Medicinal Plants
Salimeh Makhtoumi; Shabnam Khoshbakht; Abbas Ali Nourinia
Abstract
Introduction
Inefficient and excessive use of chemical fertilizers in agriculture has caused soil erosion and pollution of water resources and has also been effective in reducing the quality of crops. On the other hand, the use of beneficial soil microorganisms as bio-organic enhances soil fertility, ...
Read More
Introduction
Inefficient and excessive use of chemical fertilizers in agriculture has caused soil erosion and pollution of water resources and has also been effective in reducing the quality of crops. On the other hand, the use of beneficial soil microorganisms as bio-organic enhances soil fertility, and results in healthier and richer nutritional needs is a further harvest away from ecosystem contamination. Increase crop in terms of quantity and quality without damaging the farm ecosystem, especially medicinal plants. Bio-fertilizers are the latest development in organic farming. They are also a gift from modern agricultural science that should replace chemical fertilizers on farms which play a vital role in maintaining long-term soil fertility and stability. Ocimum basilicuum is a grown aromatic and medicinal plant that is a leafy vegetable of the Labiatae family. This plant has different healing properties and is also used to flavor various food products due to its special taste. Therefore, in this study with the aim of providing a practical solution to reduce the use of artificial fertilizers and environmental pollution, the effect of vermicompost and biological fertilizers on the composition of secondary metabolites and growth of basil (Ocimum basilicuum) was studied.
Materials and Methods
This study was conducted in 2017-2018 to investigate the effects of vermicompost and biological fertilizers on some traits of basil (Ocimum basilicuum) in of Azadshahr in Golestan province. In this experiment, application of vermicompost at three levels (a1: no application, a2: application at a rate of 10% and a3: application at a rate of 20% by weight of soil) and application of biological fertilizers at three levels (b1: no application, b2: use of Bacillus subtillis, b3: use of natural element compounds) were examined. The experiment was carried out in a randomized complete block design with three replications in the exterior space as a pot culture. The alcoholic extract used in this study was performed by soaking. The amount of total phenol compounds was measured by the Folin Siocalto method and the total flavonoid content was measured by aluminum chloride colorimetric method. Data obtained from experiments using the software SAS Ver. 9.1 and comparison of means was performed using the least significant difference test (LSD). Excel software was also used to draw the graphs.
Results and Discussion
The results of analysis of variance showed that the application of vermicompost was significant on root fresh and dry weight, fresh and dry weight of stem, stem length, fresh and dry weight of leaves and leaf area. Also, the effect of biological fertilizers on root fresh weight and stem dry weight was significant. Comparison of means also showed that vermicompost 20% compared to control and vermicompost 10% in traits such as fresh weight of root (5.14), dry weight of root (7.25), fresh weight of stem (25.23), dry weight of stem (2.25), length stem (33.77), fresh weight of leaf (51.85), dry weight of leaf (8/08) and leaf area (75.13) had the highest values. No significant effect was observed between vermicompost and biological fertilizers. The maximum amount of total phenol in vermicompost treatments belonged to 20% vermicompost at 1.98 mg/g, and in biological fertilizers treatments to Probio96 at 1.96 mg/g. Also, the maximum levels of total flavonoids in plants treated with vermicompost were 20% and Probio 96 were 92.13 mg/g and 91.22 mg/g, respectively. The results show that vermicompost had the greatest effect on target organs such as leaf area, fresh and dry weight of basil leaves.
Conclusion
The trade and cultivation of medicinal and aromatic plants is an important part of agriculture. Medicinal and aromatic plants are the main source of known medicines. Therefore, obtaining methods to increase the yield and therapeutic indicators of medicinal plants is of particular importance. In the growth of medicinal plants and biomass production, the quality of raw materials used is important. Chemical fertilizers have several adverse effects on the environment and human health. These effects can include leaching and displacement of various soil layers, groundwater and surface water pollution, accumulation of heavy metals and nitrates, air pollution, acid rain, and chemical accumulation in plants, animals, and human tissues. According to the findings, it is generally recommended to use bio-fertilizers such as vermicompost and Probiot 96 as a suitable alternative to chemical fertilizers in plant nutrition to protect the environment, human health and the positive economic effects of medicinal plants
Medicinal Plants
Maryam Yaghobvand; Hassan Mumivand; Mohammad Reza Raji; Ashkan Banan
Abstract
IntroductionThe aeroponic system is a promising technique for the future of agriculture, growing plants in an air or mist environment without the use of soil or an aggregate medium. In aeroponic, plants are suspended in a closed or semi-closed environment by spraying the plant's dangling roots and lower ...
Read More
IntroductionThe aeroponic system is a promising technique for the future of agriculture, growing plants in an air or mist environment without the use of soil or an aggregate medium. In aeroponic, plants are suspended in a closed or semi-closed environment by spraying the plant's dangling roots and lower stem with an atomized or sprayed, nutrient-rich water solution (30). Increased aeration of nutrient solution delivers more oxygen to plant roots in aeroponic in compare to conventional hydroponic systems, stimulating growth and helping to prevent pathogen formation (1). Cultivation of medicinal plants under controlled conditions of aeroponic and hydroponic systems commercially provides a better result in terms of quality improvement, bioactivity and biomass production (5, 4).Mint (Mentha) is one of the most important genus of Lamiaceae family. Different species of the genus have high economic value, due to their active and aromatic substances and are used as raw materials in food, cosmetics, health, beverage and pharmaceutical industries. M. piperita, M. spicata and M. suaveolens are the most common and popular species of the genus for cultivation. M. aquatica is also a perennial plant of the genus that is cultivated in Europe, North and Northwest Africa and Southwest Asia (2). Aeroponic system is more cost effective than other systems. Because of the reduced volume of solution throughput, less water and fewer nutrients are needed in the system at any given time compared to other nutrient delivery systems. However, due to lack of research and sufficient technical information, the use of aeroponic system is not common among farmers and greenhouse owners. In addition, many tips are not yet scientifically known about the cultivation of different plant species in this system (4). Despite the benefits of aeroponics, no research has been previously conducted on the cultivation of different species of mint in this system. Therefore, the present study was conducted with the aim of investigation of growth, yield and morpho-physiological characteristics of five mint species in the aeroponic system.Methods and MethodsThis study was conducted in greenhouses of faculty of Agriculture and Natural Resources of Lorestan University in 2020. The experiment was performed as a split plot design. Mentha species (including M. aquatica, M. pulegium, M. spicata, M. suaveolens and M. piperita) were considered as the main plot and harvest time (first and second harvests) was used as sub-plot. In each experimental block, one row (with ten plants) of five mint species was planted. In the early stages of growth, plants were fed with half Hoagland nutrient solution and then with complete Hoagland solution. Finally, morphological and physiological traits and some biochemical characteristics of plants were measured. After harvesting the first batch of plants and in order to better evaluation of species in the aeroponics system, all studied traits were measured about two months after the first harvest. Analysis of variance was performed based on the experimental design using SAS software. The comparison of means was also done with the least significant difference (LSD) test at the level of 5%.Results and DiscussionThe results showed that M. spicata and M. suaveolens had the highest leaf to stem ratio. The highest stem dry weight and plant height were related to M. pulegium. While, the highest leaf area, leaf fresh and dry weight, stem fresh and dry weight, stolon fresh and dry weight, shoot fresh and dry weight, total plant dry weight and relative water content were related to M. aquatic, followed by M. piperita. In addition, M. piperita had shown the highest fresh root weight. The highest amount of carotenoid and chlorophyll, photosynthesis rate and CO2 under the stomata was obtained in M. piperita. In this experiment, most of the yield-attributes traits including leaf area, leaf fresh and dry weight, root fresh weight, shoot fresh weight and total plant dry weight, as well as relative water content and photosynthesis rate were higher in the second harvest than the first one.ConclusionAll studied species in this experiment were successfully growth in the aeroponic system. Due to high water use efficiency, no need for soil and high crop production, mint cultivation in the aeroponic system can be a healthy and profitable alternative to in soil cultivation approach. According to the results of the present study, M. aquatica has shown higher performance than other species in terms of the yield attributes traits (including leaf number, leaf area, fresh and dry weight of plant, fresh and dry weight of shoots and fresh and dry weight of leaves). Among the other species, the highest shoot dry weight and plant dry weight was obtained by M. piperita. Finally, the high potential of M. aquatica and M. piperita for cultivation in the aeroponic system can be concluded.
Medicinal Plants
Zahra Izadi; Abbas Biabani; Hossein Sabouri; Babak Bahreininejad; Abdollatif Qolizadeh
Abstract
Introduction
Datura stramonium L. is one of the medicinal plants that have a special role in the pharmaceutical industry due to its alkaloid compounds. Datura is one of the most important medicinal species that is a rich source of alkaloid compounds. Important phytochemical compounds in Datura, especially ...
Read More
Introduction
Datura stramonium L. is one of the medicinal plants that have a special role in the pharmaceutical industry due to its alkaloid compounds. Datura is one of the most important medicinal species that is a rich source of alkaloid compounds. Important phytochemical compounds in Datura, especially alkaloids, have been considered by the pharmaceutical industry. Datura (Datura stramonium L.) is an annual plant of the Solanaceae family, which is native to North America and is found in abundance in the coastal areas of northern Iran from Astara to eastern Mazandaran. Important phytochemical compounds in tattoos, especially alkaloids, have been considered by the pharmaceutical industry. Tropane alkaloids are one of the most important compounds in plants of the Solanaceae family and the anticholinergic effects of these compounds have made their use common in medicine. Important tropane alkaloids include hyoscyamine, ascopolamine, and atropine in D. stramonium. Plant growth is a set of specific biochemical and physiological processes that interact with each other and are affected by environmental factors such as temperature, light intensity, etc. that are affected by the date of planting. In the meantime, analyzing the amounts of photosynthetic pigments is a way to justify and interpret the plant's reactions to different environmental conditions during the growing period, through which it is possible to transfer and accumulate photosynthetic products. Due to the importance of D. stramonium and its widespread use in the pharmaceutical industry, Since Datura plant has not been adequately studied in the literature, the purpose of investigating three different planting date and planting density levels in this plant is to determine their proper values which increase the alkaloids and photosynthetic pigments, resulting in grain growth and yield increment.
Materials and Methods
This research during two consecutive years (1397-1397 and 1397-1398) in Shahid Fozveh research station affiliated to Isfahan Agricultural Research and Training Center and Natural Resources located 25 km west of Isfahan (Latitude: 32°36′37″ N, Longitude: 51°26′52″ E . 1612 m above sea level), which according to the Gauchen division has a mild semi-desert climate. The experiment was performed as a factorial experiment in the form of randomized complete blocks with three replications. Treatments included three densities (6, 10 and 14) plants per square meter and planting date in autumn and spring. Autumn planting of D. stramonium for the first year of the experiment was done on 3 January and in the second year on 30 December. In the spring planting of D. stramonium, due to the long growing season, in order to be productive during the growing season, first the seed of the plant was planted in the planting trays and then in the 3 to 4 leaf stage the seedlings were transferred to the main land. In both years of testing, the seeds were sown on the date of spring planting in March. Field operations including plowing, disc, leveling, preparation and preparation of atmosphere and ridges were carried out in the field. According to different fertilizer levels and density levels, each replication included 9 experimental plots. The length of each plot was 5 m and its width was 3 m, which included 5 rows with a distance of 60 cm. The distances of the plants on the ridge were considered as 15, 20 and 33 cm 33, respectively, according to the densities (6, 10 and 14 plants per square meter). The distance between the replicates was 1 m and the distance between the plots from each other was considered a planting line. The data were analyzed using SAS software version 9.4. The means were compared with LSD test at 5% level and graphs were drawn using EXCEL software version 2010.
Conclusion
According to the results, the density of 6 plants per hectare on the date of autumn planting improved seed yield and increased hyoscyamine and alkaloids. In fact, the density of 6 plants per square meter in this study increased grain yield and the amount of hyoscyamine and ascopolamine. At low plant densities in this study, including densities of 6 and 10 plants per square meter, the amount of photosynthetic pigments increased. Also, maintaining the amount of chlorophyll in young leaves causes a delay in the aging process and increases the durability of the leaf surface, which will have a significant effect on the transfer of photosynthetic material to the seed. More and slower nourishing material is transferred to the grain, so the grain filling period will be longer. The results show that by selecting proper levels of plant density and planting date as two of the most important crop management practices, the number of tropane alkaloids in Datura as one of the important active ingredients in the pharmaceutical industry increases.
