با همکاری انجمن علمی منظر ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

­کاربرد کودهای آلی در خاک­های شور که عمدتاً به‌دلیل نبود پوشش گیاهی مناسب با کمبود مواد آلی و به دنبال آن کمبود رطوبت مواجه هستند، از طریق اصلاح خصوصیات فیزیکی و شیمیایی خاک می­تواند موجب بهبود رشد و تحمل گیاهان در خاک­های شور شود. در این تحقیق از دو نوع کود آلی به‌عنوان اصلاح‌کننده خصوصیات خاک شور و محلول‌پاشی اسید هیومیک به‌عنوان محرک رشد گیاه استویا (Stevia rebaudiana Bertoni.) استفاده شد. این پژوهش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی شامل فاکتور اول: 1- شاهد (بدون کود آلی)، 2- ورمی کمپوست 20 تن در هکتار، 3- ورمی کمپوست 40 تن در هکتار، 4- کمپوست قارچ مصرفی 20 تن در هکتار، 5- کمپوست قارچ مصرفی40 تن در هکتار و فاکتور دوم شامل: محلول‌پاشی اسید هیومیک در دو سطح صفر و 1/0 درصد با سه تکرار بودند. میزان فتوسنتز، سطح برگ، وزن خشک گیاه، pH، شوری، جرم مخصوص ظاهری و کربن آلی خاک به‌منظور تعیین مؤثرترین ماده آلی در شرایط تنش شوری خاک مورد بررسی قرار گرفتند. نتایج نشان داد که کود کمپوست قارچ مصرف‌شده (SMC) موجب کاهش معنی­دار pH خاک و جرم مخصوص ظاهری خاک، افزایش شوری و کربن آلی خاک شد. سطح برگ گیاه کاهش یافت، ولی منجر به افزایش فنول کل، کلروفیل a، b، کلروفیل کل و کاروتنوئید برگ شده و موجب افزایش معنی­دار وزن خشک گیاه استویا در خاک شور گردید. بیشترین وزن خشک گیاه با کاربرد 40 تن بر هکتار کود SMC و محلول‌پاشی اسید هیومیک به‌دست آمد که نسبت به شاهد (بدون کود) 12/45 درصد بیشتر بود. بنابراین کود SMC می­تواند اصلاح­کننده مناسبی برای خاک شور باشد، محلول‌پاشی اسید هیومیک نیز فقط همزمان با کاربرد SMC تأثیر مثبت معنی­داری داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Organic Fertilizers Application and Humic Acid Foliar Spraying on Growth Characteristics of Stevia (Stevia rebaudiana Bertoni) in a Saline Soil

نویسندگان [English]

  • S. Tandisseh Bana
  • A.R. Astaraei
  • A. Lakzian

Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Introduction
Saline soils due to lack of organic matter and poor physicochemical properties and subsequent lack of moisture, usually having poor vegetation. The use of organic fertilizers in saline soils, can improve the growth and tolerance of plants under salinity conditions by improving the physical and chemical properties of the soil. For this purpose, this research was carried out with two types of organic fertilizers to modify saline soil properties along with humic acid foliar application as a stimulant for the growth of the Stevia (Stevia rebaudiana Bertoni.) plant. The experimental factors included the first factor: 1) control (without organic fertilizer), 2) vermi compost (20 ton.ha-1), 3) vermi compost (40 ton.ha-1), 4) Spent Mushroom Compost (SMC) (20 ton.ha-1), 5) Spent Mushroom Compost (40 ton.ha-1), and the second factor was foliar spraying of humic acid at two levels of 0 and 0.1% in a Completely Randomized Design (factorial) with three replications. Photosynthesis rate, leaf area, plant dry weight, pH, salinity, bulk density and soil organic carbon were investigated in order to determine the most effective organic matter treatment under soil salinity stress conditions. Results showed that SMC significantly decreased soil pH, bulk density, but increased electrical conductivity and soil organic carbon. Leaf area was reduced but total phenol, chlorophyll a, b, total and carotenoid were increased resulting in significant increase in the dry weight of Stevia plants in saline soil. The highest dry weight of the plant was obtained with application of 40 tons.ha-1 of SMC fertilizer and humic acid foliar, which was 45.12% more than the control (without fertilizer). Therefore, SMC fertilizer can be a suitable remediator for saline soil, humic acid spray also had a significant positive effect if used along with SMC soil application.
 
