با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه تربت حیدریه، تربت حیدریه، ایران

چکیده

به‌منظور بررسی اثرات محلول‌پاشی عصاره جلبک دریایی روی نشاهای گل‌گاوزبان (Fisch. & Mey Echium amoenum) در شرایط تنش شوری، آزمایشی به‌‌صورت فاکتوریل با دو فاکتور جلبک دریایی و تنش شوری با نمک کلرید سدیم، در قالب طرح کاملاَ تصادفی در گلخانه انجام شد. در این آزمایش، تیمارها شامل غلظت ppm 1500 از عصاره جلبک دریایی و سه سطح شوری ( 6/1، 4 و 8 میلی‌موس بر متر) بود. یک هفته بعد از اولین محلول‌پاشی عصاره‌های جلبک دریایی، اعمال تنش شوری آغاز گردید. به‌منظور جلوگیری از ایجاد شوک در گیاهان، تیمار شوری به‌تدریج و در سه مرحله انجام شد. نتایج تجزیه واریانس نشان داد که اثرات ساده تیمارهای شوری و جلبک دریایی و همچنین اثرات متقابل شوری در جلبک دریایی بر وزن تر اندام هوایی، وزن تر ریشه، طول ریشه و وزن خشک کل بوته گل‌گاوزبان معنی­دار بود. عصاره جلبک دریایی سبب افزایش میزان پرولین و پتاسیم در برگ گیاه گردید و از این طریق سبب کاهش اثرات مخرب تنش شوری برای گیاه گل‌گاوزبان شد. علاوه‌براین محلول‌پاشی گیاه گل‌گاوزبان با استفاده از عصاره جلبک دریایی سبب افزایش میزان کلروفیل در گیاه گردید و از این طریق با افزایش میزان فتوسنتز در گیاه به رشد بهتر گیاه در شرایط تنش شوری کمک کرد. استفاده از عصاره جلبک سبب افزایش میزان قند محلول تحت شرایط تنش شوری گردید. به‌طوری‌که در غلطت­های 6/1، 4 و 8 میلی‌موس بر متر تنش شوری، میزان قند محلول به‌ترتیب 80، 33 و 33 درصد افزایش یافت. استفاده از عصاره جلبک دریایی سبب کاهش 11 و 15 درصدی میزان سدیم در غلظت­های 4 و 8 شوری شد. همچنین جلبک دریایی، جذب پتاسیم را 33 و 24 درصد در غلطت­ها شوری افزایش داد. با توجه‌ به نتایج به‌دست‌آمده می­توان نتیجه گرفت که کاربرد جلبک دریایی می­تواند اثرات منفی تنش شوری را در نشاء گل‌گاوزبان ایرانی کاهش دهد، همچنین به‌دلیل قیمت پایین و در دسترس بودن می‌تواند به‌عنوان یک کود زیستی مناسب برای حفظ رشد گیاه در شرایط تنش شوری استفاده گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Foliar Application of Seaweed Extract on Morphological and Physiological Traits of Echium amoenum Fisch. & Mey Seedlings under Salinity Stress

نویسندگان [English]

  • B. Rahimkhani
  • M. Naseri
  • A. Ahmadian
  • M. Alipanah

Department of Plant Production, Faculty of Agriculture, University of Torbat Heydarieh, Torbat Heydarieh, Iran

چکیده [English]

Introduction
Historically, medicinal plants have been one of the most important resources for therapeutic purposes, and even today, their use is expanding in many developed countries. Salinity stress is a major factor that limits plant growth by reducing metabolic and physiological activities. One of the effects of salinity stress is the increased production of abscisic acid in plants. In recent years, the use of seaweed and its extracts has been tested as a method to mitigate the effects of salinity stress on plants. According to the studies conducted in some plants, seaweed extract can cause the growth and expansion of the roots and help to increase the absorption of water and minerals through the roots. Also, based on the research conducted on some plants, the use of seaweed increases the amount of chlorophyll in the plant and accelerates the time of flowering and fruit formation in the plant. Echium amoenum is a perennial plant belonging to the family Borage is a valuable plant in terms of its medicinal properties is considered. In general environmental factors have a significant effect on flower production in these plants. Therefore, for the successful cultivation of medicinal plants, including in general environmental factors have a significant effect on flower production in these plants. Therefore, for the successful cultivation of medicinal plants, including Echium amoenum, providing optimal environmental conditions is a priority, providing optimal environmental conditions is a priority. Ascophyllum nodosum seaweed extract contains significant amounts of high-use mineral elements such as nitrogen, potassium, calcium, magnesium, and low-use mineral elements such as iron, copper, and manganese. Therefore, according to the current results, in this study, the effect of foliar spraying of algae extract was investigated. The morphological characteristics of Echium amoenum seedling under salt stress were investigated
 
