
Introduction: Salinity tolerance in plants can increase the importance of it as a result of the decreasing availability of high-quality irrigation water. Saline irrigation water can have many negative effects on crops. When irrigation water has high salinity, the salt may precipitate on the leaves as the water evaporates. Thus it can result in foliar uptake and phytotoxicity. The irrigation water may also cause accumulation of salt in the substrate, which may lead to salt uptake by the plants. Salt injury occurs when too much NaCl accumulates in the substrate. When excessive concentrations of NaCl are present in the soil, water uptake may be inhibited and it causing a physiological drought stress. However, potassium is required by plants in amounts (in kg unit) of similar or greater than nitrogen (N). K Uptake by the plant is highly selective and closely coupled to metabolic activity. At all levels in plants, within individual cells, tissues and in long-distance transport via the xylem and phloem, K exists as a free ion in solution or electrostatically bound cation. Potassium takes part in many essential processes such as enzyme activation, protein synthesis, photosynthesis, phloem transport, osmoregulation, cation-anion balance, stomatal movement and light-driven nastic movements. Potassium Chloride (KCl) is used as a source of nutrients in agricultural development and also used as relieve salinity stress.
Materials and Methods: In order to study the mitigation effects of KCl on salinity (NaCl) in mustard plant (Parkland and Goldrush), an experiment was carried out at the Research Greenhouse, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. The experiment was managed as a factorial arrangement based on completely randomized design in three replications. Treatments were included NaCl (0, 30, 60 and 90 mM) and KCl (0 and 20 mM) and two cultivars.
Relative water content was calculated by the following formula using leaf disc obtained from a young leaf of each plant.
(DW+ FW/ DW+ TW)*100FW=fresh weight, DW=dry weight, and TW=turgid weight
Electrolytic leakage was calculated by the following formula:
EL=L1/L2 where L1 is electric conduction of leaf after putting in the deionized water in 25°C and L2 is the electric conduction of the autoclaved samples.
Leaf area was measured by Leaf area meter. Shoot and root dry weights were determined after drying the samples in 75°C for 48 h.
Chlorophyll concentration was calculated by the fallowing formula:
Chla (μg/ml) = 15.65A666 – 7.340 A653
Chlb (μg/mml) = 27.05A653 – 11.21 A666
Analysis of variance was calculated using MSTAT-C.1software and means were compared by LSD test at probability level of 5%.
Results and Discussion: The results showed that the treatments of NaCl, KCl and interactions with cultivars were significantly different on dry weight, leaf area, photosynthesis, stoma conductivity and chlorophyll rate. The maximum shoot dry weight (3.44 g/plant) and photosynthesis rate was obtained from T2 (20 mMKCl and without NaCl). The maximum membrane stability index was obtained in Goldrush cultivar and T2. The minimum of these traits were observed in zero mMKCl and 90 mMNaCl. High level of NaCl (60 and 90 Mm) and increasing application of KCl could not improve all traits. According to the result of the analysis of variance increasing density of sodium chloride in planting areas has a special effect on the size of leaves, weight of dried plant and each leaf and dried root. This effect shows a meaningful variation between the weight of dried leaves and its dried root and shoots. The salty areas have a lot of negative ions like Magnesium, Chlorine, sodium and sulfate. These materials are harmful by themselves or cause affective disorder in plants metabolism. Salinity treatments applied to significant influence (p≤0.01) on the characteristics of photosynthesis, stomatal conductance and number of stomata was read out by SPAD. For example, sodium and potassium competition and chlorine and nitrate competition impairs the absorption of nutrients. The result of this reaction is that the plant needs more energy for producing organic matter so it loses most of its energy to resist against salt. This situation causes a low activity of the root and the growing of shoot consequently reduces. Also, weight and length of plant would reduce too. For example, existing potassium in salty lands causes the reduction of sodium in the shoot of plants. This research was done in a pot with the same amount of salt. Potassium causes the reduction of toxicity effects of sodium. This research showed that the potassium can regulate osmotic pressure and permeability of plant cell membranes and also cause to increase plant tolerance to salinity.
Conclusion: In salty condition, increasing the amount of sodium causes the reduction of potassium, compared with sodium. As a matter of fact this kind of reaction causes the reduction of potassium compared with sodium. We know that potassium can cause a suitable osmotic pressure and reduce the destructive effect of oxidation. So, amount of potassium more than sodium in salty lands is known as the standard resistance. In general, increasing the salinity of sodium chloride can decrease morphological and physiological traits of mustard. The use of potassium chloride in T2 treatment showed the best result. However, Goldrush cultivar showed better results compared with Parkland cultivar in salt tolerance.
