نوع مقاله : مقالات پژوهشی
نویسندگان
1 گروه باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران
2 گروه بیوتکنولوژی گیاهان باغبانی، پژوهشکده بیوتکنولوژی صنعتی، سازمان جهاد دانشگاهی خراسان رضوی، مشهد، ایران
چکیده
بهمنظور مطالعه شاخصهای مورفوفیزیولوژیک و جوانهزنی بذر گل جعفری (Tagetes erecta Antigua orange) در پاسخ به کیفیتهای مختلف نور LED تحقیق حاضر در گروه بیوتکنولوژی علوم باغبانی جهاد دانشگاهی خراسان رضوی انجام شد. تیمارهای آزمایش شامل پنج کیفیت نور سفید (100%)، نور آبی (100%)، نور قرمز (100%)، 30% نور آبی + 70 % نور قرمز و 70% نور آبی + 30% نور قرمز بود. در ابتدا شاخصهای جوانه زنی بذر در ظروف پتری دیش در زیر پنلهای نوری اندازه گیری گردید و پس از کاشت بذرها در زیر پنلهای نوری، شاخصهای فیزیولوژیک و مورفولوژیک گیاه در فاصله زمانی 15 روز یکبار در چهار مرحله اندازهگیری گردید. مطالعه شاخصهای جوانهزنی نشان داد که کمترین میانگین زمان جوانه زنی، بیشترین سرعت جوانهزنی، بیشترین طول ریشهچه، طول ساقهچه، تعداد ریشه جانبی و وزن تر ریشهچه در تیمار نور قرمز (100%) و پس از آن در تیمار نور قرمز (70%) + نور آبی (30%) مشاهده شد. استفاده از نور قرمز (100%) سرعت جوانهزنی، طول ریشهچه، طول ساقهچه، تعداد ریشه جانبی و وزن تر ریشهچه را به ترتیب تقریبا 14%، 29%، 48%، 100% و 67% در مقایسه با تیمار شاهد بهبود بخشید. بیشترین ارتفاع گیاه در ابتدا و انتهای رشد مربوط به گیاهان رشد یافته در تیمار نور قرمز (100%) بود. در انتهای مرحله رشدی (75 روز پس از کشت بذر) گیاهان تحت تیمار نور قرمز (100%) از لحاظ قطر ساقه، طول بزرگترین برگ مرکب، تعداد برگ و تعداد شاخه جانبی به ترتیب تقریبا 37%، 6%، 33% و 31% در مقایسه با تیمار نور سفید در همان مرحله رشدی افزایش داد. علاوه بر این، وزن تر و خشک گیاه را در مقایسه با تیمار شاهد در همان مرحله رشدی به ترتیب تقریبا 56% و 9% افزایش یافت. مطالعه وزن تر و خشک ریشه نشان داد که اعمال تیمار نور قرمز (100%) این دو شاخص را تقریبا نزدیک به 3 برابر در مقایسه با تیمار شاهد افزایش داد. کمترین وزن تر و خشک ریشه در تیمار نور آبی (100%) و پس از آن تیمار نور قرمز (30%) + نور آبی (70%) مشاهده شد. همچنین، گیاهان رشد یافته در شرایط نور قرمز (100%) در مقایسه با گیاهان رشد یافته در سایر تیمارهای نوری دارای محتوی نسبی آب برگ بیشتر و نشت الکترولیت کمتری بودند. به طور کلی بر اساس نتایج پژوهش مشخص گردید که استفاده از نور قرمز (100%) منجر به افزایش درصد و سرعت جوانهزنی بذر گل جعفری گردید. علاوه بر این، استفاده از نور قرمز در شرایط کنترل شده منجر به افزایش شاخصهای رشدی گیاه در مقایسه با سایر تیمارهای آزمایش گردید. از این رو، استفاده از نور قرمز در مراحل مختلف رشدی گل جعفری در شرایط کنترل شده قابل توصیه میباشد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigation of Seed Germination Parameters and Morphophysiological Traits of Tagetes erecta (Tagetes erecta Antigua orange) in Response to Different LED Light Qualities
نویسندگان [English]
- rasoul abaszadeh faruji 1
- abdollah hatam zadeh 1
- Ahmad Sharifi 2
- Mahdiyeh Kharrazi 2
1 Horticultural Sciences, Faculty of Agriculture, Gilan University, Rasht, Iran
2 Department of Ornamental Plant Biotechnology, Iranian Academic Center for Education, Culture and Research, Branch of Mashhad, Iran
چکیده [English]
Introduction
Light is recognized as a vital factor for plant growth and development. Plants convert light energy into chemical energy through photosynthesis, which is then used for growth and development. Quality, intensity, and photoperiod are among the factors that directly affect plant growth and development processes. In recent years, Light-Emitting Diode (LED) technology has gained significant popularity in agriculture due to its numerous advantages over traditional light sources. These advantages include the ability to produce various light spectra, low energy consumption, long lifespan, and reduced heat emission. These characteristics have made LEDs an ideal light source for cultivating plants in controlled environments such as greenhouses and growth chambers. The primary objective of this study was to investigate the effects of different LED light qualities on the morphological, physiological, and germination traits of marigold (Tagetes erecta) seeds. Given the importance of light in plant growth and the benefits of LED technology, this study can provide valuable insights for improving crop cultivation and production.