Medicinal Plants
Khadijeh Ahmadi; Heshmat Omidi; Majid Amini; Elyas Soltani
Abstract
Introduction
Kelussia odoratissima Mozaff is a native species of Iran which is a rare and endangered species. It grows as a wild in cold and mountainous bioclimatic and is used in traditional medicine to treat various diseases such as cardiovascular disease, gastric ulcer, respiratory and intestinal ...
Read More
Introduction
Kelussia odoratissima Mozaff is a native species of Iran which is a rare and endangered species. It grows as a wild in cold and mountainous bioclimatic and is used in traditional medicine to treat various diseases such as cardiovascular disease, gastric ulcer, respiratory and intestinal inflammation. The change of status from dormancy to germination can be eliminated by using some treatments in accordance with the natural conditions of the mother base habitat. However, some physiological needs of dormant seeds can be met by scratching (mechanical and chemical), washing in running water, dry storage, cold and humid conditions, light, smoke, and plant growth regulators. The aim of this study was to investigate different strategies including pretreatment, leaching and constant germination temperature on seed germination characteristics and Kelussia seedling growth.
Materials and Methods
The experiment was conducted in Petri dishes at Seed Technology Laboratory of Agricultural Sciences Faculty of Shahed University. K. odoratissima Mozaff seeds were collected from their natural habitat in Fereydounshahr, Isfahan province in 2019.
This study was performed in the Crop Physiology and Seed Technology Laboratories of Shahed University, Faculty of Agricultural Sciences, from 23.09.2019 to 22.11.2019. The cultivation was in Petridish at constant germination temperatures after priming and leaching. The experiment was performed as a factorial experiment in a completely randomized design with three replications. Each replication included 36 Petridish and 20 Kelussia seeds were planted in each petri dish. Experimental factors include constant germination temperatures (1, 5, 10 and 15°C), duration of rinsing with running water at 15°C (24, 48 and 72 h) and hormone pretreatment with gibberellin (0, 250 and 500 ppm). Before applying the hormonal pretreatment and temperature, the seeds were washed in running water in such a way that seeds were placed in a strainer that was not immersed and water flowed on the seeds for the specified periods of time for this treatment. In this case, germination inhibitors were washed from the seed surface. According to the test period and laboratory conditions, the laboratory temperature could be controlled at 15 °C with a thermometer and cooling devices. Then, for hormonal pretreatment, the seeds were placed in containers containing gibberellin solution with concentrations of 0, 250 and 500 ppm and refrigerated at 4°C for 72 h. After washing the seeds, 20 seeds were placed in Petridish with a diameter of 10 cm and a height of 2 cm on Whatman filter paper No. 1 and at temperatures of 1, 5, 10 and 15°C with 16 h of light and 8 h of darkness passed. Due to the fact that germination in seeds grown at this temperature at 15°C was zero in all treatment compositions, it was excluded from statistical analysis. To analyze the data variance, the SAS 9.1 statistical software was used. The comparison of means of traits was performed using the Duncan test at 5% probability level.
Results and Discussion
Germination traits, growth indices and physiological parameters of seedling photosynthetic pigments under the influence of leaching, temperature, gibberellin and the interactions of leaching in temperature, leaching in gibberellin, temperature in gibberellin and the combination of leaching treatment × temperature × gibberellin showed significant differences. The results showed that the optimum germination temperature was 1°C and about 54% of seeds were able to germinate at this temperature without using any pretreatment. However, pretreatment of seeds at a temperature of 1°C with gibberellin at 250 ppm and washing for 72 h increased the germination rate to 65%. It has also been shown that treatment with gibberellin at 250 ppm seedling length and gibberellin at 500 ppm improves seedling fresh and dry weight in three leaching treatments at 10°C. Chlorophyll and carotenoid content of seedlings was observed in the combination of 24 hours leaching treatment, temperature of 5°C and gibberellin priming of 500 ppm. Due to the wide variety of species of Apiaceae and also the variety of type and depth of sleep, various treatments to break dormancy and stimulate seed germination of plants of this genus have been proposed, the most important of which are wet and gibberellin. It should be noted that the germination ecology and appropriate treatments to break dormancy in different plant species, plants of the same family, same species and different ecotypes of the same species can be completely different.
Conclusion
According to the results of this study, seed treatment with 72 hours of cold water washing, 1°C and gibberellin pretreatment with a concentration of 250 ppm was able to show the highest germination percentage to achieve High germination is recommended. In addition, at 5°C under gibberellin pretreatment and leaching showed a relatively high germination percentage. Accordingly, gibberellin hormonal pretreatment at low temperatures was effective in achieving more germination under priming conditions. Is. On the other hand, a concentration of 500 ppm gibberellin increased seedling weight and photosynthetic pigments. In general, a temperature of 1°C followed by a temperature of 5°C was effective in increasing the germination of celery seeds and was able to record better results. Also, the suitable seedling growth temperature for mountain celery is 10°C and the application of Gibberellin hormonal pretreatment improved the growth characteristics of Kelussia seedlings.
Medicinal Plants
Mahtab Salehi; Ramezan Kalvandi
Abstract
Introduction Medicinal plants have played an essential role in the development of human culture. Medicinal plants are resources of new drugs and many of the modern medicines are produced indirectly from plants. Although the production of secondary metabolites is controlled by genes, their production ...
Read More
Introduction Medicinal plants have played an essential role in the development of human culture. Medicinal plants are resources of new drugs and many of the modern medicines are produced indirectly from plants. Although the production of secondary metabolites is controlled by genes, their production is considerably influenced by environmental conditions, so environmental factors cause changes in the growth of medicinal plants as well as the amount of active substances. Essential oil quantity and quality are affected by the different environmental conditions. Physiological, morphological and genetic variations were seen in populations of species that occurred in different habitats. These variations were created in response to contrasting environmental conditions. In many plant species, studies on the pattern of variation in populations have shown the localized populations are adapted to the particular environmental conditions of their habitat. The genus Phlomis L. (Lamiaceae) includes about 113 perennial herbs or shrubs distributed in Asia, Europe, and Africa. Some of the Phlomis species have been reported for their traditional uses as analgesic, diuretic, tonic, anti-diarrheic agents and to treat various conditions such as gastric ulcer, inflammation, diabetes, hemorrhoids and wounds. In Flora of Iran, this genus is represented by 20 species, including Phlomis olivieri Benth.Materials and Methods This study was conducted to evaluate the morphological and phytochemical diversity of eleven populations of P. olivieri Benth. from different districts of Hamedan province in 2021. Traits such as plant height, stem diameter, leaf length and width, fresh and dry weight of the flowering branch, inflorescence length, fresh and dry weight of the plant, number of inflorescence cycles, essential oil percentage were measured. In order to investigate the physical and chemical properties of soil, soil samples were collected from a depth of 30 cm. Then they were transferred to the soil laboratory. Plants samples were collected in the flowering stage and were dried at 25-30°C. They were stored in envelopes at 22±3°C away from the sun. For extracting the essential oil of the samples, 100 gr of the plant was milled and then distilled with water. Hydrodistillation lasted for 4 hours. The main components of essential oil were identified and determined by gas chromatography in the Institute of Medicinal Plants in Karaj. Gas chromatography was carried out on Agilent 6890 with capillary column 30m*0.25 mm, 0.25 mm film thickness. The grouping of populations based on morphological and phytochemical traits was done by cluster analysis in SPSS using the Ward method. Also, the traits correlation (quantitative) was done using the Pearson method.Results and Discussion According to the results, the highest fresh and dry weight of flowering branch (6.96 g and 3.48 g) and also the highest fresh and dry weight of the plant (11.77 g and 5.86 g) belonged to the Koohani population. The tallest inflorescence (24.2 cm) belonged to the Jowzan population and the shortest inflorescence belonged to the Gammasiab population (8.9 cm). The highest stem diameter (4.45 mm) was observed in the Garin population. The maximum plant height (49.4 cm) was related to the Rahdarkhaneh population, which was not significantly different from the Garin population, and the minimum was related to the population of Garmak (31 cm), which was not significantly different from the population of Gammasiab (33.50 cm). Also, 31 compounds were identified in this plant essential oil that caryophyllene, germacrene D, and (E)-b-Farnesene had the highest percentage of essential oil constituents. In this study, the highest amount of essential oil (0.04%) was related to the Koohani population which had the lowest altitude among other populations. Therefore, it seems that environmental factors, as well as genetic factors, have been effective in creating diversity in morphological and phytochemical characteristics of this plant.Conclusion The results obtained from this study showed that P. olivieri Benth. populations gathered from different regions of Hamedan province, had a high diversity in terms of essential oil content. The results showed that in addition to genetic factors, environmental and climatic factors also affect phytochemical traits. In this study, the highest amount of essential oil was produced in the Koohani population (located in Nahavand city) with the lowest altitude among other populations. According to the research on the essential oil components of P. olivieri in different regions of Iran, the components of its essential oil and their percentages are completely different; so, some of the components that are seen in one region, are not observed in another region, and this issue emphasizes on the effect of climatic conditions. This difference is quite evident even in the studied populations in a province.
Medicinal Plants
Saghi Keyghobadi; Reza Fotohi Ghazvini; Yahya Tajvar; Atefe Sabouri
Abstract
Introduction
Drought is one of the most important environmental stresses that affects various plants such as ornamental plants. The identification and selection of ornamental tolerant genotypes is essential for landscape projects. Understanding the mechanisms that enable plants to adapt to drought ...
Read More
Introduction
Drought is one of the most important environmental stresses that affects various plants such as ornamental plants. The identification and selection of ornamental tolerant genotypes is essential for landscape projects. Understanding the mechanisms that enable plants to adapt to drought stress can help to select the most tolerant genotypes for cultivation in arid and semi-arid regions.
Materials and Methods
For this purpose, a research was conducted as a factorial experiment based on completely randomized design with eleven genotypes and two levels of irrigation (irrigation as Control and severe drought) at Ramsar Citrus and Tropical Fruits Research Institute.
Results and Discussion
The first symptoms of drought stress were observed after 10 days in the Juniperus horizontalis (G1) genotype (the most sensitive genotype) and were not recovered and dried after 15 days. G3 and G5 genotypes (Ravande-mamouli and Ravande-setarei, respectively) showed drought stress after 28 days (most tolerant genotypes) and recovered at the end of the stress period after irrigation. Drought stress decreased photosynthetic pigments in studied genotypes. The content of soluble sugars, proline, and total soluble protein increased under drought stress conditions and the highest amount was observed in G3 genotype 30.8 mg g-1 DW, 30.5 μg g-1 DW, and 965.2 μg g-1FW, respectively. Under drought stress condition, the highest concentration of hydrogen peroxide, malondialdehyde and electrical conductivity were observed in G11, G4, and G10 genotypes respectively compared to control plants. In addition, the most enzyme activity of superoxide dismutase (85.57%), total phenol (181.09%) and total flavonoid (98.46%) was evaluated in G3, G5 and G8 respectively. Also, chlorophyll changes indicate the response of plants to environmental stresses such as drought during drought stress, the concentration of abscisic acid and ethylene increases, which stimulates the activity of the enzyme chlorophilase and causes chlorophyll degradation. The reduction of photosynthetic pigments under drought stress also seems to be related to changes in nitrogen metabolism to proline production and reduced chlorophyll synthesis because the precursor of chlorophyll and proline is glutamate. Furthermore, one of the biochemical changes that occur in plants under drought stress is the accumulation of ROS. Numerous reports have stated that drought stress increases ROS production. Drought-induced oxidative stress causes lipid peroxidation and membrane damage. It seems that in some genotypes with low levels of malondialdehyde, the membrane damage is severe and leads to more electrical conductivity. Genotypes with more electrical conductivity are more damaged by drought stress. In some genotypes, such as G2 and G11, there was a positive correlation between malondialdehyde content and electrical conductivity, but in others, such as G1, there was a negative correlation. Although the amount of malondialdehyde in this genotype is low, electrical conductivity is very high. In other words, this genotype should be a genotype sensitive to drought stress. The tolerance of the plant to various environmental stresses may be related to the level of activity of the enzymes responsible for scavenging ROS. The antioxidant response to water scarcity depends on the severity of stress and type of plant species. Therefore, different genotypes increased their antioxidant activity to reduce the effects of oxidative stress, and the high antioxidant activity was observed for G5 compared with other genotypes which can be contemplated as drought-tolerant genotype. The accumulation of compatible metabolites such as soluble sugars and proline in plants under drought conditions can help to protect them against stress. The proline and soluble sugars accumulation under stress conditions reduce lipid peroxidation and acts as a free radical scavenger. According to the results, drought stress induced accumulation of proline and soluble sugars in the genotypes of Juniperus and the highest accumulation of proline was related to G3. Therefore, this genotype can be introduced as drought-resistant genotype.
