نوع مقاله : مقالات پژوهشی
نویسندگان
1 مرکز جهاد کشاورزی بسطام، استان سمنان، شاهرود، ایران
2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
چکیده
هدف از این پژوهش، بررسی افزایش سرعت ریزغدهزایی و بهبود صفات ریزغدهزایی، تعیین بهترین غلظت ساکارز (80 و 160 گرم در لیتر)، نمکهای عناصر پرمصرف (2 Mac, Mac, ½ Mac) و کممصرف (2Mic, Mic, ½ Mic) و غلظتهای مختلف محیط کشت MS برای بهبود سرعت و کمیت ریزغدهزایی در سیبزمینی (Solanum tuberosum L.) رقم ̓آگریا̒ اجرا شد. از جوانههای جانبی حاصل از شاخسارههای درون شیشهای بهعنوان ریزنمونه استفاده شد و تحت شرایط استریل روی محیطهای کشت مختلف بهمنظور ریزغدهزایی کشت شدند و کشتها در تاریکی مداوم و دمای 2±18 درجه سانتیگراد در اتاق رشد نگهداری شدند. در طی یک ماه سرعت آغازش ریزغده و پس از گذشت دو ماه صفات ریزغدهزایی اندازهگیری شد. نتایج تجزیه واریانس نشان داد که اثر غلظت عناصر کممصرف و اثرات متقابل عناصر کممصرف با غلظتهای مختلف ساکارز و عناصر پرمصرف فقط در مورد دو صفت درصد و سرعت آغازش ریزغده معنیدار بوده، درحالیکه تمامی صفات ریزغدهزایی از اثر متقابل عناصر کممصرف × پرمصرف بهطور معنیداری متأثر شدند. در تمامی محیطهای کشت دارای 80 گرم در لیتر ساکارز، درصد آغازش ریزغدهها 100 درصد و سرعت آغازش نیز حداکثر بود. بااینحال، بالاترین درصد تشکیل ریزغده، وزن، طول، قطر و تعداد جوانه روی ریزغده، در محیطکشت 2Mac دارای 160 گرم در لیتر ساکارز بهدست آمد. نتایج نشان داد که ریزغدههایی که وزن و اندازه بیشتری داشتند، از درصد رکود بیشتری برخوردار بودند و جوانههای روی ریزغدهها طی مراحل ریزغدهزایی، قادر به جوانهزنی و تولید ریزغده نبودند. در همه محیطهای کشت استفاده شده همراه با 80 گرم در لیتر ساکارز، درصد آغازش ریزغدهها 100 درصد و سرعت آغازش غده بیشتر بود، ولی زمانیکه از دوبرابر غلظت عناصر پرمصرف و 160 گرم در لیتر ساکارز استفاده شد، درصد آغازش و سرعت آغازش ریزغده کاهش یافت. در این تحقیق مشخص شد که ریزغدههای تولیدی با وزن و اندازه بیشتر، از درصد رکود بیشتری برخوردار بودند و طی مراحل ریزغدهزایی، جوانههای روی ریزغدهها قادر به جوانهزنی و تولید ریزغده نبودند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigating the Effect of Different Concentrations of Murashige and Skoog (MS) Medium and Sucrose on the Production of Potato (Solanum tuberosum L.) Microtubers in vitro
نویسندگان [English]
- F. Yarmohammadi 1
- A. Motallebi-Azar 2
- S. Kazemiani 2
- Mina Amani 2
1 Bastam Agricultural Jihad Center, Semnan Province, Shahrood, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]
Introduction
Considering the sensitivity of potatoes (Solanum tuberosum L.) to viruses, the production of virus-free plants through in vitro cultivation and their propagation leads to a reduction in costs and an increase in yield. One of the effective methods of reducing plant diseases and producing disease-free microtubers is the use of in-vitro production methods. Considering the role and importance of macro elements and micro elements in the growth of microtubers, it is possible to change the composition of MS culture medium by changing the concentration of salts of macro elements and micro elements without disturbing the balance of elements. This experiment aims to investigate the effect of different concentrations of macro elements (2 Mac, Mac, ½ Mac) and micro elements (2 Mic, Mic, ½ Mic) of MS culture medium in combination with two concentrations of sucrose (80 and 160 g.l-1) was performed on in vitro micronodulation of Agria potato.