Materials and Methods
This experiment was conducted in the Biotechnology Laboratory of Horticultural Plants in the Academic Center for Education, Culture and Research of Khorasan Razavi. F1 hybrid seeds were used in this study. The experimental treatments consisted of five light qualities: white light (100%), blue light (100%), red light (100%), 30% blue light + 70% red light, and 70% blue light + 30% red light. All treatments were subjected to a 16-hour light and 8-hour dark photoperiod using LED grow lights. The photosynthetic photon flux density (PPFD) was maintained at a constant 100 μmol.m⁻².s⁻¹ for all light treatments. Seed germination parameters (seed germination percentage, mean germination time, germination rate, radicle length, plumule length, lateral roots number, plumule fresh weight, radicle fresh weight, plumule dry weight and radicle dry) were initially measured in Petri dishes under the growth panels. Subsequently, seeds were sown and grown under the growth panels, and physiological and morphological parameters including plant height, first internode length, stem diameter, node number, leaf area, leaf length, leaf number, lateral shoot number, shoot fresh weight, shoot dry weight, shoot fresh/dry weight ratio, root fresh weight, root dry weight, root fresh/dry weight ratio, dry matter, root length, electrolyte leakage, relative leaf water content and chlorophyll content were measured every 15 days for a total of four measurements.
Results and Discussion
Seed germination indices showed that the lowest mean germination time, highest germination rate, longest radicle length, hypocotyl length, number of lateral roots, and fresh weight of radicles were observed under 100% red light treatment, followed by the 70% red + 30% blue light treatment. The application of 100% red light improved germination rate, radicle length, hypocotyl length, number of lateral roots, and fresh weight of radicles by approximately 14%, 29%, 48%, 100%, and 67%, respectively, compared to the control. Plants grown under 100% red light exhibited the greatest plant height at both the beginning and end of the growth period. At the end of the growth stage (75 days after sowing), plants under 100% red light showed increases of approximately 37%, 6%, 33%, and 31% in stem diameter, length of the largest compound leaf, number of leaves, and number of branches, respectively, compared to the white light treatment at the same growth stage. Additionally, the fresh and dry weights of plants increased by approximately 56% and 9%, respectively, compared to the control at the same growth stage. A study of the fresh and dry weights of roots showed that the application of 100% red light increased these two indices by nearly 3 times compared to the control. The lowest fresh and dry root weights were observed under 100% blue light treatment, followed by the 30% red + 70% blue light treatment. Furthermore, plants grown under 100% red light exhibited higher relative water content and lower electrolyte leakage in leaves compared to plants grown under other light treatments.
Conclusions
The research findings indicated that the application of light-emitting diodes (LEDs) with various light qualities enhanced the growth conditions of Tagetes erecta Antigua orange. Comparisons among the light treatments showed that application of 100% red light resulted in increased germination percentage and rate in marigold seeds. Furthermore, the application of red light under controlled conditions led to an increase in plant growth indices compared to other experimental treatments. Therefore, application of red light at different growth stages of maigold under controlled conditions is recommended.
کلیدواژهها [English]
- Artificial light
- Blue light
- Ornamental plant
- Red light
©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abaszadeh Faruji, R., Shoor, M., Tehranifar, A., Abedy, B., & Safari, N. (2018). Effects of humic acid and fulvic acid on some morphological characteristics of geranium. Journal of Horticultural Science, 32(1), 35-50. (In Persian). https://doi.org/10.22067/jhorts4.v31i3.57849
- Abaszadeh Faruji, R., Shoor, M., Tehranifar, A., & Abedi, B. (2020). Effects of humic and fulvic acids on some physiological characteristics of two ornamental plants of granium (Plargonium) and scindapsus (Scindapsus spp.). Journal of Soil and Plant Interactions (Isfahan University of Technology), 11(1), 45-58. (In Persian). https://doi.org/10.47176/jspi.11.1.18081
- Akbarian, B., Matloobi, M., & Mahna, N. (2016). Effects of LED light on seed emergence and seedling quality of four bedding flowers. Journal of Ornamental Plants, 6(2), 115-123. (in Persian). http://jornamental.iaurasht.ac.ir/article_523303_8d31800750be3ad79e266905880f2f8.pdf
- Anjah,G.M., Focho, A.D., & Dondjang, J.P. (2013) The effects of sowing depth and light intensity on 1 the germination and early growth of Ricinodendron heudelotii. African Journal of Agricultural 2 Research, 8(46), 5854-5858. https://doi.org/ 10.5897/AJAR12.066
- Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., & Radoglou, K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437–451.