Mohammadsadegh Sadeghi; Seyyed Jalal Tabatabaie; Hassan Bayat
Abstract
Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic) and essential elements (e.g. Fe, and Se). Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the ...
Read More
Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic) and essential elements (e.g. Fe, and Se). Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the human diet. The concentration of nitrate in plants is affected by species, fertilizer use, and growing conditions. Green leafy vegetables such as spinach, generally contain higher levels of nitrate than other foods. Nitrate ofplant tissueslevels are clearly related to both form and concentration of N fertilizers applied. Nitrogen fertilizers have been known as the major factors that influence nitrate content in vegetables. Ideally, the N fertility level must be managed to produce optimum crop yield without leading to excessive accumulation of nitrate in the harvested tissues.Usinghigh amounts ofN fertilizer produced higher yield with higher nitrate inleaves but the highest amount of nitrate was accumulated in the petioles.There are several plant species that may accumulate nitrate, including the Brassica plants, green cereal grains (barley, wheat, rye and maize), sorghum and Sudan grasses, corn, beets, rape, docks, sweet clover and nightshades. The presence of nitrate in vegetables, as in water and generally in other foods, is a serious threat to man’s health. Nitrate is relatively non-toxic, but approximately 5% of all ingested nitrate is converted in saliva and the gastrointestinal tract to the more toxic nitrite. This study was aimed to investigate theeffects of nitrogen and nutrient removal on nitrate accumulation and growth characteristics of spinach (Spinacia oleraceae L.).
Materials and Methods: A pot hydroponic experiment was carried out to evaluate the effect of different levels of nitrogen and nutrient removal (one week before harvest) on nitrate accumulation and growth characters. A factorial experiment based on completely randomized design was conducted with twolevels of removal (removal of nutrient one week before harvest) or not to remove and fourlevels of nitrogen (25, 50, 100 and 200 mg/l) with sixreplications. During the growing season in the greenhouse, temperature was fixed between 24-27 °C and photoperiod of 16 hours of light and 8 hours of darkness. The measured traits were root fresh and dry weight, shoot fresh and dry weight, Fv/Fm ratio, and chlorophyll index, number of leaf per plant, leaf area, nitrate and total nitrogen.
Results and Discussion: The results of this experiment showed that increasingnitrogen concentration from 25 to 200 mg/l increased shoot dry weight, number of leaves and leaf area, by 22.00, 7.26, 4.79 and 14.00 fold, respectively. Nitrogen also increased Fv/Fm and chlorophyll index. Nutrient removal in a week before harvest had no significant effect on fresh and dry weight of shoots and roots, number of leaves,leaf area, chlorophyll index and Fv/Fm. Increasing concentrations of nitrogen increased nitrate and total nitrogen in petiole while removing the nutrient solution in a week before harvest significantly decreased amounts of the above-mentioned traits. Nutrient solution removal is an appropriate strategy to reduce nitrate accumulation in spinach that has no effect on yield loss.
Conclusions: The results showed that increasing the concentration of nitrogen increased plant growth indicators such as shoot fresh and dry weight, root fresh and dry weight, leaf area and number of leaf per plants, so that the greatest increase was obtained from concentration of 200 mg/lit. Increasing the concentration of nitrogen enhanced nitrate and total nitrogen of petiole so that the highest concentration of nitrate and total nitrogen was observed in200 mg/lit nitrogen. Nutrient solution removal in a week before the harvest had a significant effect in reducing all traits but it decreased nitrate accumulation and total nitrogen of petiole significantly. At the end of the experiment, it was found that increasing the concentration of nitrogen increased nitrate concentrations and total nitrogen in the petioles while nutrient removal in a week before harvest reducedthe amount of leaf nitrate. Thereforethe removal ofnutrient solution is one of the strategies to reduce nitrate accumulation that had no effect on yield loss of crop. Based on the results from this research, nitrogen at a concentration of 200 mg/lit, with the removal of nutrient solution a week before harvest is recommended for growing in hydroponic culture of spinach.
Rozita Khademi Astaneh; Seyyed Jalal Tabatabaie; Sahebali Bolandnazar
Abstract
Introduction: Selenium is a non-metallic, rare chemical element and essential for many organisms but this element is not mentioned as an essential element for plants. Due to its presence in antioxidant defense systems and hormonal balance, selenium is known to be necessary in human and animal health ...