Conclusion
The results of the current study showed that drought stress significantly affected some biochemical parameters in all eleven genotypes. However, a variation in drought susceptibility was observed among genotypes. The studied genotypes in this experiment had different responses to drought stress and it seems that they utilized different mechanisms for stress tolerance. Genotype of G3 (Ravande -mamouli) was the most tolerant genotype to drought stress based on the highest levels of superoxide dismutase, soluble sugars, proline, and soluble protein. Genotype of G5 was also tolerant to drought stress with high superoxide dismutase activity and the largest amount of total flavonoid production. Therefore, increasing of compatible metabolites and antioxidant system are effective protective mechanisms against oxidative damage under drought stress.
Medicinal Plants
Mina Bagheri; Mohammad Hassan Rasouli-Sadaghiani; Esmaeil Rezaei-Chiyaneh; Mohsen Barin
Abstract
Introduction
The use of intercropping and the potential of microorganisms such as Arbuscular mycorrhizal fungi (AMF) and Plant growth promoting rhizobacteria (PGPR) is one of the important strategies in sustainable agriculture. Intercropping is multiple cropping systems, in which two or more crop ...
Read More
Introduction
The use of intercropping and the potential of microorganisms such as Arbuscular mycorrhizal fungi (AMF) and Plant growth promoting rhizobacteria (PGPR) is one of the important strategies in sustainable agriculture. Intercropping is multiple cropping systems, in which two or more crop species planted simultaneously in a field during a growing season. Of course, this does not mean that in the intercropping, plants can be planted at a time together, but is the purpose that two or more crops are together in one place, during their growing season or at least in a time frame. Therefore, it is possible that plants are different in terms of planting date, and a plant is planted after the other plant. Potential benefits of intercropping are such as high productivity and profitability, improvement of soil fertility, efficient use of resources, reduction in the damages caused by pests and weeds, better lodging resistance and yield stability. On the other hand, the use of AMF and PGPR as biofertilizers can play a role in improving plant nutrition, plant growth and product quality. The aim of this study was to study the effect of AMF and PGPR inoculation on plant growth indices in bean-Moldavian balm intercropping.
Materials and Methods
This experiment was conducted in the Agricultural Research Greenhouse of Urmia University, Located in 11 kilometers Sero road of the city of Urmia, Iran (latitude 36° 57′ N, longitude 45° 24′ E and 1321 m elevation) in 2017. The climate of the area is a Hot-summer Mediterranean climate bordering continental climate with cold winters, mild springs, hot dry summers, and warm autumns. This experiment was carried out in a factorial based on a randomized complete block design with three replications. The factors including microbial inoculation {(AMF, PGPR, AMF+PGPR and without microbial inoculation) and planting patterns (Sole cropping of Moldavian balms and bean, 1 row bean+ 1 row Moldavian balms (1:1), 2 rows bean+ 1 row Moldavian balms (2:1), 1 row bean+ 2 rows Moldavian balms (1:2) and 2 rows bean+ 2 row Moldavian balms (2:2)}. For this purpose, soil samples were prepared from Naqhadeh city in West Azerbaijan Province in Iran. In order to greenhouse tests, the soils added to the pots (in each pot containing 45 kg of soil). In treatments, soil used with microbial inoculation. Microbial strains were used for microbial inoculation including PGPR (P. aeruginosa, P.fluorescens and P. putida) and AMF (Funneliformis mosseae, Rhizophagus irregularis and Claroideoglomus etunicatum). For plant cultivation, been (Phaseolus vulgaris L.) and moldavian balms (Dracocephalum moldavica) seeds cultivar were grown in pots. At the end of the growth period, the characteristics of the agronomic traits in the bean plant were including plant height, number of seeds per pod, 1000 seed weight, biomass yield and Seed yield, and in Moldavian Balm were including, plant height, biomass yield and essential oil percentage were determined. In addition, the land equivalent ratio (LER) was calculated to determine the advantages of intercropping. The analysis of variance for the obtained data was done by statistical analysis system (SAS 9.4) software. The mean comparison was done using the Duncan test at the 5% probability level.
Results and Discussion
The results showed that the different intercropping and microbial inoculation had a significant effect on all traits, in Moldavian balms and common beans. All the plant growth indices in common bean-Moldavian balm intercropping were the highest in the combined treatment of AMF +PGPR, compared to another treatment. The highest and the lowest seed and biomass yield of bean were achieved in sole cropping with 3.20 and 9.70 g and 1:1 with 1.57 and 4.41 g, respectively. The maximum biomass yield and other traits of Moldavian balm obtained under sole cropping, while essential oil percentage was higher in all intercropping patterns than in sole cropping patterns. The main constituents of Moldavian balms essential oil were Geranyl acetate, Geranial, Geraniol and Neral. The highest LER value (1.67) was obtained from 2:2 intercropping in PGPR inoculation.
Conclusion
In general, the results showed that all of the plant growth indices of Moldavian balms and bean in sole cropping were higher than other intercropping patterns; however higher LER was observed in intercropping with microbial inoculation. This shows more exploitation of unit area in intercropping. In addition, the greater amount of LER in replacement intercropping than additive intercropping highlights the necessity of appropriate density of plants per unit area in the intercropping. It can be concluded that application of intercropping with combined application of AMF and PGPR leads to improvement on yield and yield components of plant.
Medicinal Plants
Monireh Nematinejad; Abdolshakoor Raissi; Mohammad Reza Asgharipour; Fatemeh Nosrati
Abstract
Introduction
One of the most important factors affecting the quantitative and qualitative characteristics of plants are genetic and environmental factors and their interactions. Golder (Otostegia persica Boiss.) is one of the endemic species of Iran and is in the list of top 10 medicinal plants ...
Read More
Introduction
One of the most important factors affecting the quantitative and qualitative characteristics of plants are genetic and environmental factors and their interactions. Golder (Otostegia persica Boiss.) is one of the endemic species of Iran and is in the list of top 10 medicinal plants used in Baluchistan, Iran. Therefore, in this study, some morphological and phytochemical characteristics of this plant were investigated in the natural habitats of Baluhistan. Essential oil components of leaves and flowers of Kooh birk-Mehrestan population also measured. Also, with the aim of investigating the soil properties on the establishment and growth characteristics of Golder, the soil edaphic characteristics of plant communities were evaluated.
Materials and Methods
This study was conducted in 2017 in some natural habitats of Baluchistan, Iran. Research was performed in the form of a nested plan as completely random design with three replications in the cities of 1- Saravan (Villages of Kooh Sont and Nahuk), 2- Khash (Villages of Panj Angisht and Posht Kuh), 3- Sarbaz (Padik village and Kalat Sarbaz) and 4-Mehrestan (Villages of Zard and Birk kooh) using field survey. Edaphic traits such as soil texture and chemistry were measured. Morphological traits including plant height, internode distance, leaf length and width were measured using instruments such as graduated rulers and calipers. Phytochemical traits including Phenol, Flavonoids and Carbohydrates in different parts of the plant and also the components of essential oils in leaves and flowers were studied. Soluble carbohydrate by Coles and Ansel method, photosynthetic pigments by Arnon method, total phenols with fullene-cicalto reagent by McDonald method, Flavonoids by aluminum chloride colorimetric method and adsorption of any reaction compound at 415 nm wavelength by spectrophotometer were measured. Data analysis was performed by SAS software (version 9.2) and the means were compared by Duncan's multiple range test at 5% level.
Results
The lowest (7.80) and highest (8.50) pH levels were measured in Zard and Kooh Birk respectively. Lowest (1.29) and highest (4.38) EC levels in Panj angosht and Nahuk respectively, the lowest (43.53(dS m-1)) and highest (50.73(dS m-1)) Na levels in Kooh Birk and Nahuk respectively, the highest N (11.10%) and P (0.32 (ppm)) in the Posht kooh of Khash, the highest amount of total K (62.20 (ppm)), absorbable K (72.17(ppm)) and the highest percentage of silt (38.30) were obtained in the Kooh sont area of Saravan. In evaluating the growth characteristics of plant in different regions, the maximum internode distance, highest number of lateral branches, petiole length, leaf length and width and number of main branches in Kooh Birk region of Mehrestan city and highest plant height in Nahuk region of Saravan city were measured. Comparing the amount of phytochemical compounds in different organs of this plant, it was observed that the highest amount of flavonoids is present in the leaves and the highest amount of phenols and carbohydrates are present in the stem. The lowest amount of all three compounds was measured at the root. Maximum amount of leaf Flavonoids (1.83 mgQE/g), stem Phenol (mg GAE/g 1.86) and root Flavonoid (0.11 mgQE/g) in Panj angosht area of Khash city, stem and root Flavonoids (0.45mgQE/g and 0.11mgQE/g) and stem Carbohydrate (1.99 mg/g) in Zard area of Mehrestan city, leaf Phenol (mgGAE/g 2.38) and root carbohydrate (1.73 mg/g) in Posht kooh region of Khash, and maximum amount of leaf carbohydrates (1.99 mg/g) in Kooh sont area of Saravan were obtained. Analysis of the chemical composition of the essential oil using a gas chromatograph-mass spectrometer (GC-MS) showed 12 compounds per leaf and 31 compounds per flower. The highest and lowest essential oil components were Thymol (12.0%) and Decane (2.1%), respectively. Also, the highest and lowest components of essential oils in flowers were Benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS)) (13.0%) and (0.4%), respectively. Therefore, the lowest essential ingredient was Decane, both in leaves and flowers. In general, the results of this study showed that there is a considerable diversity among the studied populations in terms of all the studied characteristics. This indicates that environmental factors similar to genetic factors are effective in creating diversity in morphological and phytochemical characteristics of this plant.
Conclusion
In general, the results of this experiment showed that the habitats of Khash are better in terms of soil chemistry and major phytochemical traits. Kooh birk region is the best area for harvesting the aerial parts of this plant.
Medicinal Plants
Saeid Daghighi; Farhad Azarmi-Atajan; Nasibeh Chopani Aghech
Abstract
Introduction
Barberry is one of the important agricultural products of Iran and has an important role in the economy of farmers, especially in South Khorasan province. Salinity as abiotic stress can cause an ionic or osmotic imbalance in plant cells. Salt stress also restricts plant growth and ...
Read More
Introduction
Barberry is one of the important agricultural products of Iran and has an important role in the economy of farmers, especially in South Khorasan province. Salinity as abiotic stress can cause an ionic or osmotic imbalance in plant cells. Salt stress also restricts plant growth and development by affecting water reducing availability and affecting plant production. Despite the relatively high tolerance of barberry to environmental stresses, increasing soil salinity and irrigation water in barberry growing areas, the growth, and yield of this agricultural product have decreased. The use of plant growth-promoting rhizobacteria (PGPR) is a new method that has been shown to increase the tolerance of various plants to salinity stress.
Materials and Methods
Due to the lack of information about the effect of salinity on the growth and establishment of barberry off-shoot and the role of beneficial soil bacteria in increasing the tolerance of this plant to salinity stress, this study aimed to investigate the role of bacteria on growth, physiological and biochemical properties and uptake of nutrients by barberry off-shoot at different levels of irrigation water salinity. For this purpose, a factorial study was conducted in a randomized complete block design with 3 replications. Experimental factors included plant growth-stimulating bacteria at three levels (control (Without inoculation) and inoculation with Pseudomonas sp. P1 and Pseudomonas sp. P2) and salinity of irrigation water at three levels (control, 6 and 12 dS/m from sodium chloride source). The bacteria used in this study were able to produce indole acetic acid, siderophore, ACC deaminase enzyme, and dissolve insoluble phosphate (tricalcium phosphate) in vitro. For inoculation, inoculum containing each bacterium with a population of 108 cells/ml was prepared in the Nutrient Broth medium and added to the root medium. The plants were irrigated with non-saline water for one month and then with saline water for two months based on experimental treatments. Finally, leaf sampling was performed and various characteristics such as leaf dry weight, chlorophyll, proline, total sugar, RWC and phosphorus, potassium, sodium, and chloride concentrations were measured. Analysis of variance of traits was performed using SAS software and the means were compared using the LSD method with a probability level of P≤0.05.
