با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

به‌منظور مطالعه تأثیر محلول‌پاشی اسیدآسکوربیک و کلسیم‌کلرید و زمان برداشت بر کیفیت میوه گوجه‌فرنگی (Solanum lycopersicum L. SV8320TD)، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌ها‌ی کامل تصادفی در سه تکرار انجام شد. تیمار‌های آزمایش شامل اسیدآسکوربیک در چهار سطح (صفر، 100، 200 و 300 میلی‌گرم در لیتر) و کلسیم‌کلرید در چهار سطح (صفر، 3/0 ،6/0 و 9/0 درصد) و زمان برداشت میوه در دو مرحله نارنجی و قرمزرنگ بود. نتایج نشان داد که میوه­های برداشت شده در مرحله قرمزرنگ دارای ویتامین ث، مواد جامد محلول، فنل، فلاونوئید و ظرفیت آنتی‌اکسیدانی بیشتری در مقایسه با میوه­های نارنجی‌رنگ بودند. کاربرد اسید‌آسکوربیک و کلسیم‌کلرید به‌طور فزاینده‌ای کیفیت میوه را بهبود بخشیدند. بیشترین میزان سفتی بافت (7/21 و 4/21 کیلوگرم بر سانتی‌متر) به‌ترتیب در میوه‌های نارنجی‌رنگ تحت تیمار اسید‌آسکوربیک 100 میلی‌گرم در لیتر و کلسیم‌کلرید 9/0 درصد و میوه‌های قرمز‌رنگ حاصل از تیمار اسیدآسکوربیک 200 میلی‌گرم در لیتر و کلسیم‌کلرید 9/0 درصد به‌دست آمد. حداکثر مقدار مواد جامد محلول (9/4 درصد بریکس)، ویتامین ث (1/46 ملی­گرم در 100 میلی­لیتر)، فنل و فلاونوئید و ظرفیت آنتی‌اکسیدانی (36 درصد) در میوه­های قرمزرنگ حاصل از گیاهان تیمار شده با اسید‌آسکوربیک 300 میلی‌گرم در لیتر و کلسیم‌کلرید 9/0 درصد مشاهده شد. کمترین میزان اسیدیته و حداکثر اسید قابل تیتراسیون با کاربرد اسیدآسکوربیک 300 میلی­گرم در لیتر و همه سطوح کلسیم‌کلرید در میوه­های قرمزرنگ حاصل شد. با توجه به نتایج، کاربرد اسید‌آسکوربیک 300 میلی‌گرم در لیتر و کلسیم‌کلرید 9/0 درصد جهت بهبود شاخص‌های کیفی میوه گوجه‌فرنگی پشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Foliar Application of Calcium Chloride, Ascorbic Acid and Harvest Time on Fruit Quality of Tomato (Solanum lycopersicum cv. SV8320TD)

نویسندگان [English]

  • Z. Khalili
  • F. Nekounam
  • T. Barzegar
  • Z. Ghahremani
  • M. Farhangpour

Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

چکیده [English]

Introduction
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, which is one of the most widely cultivated and economically important vegetables in the world, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in scavenging reactive oxygen species (ROS), and enzyme cofactor. Ascorbic acid is antioxidant and anti-stress agent, and also acts as a signaling molecule in some plant physiological processes and defense mechanisms. Positive roles of such antioxidants in scavenging or chelating the free radicals and activating the natural resistance against different biotic and abiotic stresses have been reported in several fruit trees. Calcium has a vital role for normal growth and development of plants due to an important role in balancing membrane structures, increasing nutrient uptakes and activates of metabolic processes. Calcium plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. To our knowledge, however, little information is available regarding the interaction effect of ascorbic acid and calcium chloride on tomato. Thus, the aim of this study was to investigate the foliar application of ascorbic acid and calcium chloride on quality and antioxidant capacity of tomato fruit.
 