Read More
Introduction: Selenium is a non-metallic, rare chemical element and essential for many organisms but this element is not mentioned as an essential element for plants. Due to its presence in antioxidant defense systems and hormonal balance, selenium is known to be necessary in human and animal health Plants exhibit a variety of physiological responses to selenium.Some species accumulate large amount of selenium, while many plant species are sensitive to presence of large amounts of selenium in soil and water. The mean, the maximum and tolerance level of selenium required for humans is 45, 55 and 400 micrograms, respectively (Dietary Reference). but acute toxicity level in animals are found with a concentration of 1000 ppm. Plants absorb and storage selenium in chemical form and concentration depends on pH, salinity and calcium carbonate content. High contents of selenium reduce plant growth and plant dryness, however in some plants low selenium concentrations improved growth and increase stress resistance by maintenance of chloroplast enzymes. Positive response to the use of selenium were mentioned in lettuce, potato, mustard, crap, darnel, soybean (Glycinemax L), potatoes and green tea leaves. Research has shown that there is a positive relationship between selenium concentration and glutathione peroxidase activity, which is a reason to delay aging and increase growth of aging plants. The results of this study had shown that the application of selenium treatments increased leaf area of plants and, consequently, the higher availability of asmilates, can increase plant growth. The results of the studies also indicated that all vegetative characteristics of plants are increased due to the concentration of selenium and the accumulation capacity of plants affected by selenium application. Since there is no research on the effect of selenium on cabbage, it seems that the use of this element can affect the growth and development of this plant.
Materials and Methods: This experiment was tested in a controlled condition hydroponic greenhouse of Horticulture Department, College of Agriculture, University of Tabriz, The greenhouse was covered with polyethylene monolayer and equipped with a cooling and fogging systems to control the temperature in the warm months and humidity, respectively. Daily temperatures were setted3 ± 20 3 ± 16. Seeds of Gemmifera varieties brussels cabbage weregerminated in petri dishes. Seedlings were transferred to the plastic cups (to the floating system) with perlite in four leaf stage. . Plants root system were floated in solution. Modified Hoagland nutrient solution (Table 1) was prepared (12 liters per container with 40 and 32 cm height and diameter, respectively.
Results and Discussion: Results of vegetative Brussels sprouts button showed that selenium significantly increased leaf, stem and root dry weight, leaf number and leaf area. Leaf area, leaves, stems and roots fresh and dry weight increased with increasing selenium up to 8 mg L- but then decreased due to a high concentration of selenium toxicity. There were no significant difference in the treatments on stem length, stem diameter. Number of buds was significantly (P≤0.05) affected by selenium treatments and the highest number of sprouts were in two levels of 8 and 16 mg selenium per liter, respectively. Yield and shoot dry weight showed a significant increase (at 1 percent) with increasing levels of selenium,.Conclusions Plants yield significantly (P≤0.01) affected by selenium treatments, so that selenium concentration in the nutrient solution increased from 0 to 8 mg L-1increased yield and reduced afterward. The maximum yield was observed at a concentration of 8 mg L-compared with control. Based on the findings of this study, selenium concentration can be up to 8 mg L-1 in order to improve plant growth to nutrient solution.
Hamed Doulati Baneh; Efatozaman Montazeri
Abstract
Introduction: Iron chlorosis is considered to be one of the most important nutritional disorders in grapevines, particularly in calcareous soils that under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year. Symptoms of iron chlorosis ...
Read More
Introduction: Iron chlorosis is considered to be one of the most important nutritional disorders in grapevines, particularly in calcareous soils that under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year. Symptoms of iron chlorosis in orchards and vineyards are usually more frequent in spring when shoot growth is rapid and bicarbonate concentration in the soil solution buffers soil pH in the rhizosphere and root apoplast. Several native grapevine (Vitis vinifera L.) genotypes, highly appreciated for their organoleptic characteristics and commercial potential, are widely cultivated in Iran. Cultivated plants differ as to their susceptibility to Fe deficiency in calcareous soils, some being poorly affected while others showing severe leaf chlorotic symptoms. Selection and the use of Fe-efficient genotypes is one of the important approaches to prevent this nutritional problem. In this research the response of three local grapevine cultivars was evaluated to iron chelate consumption in a calcareous soil (26% T.N.V).