Results and Discussion
The results showed that the salinity of irrigation water reduced leaf dry weight, chlorophyll and carotenoid concentration, relative water content, and potassium to sodium ratio of barberry leaves. Decreased photosynthetic pigments under salinity may be due to decreased synthesis of the main chlorophyll pigment complex, oxidative damage to chloroplast lipids, pigments, and proteins, or increased chlorophyllase activity. In contrast, with increasing salinity, the amount of proline and total sugar and the concentration of phosphorus, sodium, and chlorine in leaves increased. Bacterial inoculation also increased leaf dry weight, chlorophyll, carotenoids, potassium concentration, relative water content, and potassium to sodium ratio, especially in saline conditions. Also in saline conditions, the concentrations of sodium, chlorine, phosphorus, proline, and total sugar in the leaves of barberry off-shoot inoculated with bacteria decreased. It seems that PGPR plays a significant role in the regulation of cellular osmolites, including proline and soluble sugars, by producing various metabolites and increasing the absorption of water and nutrients. The highest amount of leaf dry weight (0.70 g), total chlorophyll (0.92 mg g-1 fresh weight), carotenoids (0.51 mg g-1 fresh weight), leaf potassium (0.48 %), and total leaf sugar (43.7 mg g-1 dry weight) was obtained from the application of PGPR in conditions without salinity stress. Also, the use of bacteria in saline conditions decreased the amount of phosphorus and total sugar and in non-saline conditions increased the amount of these parameters. PGPR through various mechanisms such as the production of auxin, organic and mineral acids, and secretion of proton and phosphatase enzymes increase the availability of phosphorus for the plant, root growth, and absorption of water and nutrients. Increased absorption of water and nutrients has led to increased leaf growth and development and therefore reduced phosphorus concentration (dilution effect).
Conclusion
According to the results, PGPR by increasing the absorption of water and nutrients such as phosphorus and potassium caused osmotic regulation in the plant and thus increased the tolerance of barberry off-shoot to salinity stress of irrigation water. The ability of these bacteria to improve plant growth in saline conditions could be due to the production of auxin, siderophore, dissolution of tricalcium phosphate, and especially the production of the enzyme ACC-deaminase (as observed in vitro). Therefore, these bacteria can be used to improve the nutrition growth and establishment of barberry off-shoot.
Medicinal Plants
Vahid Akbarpour; Mostafa Motaharinezhad; Mohammad Ali Bahmanyar
Abstract
Introduction
Nowadays, spraying method is used in plant nutrition to optimize the use of chemical fertilizers and reduce environmental hazards. With the foliar solution, the elements are quickly transferred to the plant and delivered to the branch, leaf, or fruit. Surveys show that increase performance ...
Read More
Introduction
Nowadays, spraying method is used in plant nutrition to optimize the use of chemical fertilizers and reduce environmental hazards. With the foliar solution, the elements are quickly transferred to the plant and delivered to the branch, leaf, or fruit. Surveys show that increase performance per unit area is one of the most important things that has attracted the attention of many researchers. The first requirement for high performance is high dry matter production per unit area. Some experiments have shown that increasing the amount of carbon dioxide in the air can increase yield, accelerate flowering and accumulate carbohydrates in plants. One of the solutions to increase carbon dioxide concentrations in plants is to use compounds such as ethanol and methanol. Therefore feeding plants with alcohols such as ethanol and methanol as carbon sources is one of the appropriate methods to increase their quantitative and qualitative properties.
Materials and Methods
Due to the importance of peppermint (Mentha piperita L.) in the production of valuable secondary metabolites, and also the effect of ethanol and methanol on some morphological and physiological parameters of this plant, a pot experiment was conducted in factorial based on completely randomized design with three replications in the research greenhouse of Shahed University in 2018. Foliar treatments included different concentrations of 0, 15, 30 and 45% ethanol, methanol and combine them that was done in three stages. The studied traits were plant height, number of leaves per plant, biological yield, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, flavonoid, essential oil percentage, essential oil yield and protein percentage. Data analysis was performed using SAS statistical software (version 9.2) and mean treatments were compared by LSD test. Also charts were drawn by excel software.
Results and Discussion
The results showed that the simple effects of ethanol and methanol on plant height, biological yield, flavonoid content, essential oil percentage, essential oil yield and protein percentage were significant but their interactions were not significant. Ethanol 45% had the most effect on percentage and yield of essential oil and protein percentage. But the use of 15% ethanol treatment had the highest value in other traits (plant height, total phenol and flavonoids), which was at a statistical level with 45% methanol treatment. Also interaction between ethanol and methanol on leaf number per plant, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid was significant at 1% probability level. The highest number of leaves per plant and chlorophyll a (29.55 µg/g fresh leaf weight) was observed in the combination of 15% ethanol and 15% methanol, while the highest amount of chlorophyll b (20.86 µg/g fresh leaf weight) and total chlorophyll (49.85 µg/g fresh leaf weight) was related to the combined application of 15% ethanol and 45% methanol.
Conclusion
Foliar spraying is one of the methods of fertilization and supply of nutrients to plants that due to high absorption rate nutrients can be made available to plants in the shortest time. The results of this study showed that all the studied traits were significantly affected by one or more of the ethanol and methanol treatments. Therefore, the foliar application of ethanol and methanol as carbon sources has an important role in improving the qualitative and quantitative parameters of peppermint.
Medicinal Plants
Rahele Ghanbari Moheb Seraj; Mehdi Behnamian; Asadollah Ahmadikhah; Vahid Shariati; Sara Dezhestan
Abstract
Introduction
Plant growth and yield are affected often by stress conditions, especially drought, which is the most important factor in reducing crop production worldwide. Silybum marianum is an important pharmaceutical crop with great potential as a multipurpose plant for low-input cropping systems ...
Read More
Introduction
Plant growth and yield are affected often by stress conditions, especially drought, which is the most important factor in reducing crop production worldwide. Silybum marianum is an important pharmaceutical crop with great potential as a multipurpose plant for low-input cropping systems of the arid and semiarid regions.
Materials and Methods
In this experiment, the effect of drought stress (full irrigation at field capacity; no stress, irrigation at 70% of field capacity; mild stress and irrigation at 40% of field capacity; severe stress) on physiologic traits, the amount of silybin a and b and 1000 seed weight in milk thistle was studied in the research field of Shahid Beheshti University in 2017-2018. The experimental site is located in Shahid Beheshti University, Tehran, Iran (51.23°N, 35.48°E, and 1769 m above mean sea level). It has a moderate and mountainous climate with a mean annual rainfall of 145.2 mm and a mean temperature of 22ºC. This experiment was performed in a completely randomized block design with 3 replications. Milk thistle seeds were prepared from Isfahan Pakanbazr Company. The soil composition consisted of 1/3 clay, 1/3 sand, and 1/3 leaf composts. The field area was 150.0 m2. Furrows were created to implement this study. The space of plants on rows was 0.5 m and between rows was 1 m. In general, 15 furrows were created and 15 plants were cultured on each furrow, so the total number of plants cultivated on the field was 225. Drought stress was applied at flowering stage. Soil moisture was measured by the weighing method. The soil samples were taken from various areas (randomly) of the field, three samples each day. After measuring the water content at F.C, based on that, the amount of 70%F.C and 40%F.C was also calculated. At the time of stress, F.C irrigation was performed every two days, 70% F.C irrigation every 4 days, and 40% F.C irrigation every 6 days. After 8 days, leaf sampling was performed to measure catalase, ascorbate peroxidase, proline and malondialdehyde content and seed sampling was performed to 1000 seed weight and extract analysis. For physiologic measurements, 3 plants were randomly assigned to each stack and their leaves were separated and transferred to the laboratory. Then, in the next step, their physiologic parameters (include Catalase and ascorbate peroxidase, proline and malondialdehyde content) were measured according to the relevant protocol. In order to measure silybin, 4 plants were randomly considered to each stack and their seeds were harvested and combined and dried in shade condition in the laboratory for one month. The dried seed samples were completely powdered using a mill, then 10 g of the powders weighed and the oil extract of them was isolated by Soxhlet using n-hexane solvent. The extraction temperature was 70 °C and the extraction time was 6 h. After the extraction was completed, the extract was poured into dark glass. Next, the oil-free powder was dried in an incubator at 37 ° C. Methanol extract of oil-free powder was extracted using methanol solvent. For this purpose, 2 g of samples powder was weighed and 200 ml of 80% methanol was added to each of them and the mixture stirred for two days by Shaker. The mixture was then passed from a filter paper and after that, 200 ml of 80% methanol was added to the sample precipitate (on filter paper) and placed again on the shaker. After 24 h, extraction was performed by the same method and were added to the previous extract. The extracts were then concentrated in the environment temperature for two weeks. Concentrated extracts (powder) as well as standard silymarin with certain concentrations were dissolved in methanol solvent and used for injection into HPLC (Model: Infinity1260, Manufacturer: Agilent) using syringe filters with a diameter of 0.2 μm. After receiving the HPLC results, the data and peaks were analyzed and the amounts of silybin a and b were determined and compared at different levels of water stress. Statistical analysis of data was performed using R 3.6.1 and RStudio 1.1.463 software. Mean data were compared using Duncan's test with agricolae package at a significance level of 0.05.
Results and Discussion
The results showed that with increasing water stress intensity, the amount of silybin a and silybin b increased by 24% and 26%, respectively. The amount of these compounds in 40% were significantly higher than other treatments, so that its amount compared to F.C treatment (26.07 mg/g Grain DW in silybin a and 40.74 mg/g Grain DW in silybin b) and compared to the 70%F.C (25.32 mg/g Grain DW in silybin a and 34.64 mg/g Grain DW in silybin b) was higher. This indicates carbon assimilation from photosynthesis to produce secondary metabolites in this treatment. Also, the amount of silybin b compared to silybin a in all treatments was (0.8: 1.2), in which 1.2 is related to silybin b and 0.8 is related to silybin a. In severe stress treatment (40% of field capacity), the amount of silybin a and b (67.30 and 98.92 mg/g, respectively) increased significantly compared to other treatments. According to the mean comparison results, the highest activity of catalase (5.16 U/ml) and ascorbate peroxidase (2.26 U/ml) was observed in mild stress treatment. Proline content gradually increased with increasing stress intensity and reached its peak in severe stress (3.36 µM/gr). Lipid peroxidation also had their maximum in severe stress (8.35 nmol/grFW). The 1000 seeds weight was reduced by 6.8 g in severe stress treatment (40%F.C) compared to the control (F.C).
Conclusion
According to the results, the amount of milk thistle flavonoids can be increased for medicinal purposes including the treatment of liver disease and hepatitis by applying dehydration stress.
Medicinal Plants
Shirin Taghipour; Abdollah Ehtesham Nia; Hamed Khodayari; Hassan Mumivand
Abstract
Introduction
Due to their pleasant and soothing taste and odor, attractive colors, and medicinal purposes, Chrysanthemum morifolium flowers have been widely used as food, tea, ornamentation, and medicine. It has been reported that C. morifolium can reduce hyperactivity of the liver, improve eyesight ...
Read More
Introduction
Due to their pleasant and soothing taste and odor, attractive colors, and medicinal purposes, Chrysanthemum morifolium flowers have been widely used as food, tea, ornamentation, and medicine. It has been reported that C. morifolium can reduce hyperactivity of the liver, improve eyesight and regulate cellular immunity. Pharmacological investigations have shown that Flo's chrysanthemum exhibits antibacterial, antioxidant, anti-inflammatory, and heart-protective characteristics. Previous phytochemical studies on caffeic acid derivatives, flavonoids, triterpenoids, glycosides and alkaloids have been isolated from Flo's chrysanthemum. In this study, chrysanthemum cultivars were evaluated in terms of having secondary compounds and desirable medicinal properties, as well as antibacterial effects to introduce superior cultivars and purposeful planning for breeding research. The purpose of the present study, 25 cultivars of C. morifolium were compared in terms of essential oil content, leaves total phenolic, flavonoid and antioxidant activity.
Materials and Methods
In this experiment, 25 chrysanthemum cultivars were studied in terms of essential oil percentage, antioxidant index, total phenol and flavonoid content and antibacterial effects in a randomized complete block design in Lorestan University research farm in the year 2016. Essential oil was extracted from dried flowers in the shade using a Clevenger apparatus for 3 hours. Evaluation of antioxidant activity of the extract was measured by DPPH method based on the method of Kulisic et al. (2004). The amount of flavonoids was measured by aluminum chloride and total phenol by Folin - Ciocalteu reagent colorimetric. Ward analysis was done to classify the cultivars.