- Byun, A., Mao, M., & Sidhu, R. (2013). The effect of different wavelengths on the germination time of Arabidopsis thaliana wild type and mutant type seeds. The Expedition, 3.
- Cheng, X., Wang, R., Liu, X., Zhou, L., Dong, M., Rehman, M., Fahad, S., Liu, L., & Deng, G. (2022). Effects of light spectra on morphology, gaseous exchange, and antioxidant capacity of industrial hemp. Frontiers in Plant Science, 13, 937436. https://doi.org/ 10.3389/fpls.2022.937436
- Costa, A., Dias, A.S., Grenho, M.G., & Dias, L.S. (2016). Effects of dark or of red, blue or white light on germination of subterranean clover seeds. Emirates Journal of Food and Agriculture, 28(12), 853-864. https://doi.org/10.9755/ejfa.2016-06-774
- Davarzani, M., Aliniaeifard, S., Zare Mehrjerdi, M., Roozban, M.R., Saeedi, S.A., & Gruda, N.S. (2023) Optimizing supplemental light spectrum improves growth and yield of cut roses. Scientific Reports, 13, 21381. https://doi.org/10.1038/s41598-023-48266-3
- Dong, Fu Y., Liu G., & Liu, H. (2014). Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. Journal of Agronomy and Crop Science, 200, 219-230. https://doi.org/10.1111/jac.12059
- Esmaeili, S., Aliniaeifard, S., Dianati Daylami, S., Karimi, S., Shomali, A., Didaran, F., Telesiński, A., Sierka, E., & Kalaji, H.M. (2022). Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Scientific Reports, 12(1), 10002. https://doi.org/10.1038/s41598-022-14163-4
- Falcinelli, B., Galieni, A., Tosti, G., Stagnari, F., Trasmundi, F., Oliva, E., & Benincasa, P. (2022). Effect of wheat crop nitrogen fertilization schedule on the phenolic content and antioxidant activity of sprouts and wheatgrass obtained from offspring grains. Plants, 11(15), 2042. https://doi.org/10.3390/plants11152042
- Farrokh Tehrani, P., Majd, A., Mahmoodzadeh, H., & Najad Satari, T. (2016). Effect of red and blue light-emitting diodes on germination, morphological and anatomical features of Brassica napus. Advanced Studies in Biology, 8(4), 173-180. https://doi.org/10.12988/asb.2016.6832
- Fenner, M., & Thompson, K. (2005). The Ecology of Seeds. Cambridge University Press, Cambridge.
- Goto, E. (2003) Effect of light quality on growth of crop plants under artificial lighting. Environmental Control in Biology, 41(2), 121-132. https://doi.org/10.2525/ecb1963.41.121
- Heo, J., Lee, C., Chakrabarty, D., & Paek, K. (2002). Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regulation, 38, 225–230. https://doi.org/10.1023/A:1021523832488
- Hogewoning, S.W., Douwstra, P., Trouwborst, G., van Ieperen, W., & Harbinson, J. (2010). An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. Journal of Experimental Botany, 61, 1267-1276. https://doi.org/10.1093/jxb/erq005 PMID: 20202994
- Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107–3117.
- Jacobsen, J., Barrero, J.M., Hughes, T., Julkowska, Taylor, J.M., Xu, Q., & Gubler, F. (2013). Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum). Planta, 238(1), 121-138. https://doi.org/10.1007/s00425-013-1878-0
- Jafari, M., & Daneshvar, M.H. (2017). Indirect organogenesis of Tagetes erecta via hypocotyl explant. Flower and Ornamental Plants, 1(2), 34-43. http://flowerjournal.ir/article-1-111-en.html
- Jian-Fei, S., Meng-hui, S., & Xiao-Nan, Z. (2023). Response surface optimization of light conditions for organic matter accumulation in two different shapes of Arthrospira platensis. Frontiers in Nutrition, 9, 1047685. https://doi.org/10.3389/fnut.2022.1047685
- Johkan, M., Shoji, K., Goto, F., Hashida, S.N., & Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seed quality and growth after transplanting in red leaf lettuce. HortScience, 45, 1809–1814.