Materials and Methods: Well rooted woody cuttings of three autochthonous varieties (Rasha, Qezel uzum, Keshmeshi Qermez) were cultivated in pots filled with a calcareous soil with iron chelate consumption at three rates (0, 7.5 and 15 mg Fe/ Kg soil). The study was conducted with two factors (cultivar and iron chelate) and 3 replicates in a factorial arrangement based on randomized complete block design. Plant parameters including vegetative growth, chlorophyll index and leaf area were monitored during the growth period. At the end of the treatment, fresh and dry weight of shoots and roots were determined. The concentrations of macro and micro elements in the leaves were assayed using an atomic absorption and spectrophotometer. One-way-ANOVA was applied comparing the behavior of the cultivars growing.
Results and Discussion: Analysis of variance showed that chlorophyll index and leaf area differs significantly among tested cultivars. The highest and the lowest chlorophyll index were observed in Rasha and Keshmeshi Qermez cultivars, respectively. Fe chelate consumption up to 7.5 mg/kg significantly increased chlorophyll, leaf area, shoots growth and fresh weight of shoot and root compared to the control. The highest leaf area was related to Rasha cultivar in 7.5 mg/kg treatment. In all tested cultivars by increasing Fe concentration to 15 mg/kg, leaf area was decreased. According to the laboratory results, there was a significant difference in the concentrations of some macro and micro nutrient of leaves among tested cultivars. The highest amount of K, Fe, Mn and Zn was recorded in leaves of Rasha cultivar. Qezel uzum has also the highest P, N, Ca, Mg and Cu in its leaves. Application of 7.5 Fe mg /Kg soil increased calcium, magnesium and copper concentrations in leaves of Rasha cultivar and nitrogen concentration in Qezel uzum cultivar. In Keshmeshi Qermez cultivar, the sensitive cultivar to iron chlorosis, iron chelate consumption up to 7.5 Fe mg /Kg soil increased nitrogen, zinc and copper concentrations. Increase in iron consumption up to 15 mg/Kg soil caused significant increase in copper concentration. Among the study cultivars, Rasha significantly absorbed the highest iron, zinc, manganese and potassium from the soil and did not show iron chlorosis, so it can be as a suitable rootstock with respect to iron chlorosis.
Conclusion: In this study we have studied the influence Fe-chelate on some features of three Iranian grapevine cultivars (Vitis vinifera L) grown in calcareous soils. Our findings confirm the variable response of native grapevines to bicarbonate-induced iron deficiency. The most susceptible cultivar, Keshmeshi Qermez, have been very impaired by the calcareous soil; it produced less shoot growth and dry matter since these factors of the tolerant cultivars was decreased very little. The different behavior of potted cultivars with respect to iron chlorosis is related to modifications of some physiological parameters at the root level. A parameter which emphasizes the differential response of the genotypes to stress conditions was the capability of the genotypes to take up elements from the soil. Rasha cultivar showed a high degree of tolerance by taking up more iron when growing on calcareous soil, while keshmeshi cultivar took less iron. It will be recommended use of Rasha cultivar in calcareous soil as on rooted vine or rootstock. These findings suggest that biochemical parameters may constitute reliable criteria for the selection of tolerant grapevine genotypes to iron chlorosis.
Ali Akbar Shokouhian; Gholamhossein Davarynejad; Ali Tehranifar; Ali Rasoulzadeh
Abstract
The base of nut production in almond is flower buds set with best quality and quantity. Although the process of flower buds set is controlled by genetic characteristics, however it affected with inside and outside diverse factors. To understand relationship between these factors for achieve to annual ...
Read More
The base of nut production in almond is flower buds set with best quality and quantity. Although the process of flower buds set is controlled by genetic characteristics, however it affected with inside and outside diverse factors. To understand relationship between these factors for achieve to annual and regular nut production economically. An experiment was conducted in order to evaluate effects of effective microorganisms (EM) under water stress conditions on bud flower formation in two genotypes of almond trees in Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2011. In this research effects of two different concentrations (0 and 5%) of EM and three levels of aridity stress treatments (100, 66, and 33% of FC) on number of flower buds in two genotypes (H1and H2) of almond was evaluated. This experiment was arranged as a factorial experiments based on a randomized complete blocks design with four replications. Results showed that the EM increased amount of leaf area, chlorophyll, storage protein, N, K and P in leaves. In this research, effects of different genotypes, EM and irrigation levels on number of flower bud set were significantly different at the %1 level. Number of flower bud formation increased by treatments of EM application, H1 genotype and irrigation level of FC% 100. There was significant interaction between treatments for this trait at %1 level. The best result was obtained from interaction between H2 genotype and irrigation using level of FC% 100 and EM application.