Materials and Methods
To study the effect of foliar application of calcium chloride (Ca) and Ascorbic acid (AsA) on growth, yield and fruit quality of tomato, the field experiment was carried out from June to September 2021 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Each treatment was carried out with three replicates. Different concentrations of Ca (0, 0.3, 0.6 and 0.9 %) and AsA (0, 100, 200 and 300 mg.l-1) were sprayed three times (0, 15, 30 days after full bloom). Fruits were harvested at two harvests stage (orange and red color) and transferred to the laboratory on the same day. Flesh firmness was determined with penetrometer (model Mc Cormic FT 32), using an 8 mm penetrating tip. Results were expressed in kg cm-2. The pH values of solutions were monitored with pH meter. TSS was measured in the extract obtained from three fruit of each replicate with a digital refractometer Atago PR-101 (Atago Co., Ltd., Tokyo, Japan) at 20◦C. Total ascorbic acid content was expressed as mg per 100 g of juice. Antioxidant activity was measured using the free radical scavenging activity (DPPH) and calculated according to the following formula: RSA%= 100(Ac-As)/Ac. Statistical analyses were performed with SPSS software package v. 20.0 for Windows, and means comparison were separated by Duncan’s multiple range tests at p< 0.05.
 
Results and Discussion
The results showed that fruit harvested at red color stage had higher vitamin C, total soluble solid (TSS), total phenol, flavonoids contents and antioxidant capacity compared to fruit harvested at orange color stage. Foliar application of AsA and Ca had significantly improved tomato fruit quality. The highest value of TSS (4.9 °B), vitamin C (46.1 mg.100 ml-1), total phenol and flavonoids contents and antioxidant capacity (36%) was achieved with application of 300 mg.l-1 AsA and 0.9% Ca in fruit harvested at red color harvest time. The lowest value of pH and highest TA was observed in red color fruit treated with 300 mg.l-1 AsA and all Ca levels. Ca had significant effect on fruit firmness, which the highest fruit firmness was obtained from 0.9% Ca. The fresh tomato is an important source of ascorbic acid for human consumption. AsA significantly increased the amount of vitamin C in the plum and sweet pepper fruits. Increasing vitamin C content in fruits after treatment with Ca could be related to inhibiting action of calcium on the activities of ascorbic acid oxidase that use ascorbate as a substrate. The results indicated that treatment of Ca produced fruits with higher firmness compared to control and other treatments. Firmness and resistance to softening can be increased by the addition of Ca, due to interaction of calcium with pectate acid in the cell wall to form calcium pectate and retarding polygalacturonase activity. Differences in the percentage of TSS content at the time of harvest indicated the AsA and Ca effects on carbohydrate accumulation in fruits, which had different potential on respiration rates and consequently storability of plants. The antioxidant activity has positive correlation with total phenolic content, flavonoids and content of ascorbic acid.
 
Conclusions
The results of our research indicated that per-harvest foliar application of AsA and Ca improved fruit quality attributes including vitamin C, fruit firmness, TSS and antioxidant activity. These results suggest that AsA and Ca treatments, especially AsA 300 mg.l-1 and Ca 0.9%, may be proposed to improve fruit quality.

کلیدواژه‌ها [English]