- Khayyat, M., Moradinezhad, F., Safari, N., Nazari, S.F., Saeb, H., & Samadzadeh, A. (2014). Seed germination of basil and cress under NaCl and boron stress. Journal of Plant Nutrition, 37(14), 2281-2290, https://doi.org/10.1080/01904167.2014.920388
- Khosh-Khui, M. (2005). Plant Propagation: Principle and Practices (translated in Persian). Shiraz University Press, Shiraz, Iran. 983 pp. (In Persian).
- Kitajima, K., & Fenner, M. (2000). Ecology of seedling regeneration. In: M. Fenner, (Ed.). Seeds The Ecology of Regeneration in Plant Communities. 2nd Ed. CABI Publishing, Wallingford, pp. 331-359. https://doi.org/10.1079/9780851994321.0331
- Kobayashi, K., Amore, T., & Lazaro, M. (2013). Light-emitting diodes (LEDs) for miniature hydroponic lettuce. International Journal of Optics and Photonics, 3, 74–77. https://doi.org/10.4236/opj.2013.31012
- Kurepin, L.V., Walton, L.J., & Reid, D.M. (2007). Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation, 51, 53-61. https://doi.org/10.1007/s10725-006-9147-x
- Li, H.M., Xu, Z.G., & Tang, C.M. (2010). Effects of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 103, 155-163. https://doi.org/10.1007/s11240-010-9763-z
- Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59–64.
- Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. Current Protocols in Food Analytical Chemistry.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01
- Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W., & Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa var. capitata). Scientia Horticulturae, 150, 86–91. https://doi.org/10.1016/j.scienta.2012.10.002
- Loi, M., Villani, A., Paciolla, F., Mulè, G., & Paciolla, C. (2021). Challenges and opportunities of Light-Emitting Diode (LED) as key to modulate antioxidant compounds in plants. A review. Antioxidants, 10, 42. https://doi.org/10.3390/antiox10010042
- Lone, B.A., Unemoto, L.K., Ferrari, E.A.P., Sadayo, L.T., Takahashi, A., & Faria, R.T. (2014). The effects of light wavelength and intensity on the germination of pitaya seed genotypes. Australian 13 Journal of Crop Science, 8(11), 1475-1480.
- Manivannan, A., Soundararajan, P., Halimah, N., Ko, C.H., & Jeong, B.R. (2015). Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Horticulture, Environment, and Biotechnology, 56, 105–113. https://doi.org/10.1007/s13580-015-0114-1
- Neff, M.M., Fankhauser, C., & Chory, J. (2000). Light: An indicator of time and place. Genes and Development, 14, 257-271. https://doi.org/10.1101/gad.14.3.257
- Nonogaki, H., Bassel, G.W., & Bewley, J.D. (2010). Germination-Still a mystery. Plant Science, 179, 574–581.
- Ortega-Base, P., & Arechiga, M. (2007). Seed germination of Trichocereus terscheckii (Cactaceae): Light, temperature and gibberellic acid effects. Journal of Aird Encironments, 69(1), 169-179. https://doi.org/10.1016/j.jaridenv.2006.09.009
- Park, Y., & Runkle, E.S. (2018). Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS ONE, 13(8), e0202386. https://doi.org/10.1371/journal. pone.0202386
- Poudel, R., Kataoka, I., & Mochioka, R. (2008). Effects of red- and bluelight- emitting diodes on growth and morphogenesis of grapes. Plant Cell, Tissue and Organ Culture, 92, 147-153. https://doi.org/10.1007/s11240-007-9317-1
- Rashidi, A., Narimani, R., & Moghaddam, M. (2021). The effect of light quality on germination and some physicochemical characteristics of valerian (Valeriana officinalis) seedlings. Iranian Journal of Seed Science and Research, 7(4), 317-341. (In Persian). https://doi.org/10.22124/JMS.2020.4640
- Rehman, M., Fahad, S., Saleem, M.H., Hafezz, M., UR Rahman, M.H., Liu, F., & Deng, G. (2020). Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea). Photosynthetica, 58(4), 922-931. https://doi.org/10.32615/ps.2020.040
- Rosado, D., Ackermann, A., Spassibojko, O., Rossi, M., & Pedmale, U.V. (2022). WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response. Plant Physiology, 188(2), 129 –1311. https://doi.org/10.1093/plphys/kiab493