Materials and Methods
This experiment aimed to investigate the effects of different concentrations of macroelements (2 Mac, Mac, ½ Mac) and microelements (2 Mic, Mic, ½ Mic) in the MS culture medium, combined with two sucrose concentrations (80 and 160 g.l-1), on in vitro microtuberization of Agria potato. The study was conducted as a factorial experiment in a completely randomized design with three replications in the plant tissue culture laboratory of the Department of Horticultural Sciences at the Faculty of Agriculture, University of Tabriz. Lateral buds obtained from in-vitro shoots were used as explants and were cultured under sterile conditions on different culture mediums for the purpose of microtuberation, and the cultures were kept in continuous darkness and at a temperature of 18±2°C were kept in the growth room. During one month, Microtuber initiation rate and after two months, microtuber formation characteristics were measured.
Results and Discussion
The results of the analysis of variance showed that the effect of the concentration of micro elements and the interaction effects of micro elements with different concentrations of sucrose and macro elements were significant only in the case of two traits, the percentage and the speed of microtuber initiation, while all microtuber traits productivity was significantly affected by the interaction of micro elements and macro elements. In all culture mediums with 8% sucrose, the initiation percentage of microtubers was 100% and the initiation rate was also maximum. However, the highest percentage of microtuber formation, weight, length, diameter and number of buds on microtuber was obtained in 2Mac culture medium with 16% sucrose. The results showed that the microtuber that had more weight and size had a higher percentage of dormancy and the buds on the microtuber were not able to germinate and produce microtuber during the stages of microtuber formation.
Conclusions
For all traits related to microtubers, except for the percentage and speed of microtuber initiation, the effects of microelements, macroelements, and sucrose were not significant. This indicates that the three factors investigated do not independently enhance microtuber formation in the Agria variety. Regarding micronodulation traits, the interaction effect of low-consumption elements with the other two factors was also not significant, suggesting that the concentration of low-consumption elements is not critical for micronodulation in the Agria variety. In all culture media with 8% sucrose, the initiation percentage of microtubers reached 100%, and the initiation speed was at its maximum. However, when the concentration of macroelements was doubled and 16% sucrose was used, both the initiation percentage and speed of microgland formation in the Agria variety showed a significant decrease. The percentage of microtuber formation, weight, length, diameter and number of buds on the microtuber in Agria cultivar were significantly affected by the mutual effect of the concentration of macro elements and sucrose, and the 2 Mac culture medium has 16% sucrose in the first priority and the ½ culture medium Mac with 8 % sucrose in the second priority was better than the other treatments in terms of the investigated traits. In this research, it was found that the produced microglands with greater weight and size had a higher percentage of dormancy and during the stages of microglandogenesis, the buds on the microtubers were not able to germinate and produce microtubers.
کلیدواژهها [English]
- Agria variety
- Macro elements
- Micro elements
- Microtuber formation
- Tissue culture
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abelenda, J.A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R.G., & Bachem, C.W. (2019). Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 29, 1178-1186. https://doi.org/10.1016/j.cub.2019.02.018
- Afrasiab, H., & Iqbal, J. (2012). Biochemical and molecular characterization of somaclonal variants and induced mutants of potato. Pakistan Journal of Botany, 44, 1503-1508.
- Ahloowalia, B.S. (1999). Minitubers for seed potato production. Farm and Food, 4, 4-6.
- Akita, M., & Takayama, S. (1994). Induction and development of potato tubers in a jar fermentor. Plant Cell Tissue Organ Culture, 36, 177-182. https://doi.org/10.1007/BF00037717
- Altindal, D., & Karadogan. (2011). The effect of carbon sources on in vitro microtubrization of potato (Solanum tuberosum ). Turkish Journal of Field Crops, 15, 7-11.
- Ashrafzadeh, S., & Leung, D.W.M. (2015). Microtuber formation in potato callus. ScienceAsia, 41, 1-4.
- Bhojwani, S.S., & Razdan, M.K. (1996). Plant tissue culture: theory and practice, a revise edition Elsevier, 501 p.
- Carlson, C., Groza, H.I., & Jiang, J. (2004). Induction of in vitro minimum potato plant growth and microtuberization. American Journal of Potato Research, 81, 50-58.