Materials and Methods
In order to investigate the effects of foliar spraying of seaweed extract on borage flower seedlings under salinity stress conditions, a factorial experiment was conducted with two factors of seaweed and salinity stress with sodium chloride salt, in the form of a completely randomized design in the greenhouse. The seeds were purchased from Pakan Seed Company of Isfahan and soaked in normal water for 24 hours, and then they were transferred into small pots containing three parts of peat moss and one part of perlite. One week after transferring the seedlings to the main pots, foliar spraying with seaweed extract was done. Foliar-spraying was repeated once every two weeks and in total the seedlings were sprayed three times with seaweed extract. In this experiment, a concentration of 1500 ppm of seaweed extract and three levels of salinity (EC=1.6, 4, 8) were used. The seaweed extract used in this experiment belonged to Akadin Company. The type of seaweed from which the extract was prepared was Ascophyllum nodosum and it is a type of brown algae. One week after the first foliar application of seaweed extracts, the application of salinity stress began. In order to prevent shock in plants, salinity treatment was done gradually and in three stages. In order to prevent salt accumulation, washing with ordinary water was done once every two weeks.
Results and Discussion
The results showed that the use of seaweed extract can significantly protect plant growth under salinity stress. Seaweed extract increased the amount of proline and potassium in the leaves of the plant and thereby reduced the harmful effects of salinity stress on the borage plant. In addition, foliar spraying of borage plant with the use of seaweed extract increased the amount of chlorophyll in the plant, and in this way, by increasing the amount of photosynthesis in the plant; it helped the plant to grow better under salt stress conditions. The results of this research indicate that the use of seaweed extract helps plants maintain their health under salt stress by increasing proline levels and enhancing potassium absorption in plant tissues. Additionally, foliar spraying with seaweed extract preserves the chlorophyll structure in plants experiencing salinity stress, thereby increasing photosynthetic efficiency and promoting better growth under such conditions.
 
Conclusions
Based on the results obtained, it can be concluded that seaweed can mitigate the negative effects of salinity stress in Iranian borage seedlings. Furthermore, due to its low cost and availability, it can serve as a suitable bio-fertilizer to support plant growth in saline conditions.
 

کلیدواژه‌ها [English]

  • Carotenoids
  • Electrolyte leakage
  • Sodium

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

5- Afzal, S., Chaudhary, N., & Singh, N.K. (2021). Role of soluble sugars in metabolism and sensing under abiotic stress. Plant growth regulators: Signalling under stress conditions. In Plant Growth Regulators. Springer, pp. 305-334.https://doi.org/10.1007/978-3-030-61153-8_14
7- Chartzoulakis, K. (2005). Salinity and olive: growth salt tolerance photosynthesis and yield. Agriculture Water Managemet, 78, 108–121. https://doi.org/10.1016/j.agwat.2005.04.025
8- Courbier, S., Grevink, S., Sluijs, E., Bonhomme, P.­O., Kajala, K., Van Wees, S.­C., & Pierik, R. (2020). Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell and Environment43(11), 2769-2781.‏ https://doi.org/10.1111/pce.13870
9- Esmaielpour, B., & Fatemi, H. (2020). Effects of seaweed extract on physiological and biochemical characteristics of basil (Ocimum basilicum L.) under water-deficit stress conditions. Journal of Soil and Plant Interactions Isfahan University of Technology, 11(1), 59-69. https://doi.org/10.47176/jspi.11.1.10288
12- Goñi, O., Fort, A., Quille, P., McKeown, P.C., Spillane, C., & O'Connell, S. (2016). Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different. Journal of Agricultural and Food Chemistry, 64, 2980–2989. https://doi.org/10.1021/acs.jafc.6b00621
13- Gurrieri, L., Merico, M., Trost, P., Forlani, G., & Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology9(11), 367.‏ https://doi.org/10.3390/biology9110367
15- Jabbar, A.A., Abdullah, F.O., Hassan, A.O., Galali, Y., Hassan, R.R., Rashid, E.Q., Salih, M.I. & Aziz, K.F. (2022). Ethnobotanical, phytochemistry, and pharmacological activity of onosma (Boraginaceae): An updated review. Molecules27(24), 8687.‏ https://doi.org/10.3390/molecules27248687
17- Nikbakht, A., & Kafi, M. (2008). The history of traditional medicine and herbal plants in Iran. Acta Hortic, 790, 255-258. https://doi.org/10.17660/ActaHortic.2008.790.37
18- Nourashrafeddin, S.M., Ramandi, A., & Seifi, A. (2023). Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. International Microbiology, 27(2), 1-11.‏ https://doi.org/10.1007/s10123-023-00394-6
23- Ramandi, A., Javan, I.Y., Tazehabadi, F.M., Asl, G.I., Khosravanian, R., & Ebrahimzadeh, M.H. (2019). Improvement in seed surface sterilization and in vitro seed germination of ornamental and medicinal plant-Catharanthus roseus (L.). Chiang Mai Journal of Science46(6), 1107-1112.‏
24- Ramandi, A., & Seifi, A. (2023). Cupriavidus metallidurans bacteria enhance sodium uptake by plants. Rhizosphere27, 100767.‏
25- Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., & Prado, F.E. (2009). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior4(5), 388-393.‏
26- Savage, J.A., Hudzinski, S.J., & Olson, M.R. (2024). Use of electrolyte leakage to assess floral damage after freezing. Applications in Plant Sciences, 12(5), 1-8. ‏https://doi.org/10.1002/aps3.11569
28- Shabala, S., & Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum133(4), 651-669.‏
29- Sayyari Zahan, M.H., Sayyadi Anari, M.H., Zamani, G., Mahmoodi, S., & Golestanifar, F. (2022). The effect of two types of algae on the growth characteristics of bread wheat and basil under salinity stress. Environmental Stresses in Crop Sciences, 15(3), 731-740.
30- Vaghparast, M., Maleki-Farahani, S., Sinaki, J.M., & Zarei, G. (2012). Mitigation of drought stress in chickpea through application of humic acid and seaweed extract. Crop Production in Stress Environment, 4, 59–71.
31- Xu, C., & Leskovar, D. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition valued under drought stress. Scientia Horticulturae, 183, 39–47. https://doi.org/10.1016/j.scienta.2014.12.004
32- Zarbakhsh, S., & Shahsavar, A.R. (2023). Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biology23(1), 543.‏ https://doi.org/10.1186/s12870-023-04568-2
34- Zhao, C., Zhang, H., Song, C., Zhu, J.K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 1-41.‏ https://doi.org/10.1016/j.xinn.2020.100017
CAPTCHA Image