  • Antioxidant capacity
  • Fruit firmness
  • Phenolic compounds
  • Vitamin C

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  • Ainuddin, M.S., & Hajilo, J. (2016). Effect of post-harvest application of methyl jasmonat on qualitative traits and storage life of strawberry cv. ‘Camarosa’. Journal of Food Industry Research, 26(2), 287-286. (In Persian with English abstract)
  • Akhtar, A., Abbasi, N.A., & Hussain, A. (2010). Effect of calcium chloride treatments on quality characteristics of loquat fruit during storage. Pakistan Journal of Botany, 42(1), 181-188.
  • Ashibur Rahman, M., Zakaria, M., Baset Mia, M.A., & Sanaullah Biswas, M.D. (2021) Ascorbic acid influences on growth and yield of tomato. Annals of Bangladesh Agriculture, 25(1), 55-65. https://doi.org/10.3329/aba.v25i1.58155
  • Bandari, F.S., Rastegar, S., & Ghasemi, M. (2018). The effect of preharvest application of calcium chloride, putrescine and salicylic acid on some quality and quantity characters of Hindi ber (Ziziphus mauritiana khormaee). Journal of Horticulture Science32(2), 227-237. (In Persian with English abstract). https://doi.org/10.22067/jhorts4.v32i2.58482
  • Barzegar, T., Fateh, M., & Razavi, F. (2018). Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Scientia Horticulturae, 241, 293-303. https://doi.org/1016/j.scienta.2018.07.011
  • Buczkowska H., Michalojc, Z., & Nurzynska-Wierdak, R. (2016). Yield and fruit quality of sweet pepper depending on foliar application of calcium. Turkish Journal of Agriculture and Forestry, 40(2), 222-228.‏ https://doi.org/10.3906/tar-1501-56
  • Cheng, H.M., Koutsidis, G., Lodge, J.K., Ashor, A., Siervo, M., & Lara, J. (2017). Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis, 257, 100-108. https://doi.org/10.1016/j.atherosclerosis.2017.01.009
  • Cooper, T., Gargiulo, S., Streif, J., & Retamales, J. (2007). Effect of calcium content and calcium application on softening of Hayward kiwifruit. Acta Horticulturae, 753, 297-304. https://doi.org/10.17660/ActaHortic.2007.753.37
  • Dehghan, G., & Khoshkam, Z. (2012). Tin (II)-quercetin complex synthesis, spectral characterization and antioxidant activity. Food Chemistry, 131, 422–427. https://doi.org/10.1016/j.foodchem.2011.08.074
  • Elahviren Osalu, A., Farrokhzad, A.R., & Asghari, M.R. (2016). Effect of foliar spray with ascorbic acid on some qualitative characteristics and improving color of apple fruit (Malus domestica Red Spur). Plant Productions, 39(3), 113-125. (In Persian with English abstract). https://doi.org/10.22055/ppd.2016.12062
  • El-Banna, E.A., & Abd, E.S.H. (2006). Effect of foliar application with organic compounds on growth yield and tubers quality of potato (Solanum tuberosum). Journal of Agricultural Science Mansoura University, 31(2), 1165-1173. https://doi.org/10.21608/jssae.2006.236943
  • El-Katatny, M.H., & Emam, A.S. (2012). Control of postharvest tomato rot by spore suspension and antifungal metabolites of Trichoderma harzianum. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 1505-1528.
  • El-Shazly, S.M., Eisa, A.M., Moatamed, A. M.H., & Kotb, H.R.M. (2013). Effect of some agro-chemicals preharvest foliar application on yield and fruit quality of “swelling“ peach trees. Alexandria Journal of Agricultural Research 58(3), 219-229.
  • Esfahani, Z., Barzegar, T., Ghahremani, Z., & Nikbakht, J. (2018). Effects of foliar application of Megafol on yield, fruit quality and water use efficiency of tomato Cv. Rio Grande under water deficit stress. Journal of Crops Improvement19(4), 995-1009. (In Persian with English abstract). https://doi.org/10.22059/jci.2018.210332.1472
  • Farhoudi, R., Mehrnia, M.A., & Lee, D.J. (2017). Antioxidant activities and bioactive compounds of five Jalopeno pepper (Capsicum annuum) cultivars. Natural Product Research, 6, 1– https://doi.org/10.1080/14786419.2017.1410801