Materials and Methods
This experiment was conducted as a completely randomized design (factorial) in boxes (dimensions 30x40x30 cm) containing natural saline soil (EC=10.15 dS.m-1) under natural agronomic conditions at The Ferdowsi University of Mashhad with three replications from July to January, 2018. Experimental factors were included the first factor: 1) control (without organic fertilizer), 2) vermicompost 20 tons/ha, 3) vermicompost 40 ton.ha-1, 4) Spent mushroom compost 20 ton.ha-1, 5) Spent mushroom compost 40 tons per hectare and the second factor: foliar spraying of humic acid at two levels of zero and 0.1%. A soil sample was collected from Kushk region of Neyshabur city with desired salinity (ECe=10.15 dS.m-1) and some physical and chemical properties of soil and organic fertilizers were measured before the experiment. Organic fertilizers after mixing with the experimental soil, were added to the plastic boxes according to the amount of each treatment. Two seedlings were planted in each plastic box, maintaining a spacing of 20 cm. Irrigation was carried out daily using tap water. One month after the stevia plants had adapted to the climatic conditions of Mashhad, foliar application of humic acid was performed in three stages at 20-day intervals. After plant physiological maturity stage some parameters including plant dry weight, leaf area, total plant phenol, amount of chlorophyll a, b, carotenoid, total plant chlorophyll, and soil organic carbon, bulk density, salinity, and soil pH, were determined after plant harvest. The dry weight of the stevia plant was obtained by weighing the plants after drying in an oven for 48 hours at 70°C. Statistical analysis of data was performed by JMP software version 0.8, drawing graphs using Excel software and comparing average data using LSD test at significance levels 1 and 5 percent.
 
Results and Discussion
Results showed that the SMC fertilizeralone and in combination with HA foliar application significantly increased the dry weight of the stevia plant compared to the control through improving saline soil physical and chemical properties  like pH, OC, soil bulk density. These improvements resulted in some improvement in photosynthetic pigments and total phenol. The highest dry weight of stevia plant was obtained with application of 40 ton/ha of SMC fertilizer and humic acid 0.1% leaf spraying.
 
Conclusions
According to the results of this research, application of SMC fertilizer with and without foliar application of humic acid was able to significantly increase the dry weight of the stevia plant compared to the control (without fertilizer) through modifying the physical and chemical properties of saline soil (pH, OC, bulk density) and some phytochemical properties of the plant (Photosynthetic pigments and total phenol). Application of VC fertilizer was not successful. Even though humic acid foliar application increased the total plant phenol, it could not improve the growth of the plant in saline soil alone, but it could increase the dry weight of the plant only with application of SMC fertilizer. Thus, the highest dry weight of stevia plant was obtained with application of 40 ton/ha of SMC fertilizer and humic acid spraying.Therefore, it is suggested that in order to achieve proper performance (≥80%) and improvement in the physiological and morphological characteristics of the stevia plant in very saline soil (ECe≥10 dS.m-1), it is necessary to use 40 ton.ha-1 or more of mushroom compost waste. It should be used in saline soil three to six months before cultivation and 0.1% humic acid foliar spraying should be done three times with an interval of 20 days.