- Ryu, J.H., Seo, K.S., Choi, G.L., Rha, E.S., Lee, S.C., Choi, S.K., Kamg, S., & Bae, C. (2012). Effects of LED light illumination on germination, growth and anthocyanin content of dandelion (Taraxacum officinale). Korean Journal of Plant Resources, 25(6), 731-738. http://dx.doi.org/10.7732/kjpr.2012.25.6.731
- Sadat Seyedi, F., Ghasemi Nafchi, M., & Reezi, S. (2023). Effects of light spectra on morphological characteristics, primary and specialized metabolites of Thymus vulgaris Heliyon, 10, e23032. https://doi.org/10.1016/j.heliyon.2023.e23032
- Safari, N., Tehranifar, A., Kharrazi, M., & Shoor, M. (2022). Evaluation of the characteristics of Iris ferdowsii seed germination, a new species, in danger of extinction and native to Iran. Flower and Ornamental Plants, 7(1), 27-40. http://flowerjournal.ir/article-1-219-en.html
- Saleem, M.H., Rehman, M., Zahid, M., Imran, M., Xiang, W., & Liu, L. (2019). Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Brazilian Journal of Botany, 42, 581-590, 2019. https://doi.org/10.1007/s40415-019-00565-8
- Simlat, M., Ślęzak, P., Mos, M., Warchoł, M., Skrzypek, E., & Ptak, A. (2016). The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Scientia Horticulturae, 211, 295–304. https://doi.org/ 10.1016/j.scienta.2016.09.009
- Tanno, N. (2006). Blue light induced inhibition of seed germination: The necessity of the fruit coats for 34 the blue light response. Physiologia Plantarum, 58(1), 18-20.
- Walker, M.K., & Sesing, J. (1990). Temperature effect on embryonic abscisic acid levels during development of wheat grain dormancy. Journal of Plant Regulation, 9, 51-56. https://doi.org/10.1007/BF02041941
- Wang, S., Fang, H., Xie, J., Wu, Y., Tang, Z., Liu, Z., Lv, J., & Yu, J. (2021). Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED. Frontiers in Plant Science, 12, 709313. https://doi.org/10.3389/fpls.2021.709313
- Wollaeger, H.M., & Runkle, E.S. (2014). Growth of impatiens, petunia, salvia, and tomato seedlings under blue, green, and red light-emitting diodes. HortScience, 49, 734-740. https://doi.org/10.21273/HORTSCI.49.6.734
- Wu, M.C., Hou, C.Y., Jiang, C.M., Wang, Y.T., Wang, C.Y., Chen, H.H., & Chang, H.M. (2007). A novel approach of LED light radiation improves the antioxidant of pea seedlings. Food Chemistry, 101, 1753-1758. https://doi.org/10.1016/J.FOODCHEM.2006.02.010
- Yang, F., Feng, L., Liu, Q., Wu, X., Fan, Y., Raza, M.A., Cheng, Y., Chen, J., Wang, X., Yong, T., & Liu, W. (2018). Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Journal of Experimental Botany, 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008
- Ye, S., Shao, Q., Xu, M., Li, S., Wu, M., Tan, X., & Su, L. (2017). Effects of light quality on morphology, enzyme activities, and bioactive compound contents in Anoectochilus roxburghii. Frontiers in Plant Science, 8, 857. https://doi.org/10.3389/fpls.2017.00857
- Zaghdoud, C., Ollio, I., Solano, C.J., Ochoa, J., Suardiaz, J., Fernández, J.A., & Martínez Ballesta, M.d.C. (2023). Red LED light improves pepper (Capsicum annuum) seed radicle emergence and growth through the modulation of aquaporins, hormone homeostasis, and metabolite remobilization. International Journal of Molecular Sciences, 24, 4779. https://doi.org/10.3390/ijms24054779
- Zare Mehrjerdi, M., Safari, N., Kharrazi, M., Khadem, A., & Sharifi, A. (2024). The effect of different qualities of LED light on the morphophysiological indicators of Cucumis sativus var. Officer. Journal of Horticultural Science, 37(4), 1029-1041. (In Persian). https://doi.org/10.22067/jhs.2023.80257.1222
- Zhang, L., Liu, S., Zhang, Z., Yang, R., & Yang, X. (2010). Dynamic of different qualities on growth of Toona sinensis Acta Agriculturae Boreali-occidentalis Sinica, 19, 115–119.
- Zhang, R.H., Xu, K., & Dong, C.X. (2008). Effect of light quality on photosynthetic characteristics of ginger leaves. Scientia Agricultura Sinica, 41, 3722-3727.
ارسال نظر در مورد این مقاله