Results and Discussion
The results of analysis of variance showed that the studied chrysanthemum cultivars had significant differences in terms of all studied phytochemical traits. According to the obtained results, among different cultivars, the total amount of phenolic compounds is between 14.52-47.90 mg/g dry weight, the total flavonoid content is between 11.59-55.62 mg/g DW and IC50 index varied between 83.92 and 257.43 μg/ml. The highest amount of total phenol was present in Avadis and Dila cultivars (45.86-47.90 mg/g dry weight), while Yasamin cultivar (14.52 mg/g DW) had the lowest amount. Also, in terms of total flavonoid content, Golnar and Farahnaz cultivars had the highest total flavonoid content with 55.62 and 53.01 mg quercetin/g DW, respectively. Cluster analysis divided all studied cultivars into five groups. The percentage of essential oil among different cultivars varied between 0.41 to 0.62% and a high variability was observed in terms of the amount of essential oil in the studied cultivars. The highest percentage of essential oil was related to Farhnaz and Elmira2 cultivars. In general, the results showed high antioxidant activity of most cultivars. Therefore, chrysanthemum extract can be introduced as a suitable source of natural antioxidants. Also in this study, Paridokht, Sana and Ashraf cultivars were studied in terms of antioxidant and antibacterial index and Farahnaz and Elmira 2 cultivars appeared superior to other cultivars in terms of essential oil production. Hedaei et al. (2018) studied evaluation of some bioactive compounds and antioxidant activity of leaf methanolic extract and flower essential oil content from different cultivars of Chrysanthemum morifolium, in this review, total phenol and flavonoid contents and IC50 values in different cultivars were ranged from 17.63-33.20 mg/g DW, 12.62-53.17 mg quercetin/g, and 54-228 μg/ml respectively. The highest phenolic content was in cultivar “Poya3” (33.20 mg/g DW), whereas the cultivar “Sahand2” (17.63 mg/g DW) contained the lowest value. Also, in terms of total flavonoid content, cultivars “Marmar” and “Sahand 2” had the highest and the lowest flavonoids with 53.17 and 12.62 mg quercetin per gram, respectively.
Conclusion
The results of the present study indicate a significant difference between different cultivars in terms of the total amount of phenolic, flavonoid and antioxidant compounds that the existence of such diversity can be the role of cultivar and genetics in the production of these compounds. According to the results of this study, chrysanthemum cultivars with desirable levels of phenolic and flavonoid compounds can be used as a source of natural antioxidants as an alternative to synthetic antioxidants. In this study, Sana, Paridokht and Ashraf cultivars appeared superior to the existing genotypes in terms of phytochemical and antibacterial traits. The results of this study can be used to select the correct parents for purposeful crosses in subsequent chrysanthemum breeding programs in order to improve the phytochemical traits of existing cultivars.
Medicinal Plants
Lamya Vojodi Mehrabani; Yagoob Anvari Gheshlagh; Alireza Motallebiazar
Abstract
Introduction
NaCl Salinity is one of the major environmental stressors affecting agricultural production everywhere. Salinity impacts the plants by the osmotic stress, nutritional imbalance with plants cells and by reducing the nutrients absorption and reactive oxygen species over-generation, ...
Read More
Introduction
NaCl Salinity is one of the major environmental stressors affecting agricultural production everywhere. Salinity impacts the plants by the osmotic stress, nutritional imbalance with plants cells and by reducing the nutrients absorption and reactive oxygen species over-generation, as well as by ionic competition for the absorption, translocation, distribution and ion toxicity inside plants. Under salinity stress, plants develop various physiological and biochemical mechanisms to overcome this conditions, like ion homeostasis and compartmentalization, ion uptake, biosynthesis of osmoprotectants, activation of antioxidant enzymeic (superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase) and nonenzymic compounds (proline) to overcome salinity stress. Optimum nutrition under stressful saline conditions is important to overcome the problem and to produce optimum yield. Pelargonium graveolens is a plant commonly used in food and pharmaceutical industries. Iran has favorable micro-climates for the Pelargonium graveolens, production, and since this plants is in common use with diverse industries, this experiments was conducted to study the effects of foliar spray with Se and nano Fe on growth and physiological traits Pelargonium graveolens under NaCl salinity depression
Materials and Methods
Two separate experiments were concluded to evaluate the effects of foliar application of selenium and nano-Iron (0, 1.5 and 3 mgL-1) on pelargonium under saline (0, 50 and 100 mM) conditions as factorial based on Completely Randomized Design. In the first experiment, the effects of magnetized Iron and in the second experiment, the effect of selenium were assayed on pelargonium growth and physiological traits (plant dry weight, enzymic activity, elemental content, essential oil percent and oil constituents) under salinity stress.
Results and Discussion
The results obtained from the first experiment showed that, the aerial parts dry weight, Na, Fe and H2O2 content, catalase activity and oil percent of Pelargonium graveolens were independently affected by the salinity and (1.5 and 3 mgL-1) Fe foliar treatment. At the first experiment the highest amount of K/Na ratio, flavonoid content, K content, malondialdehyde, proline and superoxide dismutase activity were influenced by salinity stress. The top amount amount of plant dry weight, Fe content, K/Na, Na and superoxide dismutase activity were recorded at control plants. The top amounts of Na, proline, malondialdehyde, H2O2 content were recorded at 100 mM salinity stress. control and 50 mM NaCl increased oil percent in plants. Foliar spray with 1.5 and 3 mgL-1 Fe increased catalase, yield, phenolic content and oil percent in plants. At the second experiment; aerial parts dry weight, proline and flavonoid content were influenced by salinity stress. Catalase activity, malondialdehyde, superoxide dismutase activity and H2O2 content were influenced by sole effects of salinity and Se foliar application. Under non saline condition, plant dry weight, superoxide dismutase activity, K content were increased in plant. With increasing salinity to 100 mM NaCl, proline, malondialdehyde and H2O2 content were increased. Se, Na content and K/Na ratio in the second experiment was influenced by the interaction effects of salinity and foliar spray. At the second experiment, the top amount of K/Na ratio were recorded at NaCl0 × 1.5 and 3 mgL-1 Se spray. The top amounts of Na were recorded at NaCl0 × no foliar application. The superoxide dismutase activity, malondialdehyde and K+ were responded to the individual effects of salinity and Se treatment. The highest amounts of total phenolic content was attained by (1.5 and 3 mgL-1) nano Fe and Se treatment in both experiment. With salinity of 50 and 100 mM, the flavonoids contend was increased at both experiments. Foliar spray with 1.5 and 3 mgL-1 Nano Fe and Se increased catalase activity in plants. 1.5 and 3 mgL-1 Se and nano Fe foliar application reduced H2O2 content in plant at both experiment. GC/MS analysis revealed that β-citronellol (12.5-20.5%) was the major constituent with control treatment Citronelly formate (10.75-25.2%) were the dominant constituents of oil control plants. Β-Thujone (12.61%), trans-Rose oxide (2.85- 9 %) and the highest amounts of Aromadendrene (5.42 %) only recorded at control plants. Salinity stress and foliar spray had negative effects on α-Pinene biosynthesis and the highest amounts of α-Pinene was recorded in control plants. The top amounts of Geranyl formate (0.7-7.8 %) was recorded at NaCl50 × 1.5 mgL-1 Fe spray. Y- muurolene (0.4 – 4.06 %) biosynthesis increased at NaCl50 × 1.5 mgL-1 Se.
Conclusion
Salinity stress involves changes in metabolic processes and various physiological traits, controlled by salinity stress severity. In total, salinity had negative effects on the growth and physiological responses of plants, however, foliar treatment with Se and Fe improved some physiological traits of Pelargonium graveolens.
Medicinal Plants
Seyyed Amir Hamzeh Bahari Meymandi; Shahram Sharafzadeh; Omid Alizadeh; Froud Bazrafshan; Bahram Amiri
Abstract
Introduction In recent years, the aggressive application of chemical fertilizers for agricultural production has endangered the health of soil, water, air, as well as crops, and has raised many concerns for the global environment and human health. In addition to the positive biological effects and ...
Read More
Introduction In recent years, the aggressive application of chemical fertilizers for agricultural production has endangered the health of soil, water, air, as well as crops, and has raised many concerns for the global environment and human health. In addition to the positive biological effects and modification of soil physical and chemical properties due to the gradual release of nutrients, organic fertilizers cause less pollution in the environment. Due to the significant role of medicinal and aromatic plants in different industries, it is important to increasing production of yield and secondary metabolite produced without the use of harmful chemical fertilizers. Fennel (Foeniculum vulgare Mill) is widely grown in arid and semi-arid regions and due to its economic importance and pharmaceutical industrial applications, it is one of the world’s most dimension medicinal plant. This plant has antiseptic, antispasmodic, antiinflammatory, diuretic, carminative and analgesic effects and is effective in gastrointestinal disorder treatment. Moreover with its antioxidant and antiulcer properties, it is used to treat neurological disorders.Materials and Methods This study was conducted to evaluate the effects of organic and biological fertilizers on the morpho-physiological and phytochemical properties of fennel (Foeniculum vulgar Miller). In this study, the impacts of vermicompost (0, 4, 8% in pot), animal manure (0, 7.5, 15% in pot) and mycorrhizal fungi (0, 1%) on physiological and biochemical properties of fennel in greenhouse conditions was evaluated. In order to extract the samples to measure biochemical factors, methanol 70% was used at a ratio of 5:1 (volume- weight). Determination of free radical scavenging was performed by using the DPPH test. The samples’ absorptions were read at a wavelength of 517 nm with Epoch Microplate Spectrophotometer, BioTek Instruments, Inc., USA. Measuring the total phenols was performed according to the Folin’s reagent method and the use of gallic acid as standard (purchased from the brand MERCK, Germany) by using a spectrophotometer at the wavelength of 765 nm. Total flavonoid content was measured using a spectrophotometer at a wavelength of 510 nm through a standard curve of quercetin from Sigma-Aldrich. The Essential oils were obtained from seeds by hydrodistillation for 3 h using a clevenger type device. The analyses of essential oil volatile components were determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Data were analyzed by using Duncan’s multiple range test (P< 0.05) by SAS, version 9.4 for Windows.Results and Discussion The results of current investigation showed that organic and biological fertilizers improved the fennel yield and phytochemical properties such as the plant height, seed weight per plant, fresh and dry weight of roots and plants, content of total phenols and flavonoids, antioxidant activity, percentage of essential oil and root colonization. The highest plant height, number of flowers, umbrellas and seeds per plant and fresh and dry weight of roots were obtained after combined application of 8% in pot vermicompost, 15% in pot animal manure and application of mycorrhiza. According to the results, the highest amount of total flavonoids (177.66 mg/100g DW) and root colonization (35.8%) after of 8% in pot vermicompost + 15% in pot animal manure + mycorrhiza application was observed. The results also revealed that the highest fresh and dry weight of the plants (121.33 and 17.41 g, respectively) was obtained after application of mycorrhiza + 15% in pot animal manure. Application of mycorrhiza in combination with 15% in pot animal manure compared to other treatments caused a significant increase in total phenol content in aerial parts with 73.22 mg/100g DW. In addition, the highest amount of antioxidant activity (51%) was obtained after 8% in pot vermicompost + 15% in pot animal manure application. Application of organic and biological fertilizers significantly increased the 1000 seed weight and the percentage of essential oil in fennel. After 15% in pot animal manure treatment, the highest percentage of essential oil by 3.43% was recorded. In general, the highest percentages of essential oil components were related to (E)-Anethole (78.26%), Fenchone (7.15%), Limonene (6.12%) and Methyl chavicol (3.85%), respectively. The amount of (E)-Anethole as the essential oil predominant compound, in the control treatment was 66.92%. The application of mycorrhiza + 4% in pot vermicompost increased the content of (E) -Anethole in essential oil to 80.72%.Conclusion In general, application of vermicompost, animal manure and mycorrhizal fungi improved the growth, biochemical and yield characteristics and essential oil yield of fennel in greenhouse conditions. These fertilizers increased plant yield by providing large amounts of required nutrients and affecting various aspects of root growth and development. Among them, the role of nitrogen may be more prominent due to its participation in protein synthesis and the role of iron in nitrogen fixation, photosynthesis and electron transfer.
Medicinal Plants
Zeinabsadat Shahzeidi; Saeid Hesami Tackallou; Leila Amjad; Hakimeh Zali; Alireza Iranbakhsh
Abstract
Introduction UV-C (254-280 nm) and 280-320 nm) UV-B, UV-A (320-390nm) wavelengths are irradiated with three ultraviolet strips and have detrimental effects on the growth of a number of plants. Ultraviolet light is an important non-living factor that can stimulate the production of secondary metabolites, ...