کلیدواژه‌ها [English]

  • Physiological characteristics
  • Plant biostimulants
  • SMC (spent mushroom Compost)
  • Soil salinity
  • Stevia sweet leaf
  • Vermicompost

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Ahmad, I., Ali, S., Saifullah Khan, Kh., Fayyaz ul Hassan, Ijaz, Sh. S., Bashir, Ka., Abbas, Z., Ahmad, M., & Shakeel, A. (2015). Use of coal derived humic acid as soil conditioner for soil physical properties and its impact on wheat crop yield. International Journal of Biosciences (IJB), 6(12), 81-89. http://doi.org/12692/ijb/6.12.81-89
  2. Ahmadi, M., & Moradi, P. (2014). Effect of humic acid on photosynthetic pigments and yield of basil plant (Ocimum basilicum L.). 9th Horticultural Sciences Congress of Ahvaz, Ahvaz, Iran. )In Persian(. https://sid.ir/paper/880102/fa
  3. Amini Fard, M.H., & Qaderi Zeh, H. (2019). Effect of different levels of humic acid and planting density on antioxidant activity and biochemical properties of medicinal plant (Trigonella foenum-graecum L). Ecophytochemistry of Medicinal Plants [Internet], 8(1 (consecutive 29), 77-89. )In Persian(. https://sid.ir/paper/369184/fa
  4. Ampong, K., Thilakaranthna, M.S., & Gorim, L.Y. (2022). Understanding the role of humic acids on crop performance and soil health .Frontiers in Agronomy, 4, 10. http://doi.org/3389/fagro.2022.848621
  5. Arnon, D. (1994). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.21859/acadpub.nbr.3.1.69
  6. Ashraf, M., & Foolad, M.R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental BotanyEnvironment, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  7. Bezuglova, O.S., Gorovtsov, A.V., Polienko, E.A., Zinchenko, V.E., Grinko, A.V., Lykhman, V.A., Dubinina, M.N., & Patrikeev, E.S. (2019). Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. Journal of Soils and Sediments; Dordrecht, 19(6), 2665–2675. https://doi.org/10.1007/s11368-018-02240-z
  8. Cantabella, D., Piqueras, A., Acosta-Motos, Jose_A.R., Bernal-Vicente, A. Hernandez, Jose A., & Díaz-Vivancos, P. (2017). Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiology and Biochemistry, 115, 484e496. https://doi.org/1016/j.plaphy.2017.04.023
  9. Dorenchand Singh, T.H., Swaroop, N., Thomas, T., & David Aron, A. (2017). Effect of different levels of vermicompost on soil physical properties of two cultivars of cabbage (Brassica oleracea) under Eastern UP (India) conditions. International Journal of Current Microbiology and Applied Sciences, 6(6), 2908-2911. https://doi.org/10.20546/ijcmas.2017.606.344
  10. Fathi Garlidani, A., Mir Seyed Hosseini, H., Farahbakhsh, M. (2014). Some effects of spent mushroom compost and bagasse biochar on alkaline phosphatase activity and phosphorus availability in some calcareous soils. Iran Water and Soil Research, 46(4). 801-812. (in Persian with English abstract). https://doi.org/10.22059/ijswr.2015.56804
  11. Flowers Timothy, J., & Colmer Timothy, D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963. https://doi.org/1111/j.1469-8137.2008.02531.x
  12. Gandhi, S., Gat, Y., Arya, S.H., Kumar, V., Panghal, A., & Kumar, A. (2018). Natural sweeteners: Health benefits of stevia. Foods and Raw Materials, 6(2). 84-92. http://doi.org/10.21603/2308-4057-2018-2-392-402
  13. Gümüs, I., & Seker, C. (2017). Effects of spent mushroom compost application on the physicochemical properties of a degraded soil. Solid Earth, 8, 1153–1160. https://doi.org/10.5194/se-8-1153-2017
  14. Khaled, H., & Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21–29. http://doi.org/17221/4/2010-SWR
  15. Khosravi, F., Bahmanyar, M.A., & Akbarpour, V. (2023). Effect of different levels of humic acid and zinc sulfate on morphological and phytochemical traits of (Salvia officinalis). Journal of Horticultural Science, 37(3), 615-627.
  16. Kumar, R., Sharma, S., Ramesh, K., Prasad, R., Pathania, V.L., Singh, B., & Deosharan Singh, R. (2012). Effect of agro-techniques on the performance of natural sweetener plant–stevia (Stevia rebaudiana) under western Himalayan conditions. Indian Journal of Agronomy, 57(1), 74-81. https://www.researchgate.net/publication/224806070