- Donnelly, D.J., Coleman, W.K., & Coleman, S.E. (2003). Potato microtuber production and performance: A review. American Journal of Potato Research, 80, 103-115. https://doi.org/10.1007/BF02870209
- Dwiati, M., & Anggorowati, S. (2011). Induction of in vitro culture of potato microtuber by using alar and dark photoperiod application. Agrivita, Journal of Agricultural Science, 33, 47-52. https://doi.org/10.17503/agrivita.v33i1.38
- Ebadi, M., & Iranbakhsh, A. (2011). The induction and growth of potato (Solanum tuberosum L) microtubers (sante cultivar) in response to the different concentrations of 6-benzylaminopurine and sucrose. African Journal of Biotechnology, 10, 10626-10635. https://doi.org/10.5897/AJB11.047
- Fujino, K., Koda, Y., & Kikuta, Y. (1995). Reorientation of cortical microtubules in the sub-apical region during tuberization in single-node stem segments of potato in culture. Plant and Cell Physiology, 36, 891-895. https://doi.org/10.1093/oxfordjournals.pcp.a078835
- Garner, N., & Blake, J. (1989). The induction and development of potato microtubers in vitro on media free of growth regulating substances. Annals of Botany, 63, 663-674. https://doi.org/10.1093/oxfordjournals.aob.a087795
- George, E.F. (1993). Plant propagation by tissue culture. part1. The technology Exegetics England. Potato. Ph.D. Thesis, Punjab Agricultural University Ludhiana India. http://dx.doi.org/10.1007/978-1-4020-5005-3_8
- Hannapel, D.J. (2007). Signaling the Induction of Tuber Formation. In: Vreugdenhil D (Ed.), Potato Biology and Biotechnology. Elsevier B.V, 242-243. http://dx.doi.org/10.1016/B978-044451018-1/50054-3
- Haque, A.V., Samad, M.A., & Shapla, T.L. (2009). In vitro callus initiation and regeneration of potato. Bangladesh Journal of Agricultural Research, 34, 449-456. http://dx.doi.org/10.3329/bjar.v34i3.3971
- Hemberg, T. (1985). Potato rest. In: Potato Physiology. P.H. Li (Ed). Academic Press Inc, Orlando, Fla. U.S.A. 354-388.
- Hussain, I., Chaudhry, Z., Muhammad, A., Asghar, R., Naqvi, S.M.S., & Rashid, H. (2006). Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum cv. Cardinal). Pakestan Journal of Botany, 38, 275-282. http://dx.doi.org/10.13140/RG.2.2.26159.89763
- Hussey, G., & Stacey, N.J. (1984). Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum). American Potato Journal, 53, 565-578. https://doi.org/10.1093/oxfordjournals.aob.a086720
- Imani, A.A., Qhrmanzadeh, R., Azimi, J., & Janpoor, J. (2010). The effect of various of 6-benzylaminopurine (BAP) and sucrose on in vitro potato (solanum tuberosum ) microtuber induction. American-Eurasian Journal Agriculture and Environ. Science, 8, 457-459.
- Iqbal, A.A., Rizwan, A., Mukhtar, Z., Mansoor, S., Mehmood, Z., & Asad, S. (2016). Establishment of an efficient and reproducible regeneration system for potato cultivars grown in Pakistan. Pakistan Journal of Botany, 48, 285-290.
- Jones, J.B. (1998). Plant Nutrition Manual. CRC Press, Boca Raton, Florida, USA. p. 149.
- Joshi, A., & Mature, N. (2015). Micropropagation and conservation of endanger medicinal plant – Leptadenia rticulata (Retz.) wight and Arn. trought nodal explant. International Journal of Current Advanced Research, 4, 382-385.
- Karhu, S.T. (1997). Sugar use in relation to shoot induction by sorbitol and cytokinin in apple. Journal American Society Horticulture Science, 122, 476–480. https://doi.org/10.21273/JASHS.122.4.476
- Khalafalla, M.M., Abd Elaleem, K.G., Rasheid, S., & Modawi, R.S. (2010). Callus formation and organogenesis of potato (Solanum tuberosum) cultivar almera. Journal of Phytology, 2, 40–46.