Read More
Introduction UV-C (254-280 nm) and 280-320 nm) UV-B, UV-A (320-390nm) wavelengths are irradiated with three ultraviolet strips and have detrimental effects on the growth of a number of plants. Ultraviolet light is an important non-living factor that can stimulate the production of secondary metabolites, including antioxidant compounds in plants. Ozone depletion and its consequences, including direct UV radiation on the planet and its effects on crops and medicinal plants, are among the topics that have received very little study. Ultraviolet light in nature occurs only at low intensities, but if the inhibitory effect of the ozone layer in the stratosphere is significantly the result of nitrogen and hydrocarbon oxides the weaker the halogen, the higher its amount.Materials and Methods Portulaca oleracea seeds were prepared by Pakan Isfahan Company. The aim of this study was the effect of ultraviolet rays at different levels (UV-C: 0, 100, 200, 300, 400, 500, 600, and 700 nm) on the activity of photosynthetic pigments and biochemical traits of portulaca oleracea in factorial in a completely randomized design with three replications. After transferring the seeds of portulaca oleracea, the healthy and uniform seeds of this plant were sterilized in 15% sodium hypochlorite solution for 154 minutes and then washed thoroughly with distilled water and placed in a petri dish for germination. Moisture was supplied through filter paper soaked in distilled water. The seeds were planted in pots filled with cocopeat and perlite evenly and watered for 20 days with a half-strength Hoagland solution. Plants were grown for 20 days at a temperature of 30 ± 2 ° C and a light period of 8.16 (light / dark, respectively). Plants for one week, every other day, and for 3 minutes each time by two fluorescent lamps with a wavelength of 260 nm exposed to ultraviolet C (at a distance of 30 cm from the UV light source with an intensity of 27 (w / m2) were located. The traits studied in this study included chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, phenol, flavonoids, and antioxidant activity. In this study, the effect of ultraviolet light on the activity of photosynthetic pigments and biochemical traits of portulaca oleracea was investigated factorially in a completely randomized design with three replications.Results and Discussion The results of the mean comparison showed that the UV treatment of chlorophyll a, b, total chlorophyll, carotenoid of portulaca oleracea was reduced compared to the control; However, UV treatment of portulaca oleracea significantly increased phenol, flavonoids, and antioxidants compared to the control. The effect of different doses of ultraviolet rays on phenol and portulaca oleracea antioxidants showed that the UV-C highest and lowest were 700 and 100 nm, respectively. Decreases in carotenoid content can result in either inhibition of pigment synthesis or their breakdown and degradation. The results of this report indicate significant changes in phenols and flavonoids as compounds it absorbed ultraviolet rays compared to control cells.Conclusion It can be said that excessive exposure to radiation may affect chlorophyll levels by inhibiting chlorophyll biosynthesis or accelerating its degradation. Oxygen is an electron receptor in the electron transport system that produces energy from adenosine triphosphate (ATP) in the body. Under certain conditions, oxygen can be converted to a single electron, creating free radicals. When oxygen is converted to a single electron, it is called active oxygen (ROS). These free radicals cause oxidative stress in plants which oxidative stress leads to damage to macromolecules such as DNA, proteins and so on. Environmental stresses, including UV radiation, produce active oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2-), and hydroxyl radicals (OH), which cause oxidative stress and cause damage to cells, such as DNA. And cause the destruction of these compounds. The plant contains compounds that act as active antioxidants and sweep away active oxygen. In the present study, the observed increase in phenols, flavonoids and antioxidants indicates an increase in the production of free radicals under ultraviolet radiation and shows that the production of these radicals is more than the plant's defense capacity and has caused damage to plant biological membranes. In summary, the application of controlled ultraviolet light stress can provide a new alternative strategy to increase the productivity of the portulaca oleracea plant. Modulating UV-C light in agricultural systems is a promising tool to increase crop production.
Medicinal Plants
Soheila Charbandi; Faezeh Zaefarian; Vahid Akbarpour; Mohammad Kaveh
Abstract
Introduction: The tendency to produce aromatic and medicinal plants and the demand for natural products is increasing especially in the world. Ecological agriculture (Agroecology) of medicinal plants guarantees their quality and reduces the possibility of negative effects on their quality and yield. ...
Read More
Introduction: The tendency to produce aromatic and medicinal plants and the demand for natural products is increasing especially in the world. Ecological agriculture (Agroecology) of medicinal plants guarantees their quality and reduces the possibility of negative effects on their quality and yield. Evaluation of different plant nutrition systems is one of the most important principles in the production planning of medicinal plants in order to achieve high yield and quality of effective ingredients. Proper fertilizer management is one of the most important factors in agricultural production. Identification of fertilizers which are compatible with nature and are suitable for plant growth could have favorable effects on quantitative and qualitative indices of the plant. Organic fertilizers are genuine and risk-free products that could be suitable for agricultural sustainability. Soil organic matter improves fertility and water retention, provides proper ventilation, long-term storage of plant nutrients and microorganisms, so replacing chemical fertilizers with fertilizers such as vermicompost and biofertilizer can reduce the above-mentioned effects. Biofertilizers are one of the operations that is nowadays in accordance with the principles of sustainable agriculture for soil fertility. Biofertilizers include the compost of one or more types of useful soil organisms or as metabolic by-products of these organisms that are used to provide the plant with the nutrients it needs in an agroecosystem.Materials and Methods: In order to investigate the effect of biochar, organic and biological fertilizers on the quantity and quality of Ocimum bacilicum L., a factorial experiment was done in a randomized complete block design with three replications. Experimental treatments included two levels of biochar (0 and 20 ton ha-1) and five levels of fertilizers (vermicompost (10 ton ha-1), Mycorrhiza, Azotobacter, Pseudomonas and no fertilizer application). Prior to planting sweet basil seed, biofertilizers and vermicompost were mixed with soil to the depth of 15 cm. Mycorrhizal fungi were mixed with seed. Azotobacter and Pseudomonas bacteria were also incubated with seeds (seed inoculated). It should be added that in this study no chemicals were used to control weeds and pests.Results and Discussion: According to the results, the highest plant height and number of main branches were obtained in biochar application with vermicompost (49.37 cm and 7, respectively), which was significantly better than other treatments. The interaction effect of biochar and fertilizer had a significant effect on fresh and dry weight of leaf and stem. Mean comparison of treatments showed that the highest leaf and stem fresh weight were obtained in biochar + Pseudomonas application (792 and 876 g m-2, respectively), which had no significant difference with biochar + vermicompost; and also, the maximum leaf dry weight and stem dry weight were obtained in biochar with Pseudomonas application (166 and 175 g m-2, respectively). The interaction between biochar and fertilizer on phenol, flavonoids and antioxidant activity of basil showed a significant differences between treatments.Conclusion: In general, the results showed that the use of biochar and biological and organic fertilizers could be effective in both the quality and quantity of sweet bail, where, the use of the bacterium Azobacter and Pseudomonas with biochar had the greatest effect on the quality and quantity of sweet bail. Finally, it could be concluded that the combined use of biochar with biological fertilizers had significant impacts on the quantitative and qualitative traits of sweet bail in ecological or low input agricultural.
Medicinal Plants
Mahboobeh Naseri; Abbas Abbasian
Abstract
Introduction: Saffron is an annual plant that grows based on underground organs of the plant as corms and can be used for several years under farming conditions. This plant is the main source of income for many farmers in rural areas of eastern Iran. Khorasan Razavi province with 76% of cultivation area ...
Read More
Introduction: Saffron is an annual plant that grows based on underground organs of the plant as corms and can be used for several years under farming conditions. This plant is the main source of income for many farmers in rural areas of eastern Iran. Khorasan Razavi province with 76% of cultivation area and 74% of production has the first place in saffron production. Among the different cities of Khorasan Razavi province, Torbat Heydariyeh city with a cultivation area of about 8 thousand hectares out of 87 thousand hectares of the whole province has an area equivalent to about 10%. Contrary to the level of cultivation, the average yield in Khorasan Razavi province is 3.4 kg / ha, which is 0.22 kg / ha lower than the national average. Considering that the level of saffron that is increasing in many parts of the country and on the other hand, according to the long-term average statistics, its yield has decreased significantly. The need for continuous monitoring of planting level and yield is one of the most issues for managers and programs. This research was conducted using the information of referral letters issued for guaranteed purchase of saffron in the Torbat-e Heydariyeh Kadkan town to analyze and evaluate the performance of saffron in 2017 and 2019.Materials and Methods: In order to study saffron cultivation and its yield in the Kadkan town, cultivation data and yield data in the years 2017 and 2019 were analyzed. Guaranteed purchase information of saffron was used to collect data. In 2017, 95 people (at the level of 132 hectares) and in 2019, 173 people (at the level of 257 hectares) of saffron farmers in the Kadkan town to deliver saffron to guaranteed shopping centers (Rural Cooperative Office of Torbat Heydariyeh) to Jihad Agricultural Center. They came to Torbat-e Heydarieh Kadkan and received a letter of introduction. The information of these referrals (area under cultivation, dry stigma yield, production rate, village name and amount of saffron delivered) was used to analyze saffron cultivation in Torbat-e Heydariyeh, Kadkan town in 2017 to 2019.Results and Discussion: Based on the results of saffron yield in the Kadkan town in 2017 and 2019, 5.17 and 8.64 kg of dry stigma obtained, respectively. The amount of saffron delivered to shopping centers in 2017 and 2019 was 532 and 1270 kg, respectively. According to the results of saffron yield in 2017 compared to 2019 due to climatic and managerial conditions, has increased by 67%. Fitting of cultivation and yield data of 95 saffron farms in 2017 using a linear model showed that with increasing the area under saffron cultivation, yield decreases R = 0.26 **. Also in the polynomial model. Second degree, with increasing the area under cultivation to the level of five hectares, the yield decreased and since then showed a slight increasing trend (R = 0.26 **). Fitting of cultivation data and yield of 173 saffron farms in 2019 based on the second degree polynomial model R = 0.24 24 ** showed that with increasing the area under cultivation up to seven hectares, the yield has decreased and since then it has an increasing trend. In the third degree polynomial model R = 0.28**, like the second degree of yield, decreased to seven hectares and then increased and then was fixed. Considering that the cultivation area of the most farms in Kadkan town was between 0.1 and 2 hectares and farms up to two hectares in the villages of Kadkan townt, it is non-mechanized, therefore, in these farms, the management of smaller farms could be done more easily and the increase in yield for these farms was predictable.Conclusion: According to the results of the present study, the yield of saffron in 2017 and 2016 was 5.16 and 8.64 kg / ha, respectively. Considering that the average yield of saffron in the country is 3.62 kg per hectare (Statistics of the Ministry of Jihad Agriculture, 2018), the yield of saffron in the Torbat-e-Heydariyeh Kadkan town can be considered as high yield in the country, which is probably due to climatic conditions and is managerial. 67% increase in yield in 2019 compared to 2017due to climatic reasons (increased rainfall) and management (nutrition, agriculture, training, irrigation, proper planting date, use of corms with appropriate weight, disinfection of corms at planting, Summer irrigation, weed control).
Medicinal Plants
Faraj Moayedi; Sajad Kordi; Ali Ashraf Mehrabi; Soheila Dastborhan
Abstract
Introduction: Sweet basil (Ocimum basilicum L.) is an annual herbaceous plant from labiatae family. The amount and chemical composition of essential oil of sweet basil depends on genetics, growing season, environmental factors and plant growth stage. Nitrogen is one of the most important nutrients required ...