  17. Kwiatkowski, C.A.; Harasim, E. (2021). The effect of fertilization with spent mushroom substrate and traditional methods of fertilization of common thyme (Thymus vulgaris) on yield quality and antioxidant properties of herbal material. Agronomy, 11(2), 329. https://doi.org/10.3390/agronomy11020329
  18. Rose, M.T., Patti, A.F., Little, K.R., Brown, A.L., Jackson, W.R., & Cavagnaro, T.R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Advances in Agronomy, 124, 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4
  19. Roy, S., Barman, S., Chakraborty, U., & Chakraborty, B. (2015). Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum Journal of Applied Biology and Biotechnology, 3(03), 022-027.
  20. Mindari, W., Aini, N., Kusuma, Z., & Syekhfani, S. )2014(. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth. Journal of Degraded and Mining Lands Management, 2(1), 259-268. https://doi.org/15243/jdmlm.2014.021.259
  21. Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26, 2256. https://doi.org/10.3390/molecules26082256
  22. Nguyen, P.M., Kwee, E.M. & Niemeyer, E.D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum) leaves. Food Chemistry, 123(4), 1235-1241.
  23. Olszowy, M.) 2019(. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144, 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039
  24. Reis, , Coelho, L., Santos, G., Kienle, U., & Beltrão, J. (2015). Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agricultural Water Management, 152, 217–221. https://doi.org/10.1016/j.agwat.2015.01.01788888yuhb
  25. Rezainejad, Y., & Efioni, M. (1379). The effect of organic matter on chemical properties of soil, absorption of elements by corn and its yield. Soil and Water Sciences (Agricultural Sciences and Techniques and Natural Resources), 4(4), 19-28. (In Persian). https://sid.ir/paper/441962/fa
  26. Rostami, Q., Moghadam, M., Saeedipuya, E., & Azhdanian, L. (2018). The effect of humic acid spraying on some morpho physiological and biochemical characteristics of green mint (Mentha spicata L) under drought stress. Environmental Stresses in Agricultural Sciences, 12(1), 95-110. (In Persian). https://doi.org/10.22077/escs.2018.1296.1264.
  27. Roy, S., Barman, S., Chakraborty, U., & Chakraborty, B. (2015). Evaluation of spent mushroom substrate as biofertilizer for growth improvement of Capsicum annuum Journal of Applied Biology & Biotechnology, 3(03), 022-027. https://doi.org/10.7324/JABB.2015.3305
  28. Salachna, P., Łopusiewicz, L., Wesołowska, A., Meller, E., & Piechocki, R. (2021) Mushroom waste biomass alters the yield, total phenolic content, antioxidant activity and essential oil composition of Tagetes patula Industrial Crops and Products, 171, 113961. https://doi.org/10.1016/j.indcrop.2021.113961
  29. Sible, C.N., Seebauer, J.R., & Below, F.E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11, 1297. https://doi.org/10.3390/agronomy11071297
  30. Slinkard, K., & Singleton, V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. american society for enology and viticulture. American Journal of Enology and Viticulture, 28, 49-55. https://doi.org/10.5344/ajev.1977.28.1.49
  31. Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27-58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  32. Sreedhar, R.V., Venkatachalam, L., Thimmaraju, R., Bhagyalakshmi, N., Narayan, M.S., & Ravishankar, G.A. (2008). Direct organogenesis from leaf explants of stevia rebaudiana and cultivation in bioreactor. Biologia Plantarum, 52(2), 355–360. https://doi.org/10.1007/s10535-008-0073-9
  33. Song, J., Zhang, H., Chang, F., Yu, R. Zhang, X., Wang, X., Wang, W., Liu, J., Zhou, J., & Li, Y. (2023). Humic acid plus manure increases the soil carbon pool by inhibiting salinity and alleviating the microbial resource limitation in saline soils. Catena, 233, 107527 .https://doi.org/10.1016/j.catena.2023.107527
  34. Zeng, J., Chen, A., Li, D., Yi, B., & Wu, W. (2013). Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Journal of Agricultural and Food Chemistry, 61, 5720−5726. https://doi.org/10.1021/jf401237x

 

CAPTCHA Image