  • Fateh, M., Barzegar, T., & Razavi, F. (2019). The effect of foliar application of ascorbic acid and calcium lactate on growth, yield and fruit quality of sweet pepper. Journal of Horticulture Science33(1), 79-87. (In Persian with English abstract). https://doi.org/10.22067/jhorts4.v33i1.70145
  • Fenech, M., Amaya, I., Valpuesta, V., & Botella, M.A. (2019). Vitamin C content in fruits: Biosynthesis and regulation. Frontier in Plant Science, 9, 2006. https://doi.org/10.3389/fpls.2018.02006
  • Hafez, O.M., Hamouda, H.A., & Abd- El- Mageed, M.A. (2010). Effect of calcium and some antioxidants treatments on storability of "Le- Conte" pear fruits and its volatile components. Nature and Science, 8(5), 109-126.
  • Jalili Marandi, R. (2012). Postharvest Physiology (Handling and Storage of Fruits, Vegetables and Ornamental Plants). Publishers Jihad Urmia University, Urmia, Iran. (2nd Ed.). p 276.
  • Jalili Marandi, R., & Shafaei, Z. (2015). Effect of postharvest treatments of citric acid and salicylic acid on quality attributes of pear cv. Sardrod fruit during storage. Journal of Plant Productions, 38(1), 131-143. https://doi.org/10.22055/ppd.2015.11137
  • Kacjan, M.N., Gašperlin, L., Abram, V., Budič, M., & Vidrih, R. (2011). Quality parameters and total phenolic content in tomato fruits regarding cultivar and microclimatic conditions. Turkish Journal of Agriculture and Forestry, 35, 185-194. https://doi.org/10.3906/tar-0910-499
  • Kaijv, M., Sheng, L., & Chao, C. (2006). Antioxidation of flavonoids of green rhizome. Food Science and Technology, 27, 110-115.
  • Khani, A., Barzegar, T., Nikbakht, J., & Ghahremani, Z. (2020). Effect of foliar spray of calcium lactate on the growth, yield and biochemical attribute of lettuce (Lactuca sativa ) under water deficit stress. Advances in Horticultural Science, 34(1), 11-24. https://doi.org/10.13128/ahsc-8252
  • Khani, A., Barzegar, T., Nikbakht, J., & Ghahremani, Z. (2019). Effect of foliar spray of calcium lactate on physiological characteristics, antioxidant activity and yield of lettuce (Lactuca sativa) under deficit irrigation. Iranian Journal of Horticultural Science50(3), 649-665. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2018.259323.1456
  • Kou, L. (2015). Effects of pre- and postharvest calcium treatments on shelf life and postharvest quality of broccoli microgreens. Horticultural Science, 50(12), 1801-1808. https://doi.org/10.21273/HORTSCI.50.12.1801
  • Kou, L., Yang, T., Liu, X., & Luo, Y. (2015). Effects of pre-and postharvest calcium treatments on shelf life and postharvest quality of broccoli microgreens. Horticultural Science, 50(12), 1801-1808. https://doi.org/10.21273/HORTSCI.50.12.1801
  • Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. https://doi.org/10.1016/j.scienta.2014.06.027
  • Madani, B., Muda Mohamed, M.T., Biggs, A.R., Kadir, J., Awang, Y., Tayebimeigooni, A., & Shojaei, T.R. (2014). Effect of pre-harvest calcium chloride applications on fruit calcium level and post-harvest anthracnose disease of papaya. Crop Protection, 55, 55– https://doi.org/10.1016/j.cropro.2013.10.009
  • Mazumder, M.N.N., Misran, A., Ding, P., Wahab, P.E.M., & Mohamad, A. (2021). Preharvest foliar spray of calcium chloride on growth, yield, quality, and shelf life extension of different Lowland tomato varieties in Malaysia. Horticulturae, 7(11), 466. https://doi.org/10.3390/horticulturae7110466
  • Minutolo, M., Chiaiese, P., Di Matteo, A., Errico, A., & Corrado, G. (2020). Accumulation of ascorbic acid in tomato cell culture: Influence of the genotype, source explant and time of in vitroAntioxidants9(3), 222. https://doi.org/10.3390/antiox9030222
  • Mohammed, G.H. (2013). Effect of seamino and ascorbic acid on growth, yield and fruits quality of pepper (Capsicum annuum ). International Journal of Pure and Applied Sciences and Technology, 17(2), 9-16.