Read More
Introduction: Sweet basil (Ocimum basilicum L.) is an annual herbaceous plant from labiatae family. The amount and chemical composition of essential oil of sweet basil depends on genetics, growing season, environmental factors and plant growth stage. Nitrogen is one of the most important nutrients required by plants. This element plays an essential role in the synthesis of amino acids and proteins and is part of the structure of leaf chlorophyll and some plant hormones. Nitrogen application can significantly increase the growth and yield of medicinal plants in different climatic conditions and affect the quantitative and qualitative properties of essential oils. The results of various studies have shown that nitrogen significantly alters the amount of essential oils in basil. Despite the positive effect of nitrogen on improving plant growth and yield, excessive use of nitrogen fertilizer can have a negative effect on the absorption of other elements. On the other hand, high amounts of water-soluble nitrogen lead to groundwater pollution. Therefore, determining the appropriate amount of nitrogen fertilizer in proportion to the nutritional needs of crops, in addition to improving the quantity and quality of yield, reduces damage to agricultural systems and the environment. Therefore, the aim of the present study was to evaluate the effect of different amounts of nitrogen fertilizer on vegetative yield and quantitative and qualitative characteristics of essential oil of four basil cultivars and to introduce the best cultivar in Khorramabad climate.Materials and Methods: This experiment was performed as a factorial split plot in time in a randomized complete block design with three replications during 2016 growing season in the Agricultural Research Station of Khorramabad. Experimental treatments included four sweet basil cultivars (Italian Large Leaf, Cinnamon, Sweet Thai and Mobarakeh), three levels of nitrogen fertilizer (0, 100 and 200 kg ha-1 chemical nitrogen fertilizer) and three harvests. Nitrogen fertilizer (from urea source) was added to the plots in two stages (half of the fertilizer before seeds planting and the rest after the first harvest) based on the treatments. Basil plants were harvested three times at the beginning of flowering. Traits measured in this study included chlorophyll index, leaf/stem ratio, leaf dry weight, total plant dry weight, percentage and yield of essential oil and determination of chemical composition of essential oil. To extract the essential oil, water distillation method and Clevenger apparatus were used. To determine the main constituents of essential oil, all treatments related to a given repetition were chosen in second harvest were used. Gas chromatography with mass spectrometer was used to identify the compounds of basil essential oil. Analysis of variance of data was done using SAS ver. 9 and mean comparison was performed based on the Duncan's multiple range test at 5% probability level using MSTAT-C software. Figures were drawn by excel software.Results and Discussion: The results of the present research showed that the highest leaf/stem ratio (1.8) was obtained from applying 100 and 200 kg ha-1 of urea fertilizer in Italian Large Leaf cultivar in the first harvest. Among the studied basil cultivars, Italian Large Leaf cultivar had the highest leaf dry weight, total dry weight, percentage of essential oil and essential oil yield. The maximum leaf chlorophyll index was related to Sweet Thai and Cinnamon cultivars and the minimum chlorophyll index, percentage of essential oil and essential oil yield was related to Mobarakeh cultivar. Consumption of urea fertilizer was associated with a significant improvement in vegetative growth and as a result, basil yield increased. Although the essential oil percentage of basil cultivars under control treatment was higher than plants that were fed with nitrogen fertilizer, but the highest essential oil yield was obtained from application of 100 kg ha-1 urea fertilizer, which shows the greater effect of dry yield on essential oil yield compared to the percentage of essential oil. In all studied traits, the maximum value was related to the second harvest and the minimum amount (except the essential oil percentage) was allocated to the first harvest. In chemical analysis of essential oils obtained from young leaves and shoots of basil cultivars under different fertilization treatments, 29 to 35 compounds were identified. The maximum concentration of major constituents of essential oils (except 1-8-cineol, methyl cinnamate and methyl chavicol) was related to the control treatment (no fertilizer application).Conclusion: Since there was no significant difference between the levels of 100 and 200 kg ha-1 of urea in terms of total dry weight and the highest essential oil yield was obtained from the treatment of 100 kg ha-1 of urea fertilizer, Italian Large Leaf cultivar and consumption of 100 kg ha-1 of urea fertilizer can be used in environmental conditions similar to Khorramabad.
Medicinal Plants
Saeideh Alizadeh Salteh; Mina Amani
Abstract
Introduction: Nowadays, due to the decrease in rainfall and groundwater level, the cultivation of crops with low water requirements should be given priority. Different regions of Iran, especially the region of East and West Azerbaijan, have faced a decrease in rainfall in recent years, compared to previous ...
Read More
Introduction: Nowadays, due to the decrease in rainfall and groundwater level, the cultivation of crops with low water requirements should be given priority. Different regions of Iran, especially the region of East and West Azerbaijan, have faced a decrease in rainfall in recent years, compared to previous years. Saffron could have relatively stable production in these areas due to low water demand and suitable economic efficiency. Special properties of saffron such as low water requirement, irrigation in non-critical times, water requirement of other plants, possible operation of farms for several years after one planting, ease of transportation and storage of the product, possibility of high employment, possibility of cultivation in areas that lack industrial talents and limited agricultural water, having medicinal properties and also, suitable domestic and foreign sales market has made this plant for cultivation. On the other hand, saffron cultivation in the Iran could increase employment and non-oil exports.If we pay attention to its production and processing processes, it could provide a significant currency to the country. Today the cultivation of saffron is under development in areas such as Azerbaijan. On the other hand, due to the harmful effects of the using synthetic antioxidants in the food and pharmaceutical industries, special attention has been paid for using of natural antioxidants. Considering the importance of compounds in saffron quality and the effect of climatic conditions in different years on the amount of secondary metabolites and antioxidant properties of this valuable plant, the present experiment were evaluated the yield and quality of saffron and compared antioxidant activity of different parts of saffron during two cropping years.Materials and Methods: The effect of climate of Marand city of East Azarbaijan province in different years on quality and antioxidant characteristics of different parts of saffron was investigated in this region. So, the climatic factors governing this region during two consecutive years of 2014 and 2015 in terms of temperature, rainfall and humidity were studied using meteorological data. Saffron yield in the region were obtained by using a questionnaire from saffron producers in the region. Meanwhile, the amount of crocin, picocrocin and safranal and the antioxidant activity of different parts of saffron, including stigma, style, stamen and petals, were examined.Results and Discussion: The results showed that the Marand city was classified as semi-arid in accordance the amount of crocin metabolites in 2014 (maximum: 306 mg/g in the stigma), picocrocin in 2015 (102.15 mg/g in the stigma), and Safranal in 2015 (highest: 49.95 mg/g in saffron petals) and the antioxidant activity of saffron and saffron petals were the highest in 2014 (30.43% and 88.32%, respectively). The results showed that the quality of different parts of saffron varied in different years. Due to the quality of different parts of saffron in different years, different parts could be used for exploitation.Conclusion: The amount of active ingredients in the plant were not constant at all and varied according to the growth and climatic conditions and harvest time. Changes in the amount of active ingredients in the plant over consecutive years or even hours a day emphasized the importance of collecting the medicinal plant when the plant contained the maximum amount of active ingredient. The quality of saffron depended on the amount of crocin, picrocrocin and safranal compounds and antioxidant activity. These compounds varied in different organs of saffron (stigma, style, stamen and petals) and over consecutive years. Bonab of Marand region of East Azerbaijan is suitable for saffron cultivation due to the climate change. The quality of different saffron organs were different in consecutive years of multi-year cultivation. The highest amount of crocin in the first year of cultivation in the stigma and its antioxidant activity in the stigma and petals were the highest and in the following year the amount of picrocrocin in the stigma and safranal in the petals were the highest. Therefore, different metabolites could be harvested according to the need in the maximum number of years.
Medicinal Plants
Mohadese Shamsaddin saied; Mahmood Ramroudi
Abstract
Introduction: Biochar is a carbonaceous substance obtained from heating plant residues and wastes in an oxygen-containing medium with or without oxygen. Thermal decomposition of biomass in an oxygen-free medium is called thermophilicity (pyrolysis). Temperature is one of the factors influencing the characteristics ...
Read More
Introduction: Biochar is a carbonaceous substance obtained from heating plant residues and wastes in an oxygen-containing medium with or without oxygen. Thermal decomposition of biomass in an oxygen-free medium is called thermophilicity (pyrolysis). Temperature is one of the factors influencing the characteristics of biochar. One of the objectives of this experiment is to investigate the effect of different temperatures on the biochar characteristics of cattle manure. The use of biochar as a soil conditioner and source of organic carbon in agricultural soils with minimal environmental damage is considered. Marigold is an annual plant that is used in industry and pharmacy in addition to food. Another aim of this experiment is to investigate the effect of biochar use from different temperatures on marigold under salinity stress.Materials and Methods: For biochar preparation, after collecting cattle manure from Bardsir farms, air drying and sieving were used for pyrolysis process for four hours at different temperatures (300, 400, 500, 600 °C). Then pH, EC, carbon stability, ash and biochar performance were measured. In order to evaluate the effects of biochar resulting from different heat-treated temperatures on salinity tolerance of marigold, a factorial experiment was conducted in a completely randomized design in the greenhouse. The two factors studied included salinity levels (0, 4, 8 and 12 dS.m-1) and biochar resulting from different thermocouple temperatures (0, 300, 400, 500 and 600 °C). The biochar rate was considered to be 20%. One month after salinity treatment, seedlings were evaluated for osmotic metabolites activity and growth characteristics of marigold seedlings.Results and Discussion: The results of ANOVA showed that all biochar properties were significantly affected by temperature factor. With increasing the pyrolysis temperature from 300 to 600 °C, pH and EC increased by 16.29% and 60.37%, respectively, and the ash content increased by 1.5 folds, but biochar performance and bulk density decreased by 52.28% and 48.1%, respectively. The highest carbon stability was observed at 500 °C, which increased by 20% compared to 300 °C. The results showed a significant negative effect of salinity stress on stem height, number and area of marigold leaves, so that with increasing salinity to 12 dS.m-1, 31.09, 17.28 and 45.7% decrease were observed in these traits, respectively. The physiological characteristics of marigold were significantly affected by the simple and interaction effects of salinity and biochar stress. In salinity treatments (0, 4, 8 and 12 dS.m-1) with increasing pyrolysis temperature from 300 to 600 °C 2.2, 2.04, 1.97 and 1.92 folds increase in leaf potassium concentration and 1.54, 2.26, 3.00 and 2.45 folds less than the control treatment in the amount of leaf proline was observed, respectively. The activities of catalase, ascorbate peroxidase and guaiacol peroxidase enzymes were also significantly affected by the interaction of salinity stress and heat temperature. The highest enzyme activity in biochar was from 600 °C, which increased up to 8 dS.m-1 for catalase and up to 4 dS.m-1 for ascorbate peroxidase and guaiacol peroxidase.Conclusion: In general, biochar salinity is its most important undesirable properties, which increases with increasing pyrolysis temperature, so the recommendation of biochar application in saline soils requires further studies. In the present study, the use of biochar under salinity stress did not have a significant positive effect on the development of marigold resistance and salinity stress tolerance.
Medicinal Plants
Hawari Kiani; Yousef Sohrabi
Abstract
Introduction: In fact, drought is stress that restricts the plant photosynthesis and also it causes of chlorophyll content changes and damage to photosynthetic structures. One of the important reasons that environmental stresses such as drought reduce the growth and photosynthesis ability of the plant ...
Read More
Introduction: In fact, drought is stress that restricts the plant photosynthesis and also it causes of chlorophyll content changes and damage to photosynthetic structures. One of the important reasons that environmental stresses such as drought reduce the growth and photosynthesis ability of the plant is a disturbance in the balance between production and removal of free oxygen radicals. Transpiration is a necessary process for photosynthesis and growth of plants but depending on the conditions that may be harmful in some cases. Therefore, the use of anti-transpirant can be one of the most effective methods for reducing the amount of water lost through transpiration and adjustment the reduction of the yield due to water deficiency in arid and semi-arid regions. Climate change happened on earth and the intensification of stresses caused by it, especially drought stress in arid and semi-arid regions such as Iran. Therefore, finding strategies that can reduce the effects of water shortages on plant growth and yield can be very important. The aim of the present study was to investigate the effect of irrigation regimes and application of different concentrations of tragacanth (naturally dried exudate from some Astragalus species) on black cumin plant. Materials and Methods: This research was carried out in a factorial experiment based on completely randomized design with three replications in a greenhouse of the Agriculture College of Kurdistan University in 2018. The experimental factors were including irrigation at three levels of 100% (full irrigation), 70% (mild drought stress), and 40% (severe drought stress) of field capacity of soil and spraying with tragacanth extract at six concentrations of 0, 1.25, 2.5, 5, 7.5, and 10 g/L. Spraying of this material was done using a back sprayer (Shark model) with a constant pressure of 2.4 bar and a volume of 250 liters of water per hectare., The normality test was performed using the Mini Tab software, before the data were analyzed. After ensuring the normality of data, analysis of variance was performed using SAS ver. 9.3. LSD (Least significant difference) was used to compare the mean of treatments. The graphs are drawn using Excel software. Results and Discussion: The results showed that increased drought stress intensity (irrigation reduction) led to the reduced leaf relative water content, Total chlorophyll content, efficiency of photosystem II, plant height, number of capsules per plant, mean number of seeds per plant, biological yield and grain yield. The positive effects of tragacanth consumption on reducing and modifying the effects of drought stress on different levels of irrigation and different concentrations of tragacanth were different. In the present study, under full irrigation conditions, lower concentrations of tragacanth were useful, while in drought stress conditions, higher concentrations of tragacanth (except 10 g/L) were useful. In full irrigation, the concentration of 1.25 g/L was positive for all studied traits. In mild drought stress, the use of higher concentrations of tragacanth up to 5 g/L had the best effect and more concentrations resulted in a reverse effect on studied traits. In severe drought stress, the use of more concentrations of tragacanth extract was beneficial and improved the studied traits up to 7.5 g/L, but 10 g/L had a negative effect on these traits.Conclusion: The results of this study indicated that the different effects of various concentrations of tragacanth material in different levels of irrigation on studied traits of black cumin. Therefore, it can be concluded that the application of different concentrations of tragacanth gum was completely dependent on the plant's water status. Therefore, using higher concentrations of tragacanth gum in drought stress conditions had a more positive effect on the plant, and vice versa, using a lower concentration of this material was useful in full irrigation. The effect of tragacanth gum on reducing and modifying the effects of drought stress in different plants requires further studies and extensive research. Tragacanth gum can be introduced as a new anti-transpirant agent with natural origin and its application can be useful and recommended in areas exposed to drought stress.