- Khalil, M.M., Abd El Aal, A.M.H., & Samy, M.M. (2017). Studies on microtuberization of five potato genotypes. Egyptian Journal of Horticulture, 44, 91-97. http://dx.doi.org/10.21608/ejoh.2017.1176.1011
- Khuri, S., & Moorby, J. (1995). Investigations into the role of sucrose in potato cv. Estima microtuber production in vitro. Annal of Botany, 75, 295-303. https://doi.org/10.1006/anbo.1995.1024
- Kozak, D. (2003). Effect of medium components on in vitro tuberization of Gloriosa rothschhildiana όbrien. Acta Horticultur, 624, 515-520. https://doi.org/10.17660/ActaHortic.2003.624.71
- Leclerc, Y., & Donnelly, D.J. (1995). Microtuber dormancy in three potato cultivars. American Potato Jornal, 2, 215-223. http://dx.doi.org/10.1007/BF02855037
- Mamiya, K., & Sakamoto, Y. (1999). Effect of sugar concentration and strengthof basal medium on conversion of somstic embryos in Asparagus Officinalis Scientia Horticulture, 84, 15-26. http://dx.doi.org/10.1016/S0304-4238(99)00098-9
- Mengel, K., & Kirby, E.A. (1987). Principles of plantnutrition. International patash institute. Worblaufen Bern, Switzerland, 7(12), 687-695. http://dx.doi.org/10.1093/aob/mch063
- Motallebi-Azar, A., Kazemiani, S., & Yarmohamadi, F. (2013). Effect of sugar/osmotica levels on in vitro microtuberization of potato (Solanum tuberosum). Russian Agricultural Sciences, 39, 112-116. https://doi.org/10.3103/S1068367413020146
- Motallebi-Azar, A., Kazemiani, S., Kiumarsie, F., & Mohaddes, N. (2011). Shoot proliferation from node explants of potato (Solanum tuberosum Agria). II. effect of different concentrations of NH4NO3, hydrolyzed casein and BAP. Romanian Biotechnological Letters, 16, 6181-6186.
- Ortiz-Montiel, G., & Lozoya-Saldafia, H. (1987). Potato minitubers: Technology validation in Mexico. American Potato, 64, 535-544. http://dx.doi.org/10.1007/BF02853752
- Salem, J., & Hassanein, A.M. (2017). In vitro propagation, microtuberization, and molecular characterization of three potato cultivars. Biologia Plantarum, 61, 427-437. https://doi.org/10.1007/s10535-017-0715-x
- Seabrook, J.E.A., Douglass, L.K., & Arnold, D.A. (2004). Effect of leaves on microtubers produced from potato single-node cutting in vitro. American Journal of Potato Research, 81, 1-5. https://doi.org/10.1007/BF02853830
- Shacklock, P.S., Read, N.D., & Trewavas, A.J. (1992). Cytosolic free calcium mediates redlight induced photomorphogenesis. Nature, 358, 753-755. https://doi.org/10.1038/358753a0
- Shahriyar, S., Akram, S., Khan, K., Miya, F., & Sarkar, A.R. (2015). In vitro plant regeneration of potato (Solanum tuberosum) at the rate of different hormonal concentration. Asian Journal of Medical and Biological Research, 1, 297-303. http://dx.doi.org/10.3329/ajmbr.v1i2.25625
- Shibli, R.A., Abu-Ein, A.M., & Ajlouni, M.M. (2001). In vitro and in vivo multiplication of virus free “Spunta” potato. Pakistan Journal. Botanica, 33, 35-41. https://doi.org/10.22059/ijhs.2015.54133
- Simko, I. (1994). Sucrose application causes hormonal changes associated with potato tuber induction. Journal Growth Regulator, 13, 73-77. https://doi.org/10.1007/s10725-004-5827-6
- Sonnewald, S., & Sonnewald, U. (2014). Regulation of potato tuber sprouting. Planta, 239, 27-38. https://doi.org/10.1007/s00425-013-1968-z
- Tetsumura, , Matsumoto, Y., & Sato, M. (2008). Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Science Horticulture, 119, 72-84. http://dx.doi.org/10.1016/j.scienta.2008.06.028
- Yu, W.C., Joyce, P.J., Cameron, D.C., & McCown, B.H. (2000). Sucrose utilization during potato microtuber growth in bioreactors. Plant Cell Reports, 19, 407-413. http://dx.doi.org/10.1007/s002990050748
ارسال نظر در مورد این مقاله