  • Mostofi, Y., & Najafi, F. (2014). Analytical laboratory methods in horticultural sciences. Tehran University Press, Tehran, Iran. 136 p. (In Persian)
  • Najafi, R., & Barzegar, T. (2022). The effect of foliar spray of different calcium sources on antioxidant properties and quality of cauliflower (Brassica oleracea botrytis ‘Romanesco’). Journal of Horticultural Science, 36(3), 577-589. (In Persian with English abstract). https://doi.org/10.22067/jhs.2021.70150.1047
  • Niazi, H., Barzegar, T., Ghahremani, Z., & Nadirkhanlou, L. (2021). Effect of light duration and calcium on growth, yield and quality of lettuce (Lactuca sativa New Red Fire). Journal of Vegetables Sciences2, 111-131. (In Persian with English abstract). https://doi.org/10.22034/iuvs.2021.521006.1135
  • Nizamani, S., Khaskheli, A.A., Jiskani, A.M., Khaskheli, S.A., Khaskheli, A.J., Poussio, G.B., Jamro, H.R., & Khaskheli, M.I. (2020). Isolation and identification of the fungi causing tomato fruit rot disease in the vicinity of Tandojam, Sindh. Agricultural Science Digest-A Research Journal, 269, 186-190. https://doi.org/10.18805/ag.D-269
  • Patane, C., Pellegrino, A., & Di Silvestro, I. (2018). Effects of calcium carbonate application on physiology, yield and quality of field-grown tomatoes in a semi-arid Mediterranean climate. Crop and Pasture Science, 69, 411-418. https://doi.org/10.1071/CP17424   
  • Rab, A., & Haq, I.U. (2012). Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (Lycopersicon esculentum) fruit. Turkish Journal of Agriculture and Forestry, 36(6), 695-701. https://doi.org/10.3906/tar-1112-7
  • Rababah, T., Ereifej, K., & Howard, L. (2005). Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins and color in fruits. Journal of Agricultural and Food Chemistry, 53, 4444-4447. https://doi.org/10.1021/jf0502810
  • Rubio, J.S., Garcia-Sanchez, F., Rubio, F., & Martinez, V. (2009). Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ Journal of Horticultural Sciences, 119, 79–87. https://doi.org/10.1016/j.scienta.2008.07.009
  • Sabir, F.K., & Agar, I.T. (2011). Influence of different concentrations of 1-methylcyclopropene on the quality of tomato harvested at different maturity stages. Journal of the Science of Food and Agriculture, 34, 111-118. https://doi.org/10.1002/jsfa.4529
  • Sarwat, M., Ahmad, P., Nabi, G., & Hu, X. (2013). Ca2+ signals: The versatile decoders of environmental cues. Critical Reviews in Biotechnololgy, 33, 97-109. https://doi.org/10.3109/07388551.2012.672398
  • Singh, R., Sharma, R.R., & Tyagi, S.K. (2007). Per-harvest foliar application of calcium and boron influences physiological disorder, fruit yield and quality of strawberry (Fragaria×ananassa ). Scientia Horticulturae, 112, 215-220. https://doi.org/10.1016/j.scienta.2006.12.019
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Enology and Viticulture, 16, 144-15.
  • Smirnoff, N. (2011). Vitamin C, the metabolism and functions of ascorbic acid in plants. Advances in Botanical Research, 59, 107-77. https://doi.org/10.1016/B978-0-12-385853-5.00003-9
  • Takahashi, S., & Badger, M.R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Science, 16(1), 53-60. https://doi.org/10.1016/j.tplants.2010.10.001
  • Tolasa, M., Gedamu, F., & Woldetsadik, K. (2021). Impacts of harvesting stages and pre-storage treatments on shelf life and quality of tomato (Solanum lycopersicum). Cogent Food and Agriculture, 7(1), 1863620. https://doi.org/10.1080/23311932.2020.1863620
  • Vinson, J.A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49, 5315–5321. https://doi.org/10.1021/jf0009293
  • Wang, J., Zhang, Z., & Huang, R. (2013). Regulation of ascorbic acid synthesis in plants. Plant Signaling and Behavior, 8(6), e24536-3. https://doi.org/10.4161/psb.24536
  • Youwei, Y., & Yinzhe, R. (2013). Grape preservation using chitosan combined with β-cyclodextrin. International Journal of Agronomy, 4, 1–8. https://doi.org/10.1155/2013/209235
CAPTCHA Image