Medicinal Plants
Zhaleh Zandavifard; Majid Azizi
Abstract
Introduction: St. John’s wort (Hypericum perforatum L.) is a medicinal plant which used mainly in treatment of mild depression, neurological disorders and has been recently shown to have anticancer potential. The principle medicinal components of St. John’s wort are hypericin, pseudohypericin, ...
Read More
Introduction: St. John’s wort (Hypericum perforatum L.) is a medicinal plant which used mainly in treatment of mild depression, neurological disorders and has been recently shown to have anticancer potential. The principle medicinal components of St. John’s wort are hypericin, pseudohypericin, and hyperforin. Light is one of the most important environmental factors affecting plant growth, survival, reproduction and distribution. The light quality, light intensity, duration and photoperiod directly affect plant growth. Light quality refers to the color or wavelength reaching the plant's surface. A prism (or raindrops) can divide sunlight into respective colors of red, orange, yellow, green, blue, indigo and violet. Red and blue have the greatest impact on plant growth. Green light is least effective (the reflection of green light gives the green color to plants). Blue light is primarily responsible for vegetative leaf growth. The principle objective of the current study was to evaluate the effects of different spectral quality including red, blue, green and white on the growth factors and production of hypericin.Materials and Methods: This experiment was conducted on the basis of Completely Randomized Design with four treatments and 10 replications in the growth chamber in the Department of Horticulture, Ferdowsi University of Mashhad (FUM), Iran. In this study, seeds were obtained from the research greenhouse of FUM. Seeds after soaking in running water for 24 hours were planted in small pots (250g). After the seedlings have reached to height of 25cm, each 10 pots were put inside the boxes (20×30cm) made of colored filters. Experiment continued in a growth chamber with day and night temperature 25 and 21°C, respectively, relative humidity 45%, 16 hours of light with the intensity of 1000 lux and 8 hours of darkness for 50 days. Then morphological parameters including plant height, number of stems, number of leaves, number and length of internodes, fresh and dry weight of shoot and root were measured. To count the number of black nodules, the upper, middle and lower parts of seedling were evaluated individually. Hypericin content of the H. perforatum plantlets were measured according to the previous work of Azizi & Omidbaigi, 2002. Data were analyzed statistically by using SAS and Excel software. The significant differences between means were assessed by Tukeyʼs test at P < 0.05.Results and Discussion: The results showed that morphological parameters including plant height, leaf number, internode length, root fresh weight, dry weight of stem and root were affected significantly by light treatments. Minimum and maximum of plant height was related to white and red lights, respectively. Increasing plant height under the influence of red light was due to the variation in levels of growth regulators. Red and blue light by changing of the GA hormone level in the plant and affected elongation of plant stem. Minimum and maximum of leaf number was related to blue and white light respectively. Also, other morphological traits including internode length, fresh and dry weights of stem and root showed significant differences. Internode length for white light was less than red, green and blue light. Maximum of the fresh and dry weight of shoot and root of seedlings was observed under white light. Results suggest that photosynthetic compounds move in plant under the influence of light quality. Also the number of black nodules in three different parts of plant and hypericin content were compared in plantlets under the effect of light quality. Results analysis also confirmed that different lights had the significant impact on the number of black nodules in upper and middle leaves of H. Perforatum seedlings. Seedlings treated with the red light had the highest number of black nodules in the middle section of H. perforatum. In the top third of St. John’s wort seedlings, red, blue and green light was inducted the highest number of black nodules formation than white light. The highest level of hypericin was related to red, white, blue and green lights, respectively. The number of black nodules in the plant and the hypericin content have positive correlation. It seems that in the seedlings treated with the red light, carbohydrates made from photosynthesis most used in biosynthesis of secondary metabolites than plant growth. In fact, carbon allelochemical compounds such as terpenes and phenolics have such metabolism direction to explain the increasing in secondary metabolites.Conclusion: Different light spectra affects plant hormones levels and with alteration in the primary and secondary metabolites lead to a change in the morphological and biochemical traits of plant. In general, it can commented that the quantity and quality of light is able to affect the growth and the active metabolites of medicinal plants and using red and white mixture of light during seedling growth period have an effective role on generation of more strong seedlings with higher potential production of active ingredients.
Medicinal Plants
Mehdi Rastegar; Hassan Mumivand; Alireza Shayganfar; Abdolhossein Rezaei Nejad
Abstract
Introduction: In the last decades, human activities have had adverse effects on the atmosphere and the stratospheric ozone layer, resulting in an increase in the ultraviolet radiation on the ground, especially in highlands. Among living organisms, plants are the most exposed to ultraviolet rays due to ...
Read More
Introduction: In the last decades, human activities have had adverse effects on the atmosphere and the stratospheric ozone layer, resulting in an increase in the ultraviolet radiation on the ground, especially in highlands. Among living organisms, plants are the most exposed to ultraviolet rays due to their high and unavoidable need to light for photosynthesis, and are therefore more vulnerable to them. Plants show different responses to ambient UV radiation. The response of plants to ultraviolet light is manifested in two general ways, including tolerating the destructive effects of this radiation or/and avoiding it. The present study was conducted to evaluate the effect of ultraviolet light on growth, morphological and phenological characteristics of three cornflower cultivars under greenhouse conditions in 2018.
Materials and Methods: The experiment was performed as a split plot in a completely randomized design. Ultraviolet light was considered as the first factor in four levels (including: control, ultraviolet –A radiation, ultraviolet -B radiation and ultraviolet A + B radiations) and three cornflower cultivars (including: ‘Kornblume pink’, ‘Kornblume rot’ and ‘Kornblume blau’) as the second factor. The UV treatment was applied by lamps made by Q-Lab Co, USA. It should be noted that the 40-watt lamps used in this study were broadband and had the highest compliance with ultraviolet B (in the case of UV-B lamps) and ultraviolet A (in the case of UV-A lamps) received from the sun on the ground. So they provided the best possible simulation. During the growth period of plants, phenological traits were recorded and morphological traits and biomass traits were measured at the end of the experiment.
Results and Discussion: The results showed that UV-B radiation and simultaneous application of UV-A and UV-B radiations resulted in the reduction of the most morphological traits and yield traits including plant height, internode length, leaf width, leaf area, flowering stem length, plant fresh and dry weight, leaf dry weight, flower dry weight and number of flowers. However, flower yield was not affected by ultraviolet radiations. UV-A treatment reduced the flowering stem length and fresh and dry weight of plant in compared to the control treatment, but it had no significant effect on plant height, leaf width, leaf dry weight, flower dry weight and number of flowers. Plants response to ultraviolet radiation is very different. In many species, it has been observed that UV-A does not have a negative effect on plant growth, while, UV-B reduced the growth and yield of plants. It seems that the main reason for the reduction of plant growth and production is prevention of cell division caused by ultraviolet radiation. Degradation of plant pigments (chlorophyll) is also one of the main reason of photosynthesis decrease led to plant growth and yield reduction. The results of the present study showed that the application of UV-A reduced the number of days until the emersion of the first flower bud and the number of days until the opening of the first flower in cornflower cultivars compared to the control. UV-B treatment forced cornflowers to earlier flowering than UV-A. However, the fastest entry into the reproductive and flowering phase of cornflower cultivars was observed with the simultaneous application of UV-A and B radiations. Plants mechanisms against environmental stresses mainly depend on their origin and genetic factors. These mechanisms include three main strategies including “avoidance”, “tolerance” and “escaping”. One of the most important ways to reduce the life cycle is early flowering. It seems that the process of early flowering and completing the growth in cornflower species is a kind of stress escaping under ultraviolet radiation stress.
Conclusion: In this study, ultraviolet radiation reduced the growth and development of all three species of cornflowers. However, UV-A treatment showed the least negative effect on flower yield of plants. On the contrary, UV-B radiation and simultaneous application of UV-A and UV-B radiations reduced the growth and development of cornflowers, but did not have any significant negative effect on the flower yield (as the main useable organ of plant). Therefore, it seems that the ultraviolet radiation can be considered as a positive factor due to its positive effects on the production of secondary metabolites and early flowering and lack of significant negative effects on plant flower yield. Finally, ‘Kornblume pink’ cultivar, with higher flower yield and earlier flowering, is more suitable for cultivation than other cultivars.
Medicinal Plants
Nahle Taghvaeefard; Askar Ghani; Seyyed Mehdi Hosseinifarahi
Abstract
Introduction: The harvest time and type of plant part have important roles in obtaining maximum amounts of active substances from medicinal plants. Medicinal plants vary in terms of phenological stages and maturity and each medicinal plant can be evaluated separately in research. Determining the exact ...
Read More
Introduction: The harvest time and type of plant part have important roles in obtaining maximum amounts of active substances from medicinal plants. Medicinal plants vary in terms of phenological stages and maturity and each medicinal plant can be evaluated separately in research. Determining the exact time of harvest and selecting a plant organ for maximum yield of secondary metabolites can be very important and economically effective. Othroj-Saghir (Citrus medica var. medica Proper) or Othroje-Kabir (Citrus medica var. macrocarpa) is one of the most important citrus species. The southern provinces of Iran, especially the southern cities of Fars province, are the largest areas in which this species is cultivated. In addition to fruit juice, other parts of the fruit especially the flavedo, can be used for medicinal purposes and in food industries. In this study, for the first time, some physical and biochemical changes of different parts of Citrus medica var medica fruits were evaluated during fruit ripening. Also, some active substances (i.e. essential oil content, flavonoid components, etc.) of the flavedo were measured as the most important medicinal parts of the fruit through different stages of ripening.
Materials and Methods: In this study, the effects of fruit ripening on the biochemical properties of different parts of Citron fruit were evaluated. A factorial experiment was set up according to a randomized complete block design (RCBD) with two factors and four replications. The first factor included four levels: different stages of fruit maturity (green mature, intermediate, yellow ripe and over ripe stage). The second factor had four levels: the different parts of the Citron fruit (i.e. outer skin or flavedo, inner skin or albedo, pulp and juice). The most important measured traits were flavon and flavonols, total flavonoids, total phenolic compounds and antioxidant activity. Physical changes in different parts of the fruit (fresh and dry weight of flavedo and albedo, fresh weight of fruit, fruit diameter and height of fruit, etc.) were measured.
Assessments also carried out to identify several features of fruit juice such as acidity, total soluble solids (TSS), titrable acidity (TA) and vitamin C during fruit ripening. Chemical measurements were aimed at determining the most important phytochemical compounds of the flavedo section during fruit ripening. These features included the essential oil percentage and yield, chlorophyll content and polyphenols constituents (rutin, trans-ferulic acid, hesperidin, hesperetin and quercetin by HPLC).
Results and Discussion: The results showed that the fruit maturity stage significantly affected most of the studied traits. The highest amounts of flavon and flavonols (0.377 mg quercetin/g dry weight) and total flavonoids (16.38 mg quercetin/g dry weight) were measured in the flavedo at the over ripe stage. The antioxidant activity initially increased during fruit ripening, but it decreased slightly (75.0%) from the yellow stage to the over ripe stage. The lowest rate of antioxidant activity (53.6%) was observed in the green stage and the highest rate (78.4%) was measured in the yellow ripe stage. The highest amounts of antioxidant activity (83.3% and 73.8%) were measured in the albedo and flavedo samples, respectively, and the lowest amount (54.1%) was recorded in the pulp section. The highest amount of flavedo essential oil (2.37%v/w) was measured in intermediate stage. The chlorophyll content with maturity progress was decreased. Progress in fruit maturity was reduced the most components of polyphenols. The maximum amount of hesperidin, as an important phenolic component, was identified in the peel of Citron fruit (1.86 mg/g dry weight) at the green mature stage. Its amount decreased through the stages of maturity, so that the lowest amount (0.68 mg/g dry weight) was measured at the over ripe stage.
Conclusion: In general, the stage of maturity and plant part had important effects on the amount of biochemical traits. The flavedo part of Citron fruit showed superior medicinal properties. Different active substances react variedly during maturity and so the preferable composition should be harvested according to the desired conditions. The best stages to reach maximum essential oil percentage and polyphenol components are the early stages of maturity (i.e. green mature and intermediate stages).