Research Article
Homa Azizi; Parviz Rezvani Moghaddam; Mahdi Parsa; Reza Khorasani; Mahmood Shoor
Abstract
Introduction: Meadow saffron (Colchicum) is a non-domesticated medicinal plant, rich in isoquinoline alkaloids. These alkaloids are used in medicines mainly for their anti-gout and myorelaxant properties. Meadow saffron has an unusual biology that does not favor cultivation. Flowers of Meadow saffron ...
Read More
Introduction: Meadow saffron (Colchicum) is a non-domesticated medicinal plant, rich in isoquinoline alkaloids. These alkaloids are used in medicines mainly for their anti-gout and myorelaxant properties. Meadow saffron has an unusual biology that does not favor cultivation. Flowers of Meadow saffron appear in September and fruits mature in June. The corms enter dormancy phase in winter (January to March) and after fruiting in summer (June to September). Each year, a mother corm produces one daughter corm, or sometimes two daughter corms. The uptake of mineral element in plant is a complex process that governed by numerous factors influencing each other. nitrogen, phosphorus, and potassium application can significantly increase the yield and improve the quality of plants. Meadow saffron need more consider in fertilization managements in comparison with other crops because it has shallow roots than other crops and exposes to more problems in uptake of immobile nutrients in the soil. The object of this study was to determine the effect of different fertilizers and mother corm weight on yield characters of Colchicum kotschyi Boiss.
Materials and Methods: This experiment was conducted as factorial layout based on a randomized complete block design with three replications at Research Station, Ferdowsi University of Mashhad, Iran, in two years, 2012- 2013 and 2013-2014. The Corms of Colchicum kotschyi Boiss. were harvested from natural site of Binalood Mountains during their summer dormancy. The mother corm weight was considered as a factor in the experiment, because of the variation between the collected corms. In order to evaluate fertilizers effect, soil analysis was conducted. So, the experimental factors were: mother corm weight (less than 40 g and more than 40 g), cow manure (0 and 50 t.ha-1), urea (0 and 50 kg.ha-1) and superphosphate (0 and 25 kg.ha-1). Before planting, cow manure and superphosphate were well mixed with soil and urea was added to soil during emergence of leaves. Planting date was 28th August 2012. Planting depth was 12-15 cm and the space between plants was 25 cm. During flowering, flower number was recorded. Plants were harvested when the color of leaves and capsules were changed from yellow to brown, and characteristics such as corm yield, seed yield, biological yield, 1000-seed weight, capsule number, capsule dry weight, seed number, seed dry weight, corm and seed HI were measured. Data analysis was done by SAS Ver. 9. Mean comparisons were done by LSD test at 5% probability.
Results and Discussion: At the first year of experiment, most of transplanted corms did not flower due to transplanting. Therefore, just the results of the second year were presented here. The results showed that mother corm weight had significant effect on the yield (p≤0.05). The weight of daughter corms was increased by increasing mother corm weight, because of more supply of nutrients. The weight of the corm is basically determined by the amount of total food stored in the corm by the plant through the process of photosynthesis. The initial plant growth and its vigor are determined by the amount of food supplied to the growing plant by the corm. The results showed that seed yield characters were affected by the cultivated corm weight. The most flowers per area unit, capsule number per plant, seed number and dry weight per plant were belonged to heavier cultivated corms. The effect of corm weight on corm HI was not significant (p≤0.05), but smaller corms had more seed HI than bigger corms (p≤0.05). The effect of cow manure on most characters was significant (p≤0.05). Corm yield and corm HI increased in cow manure treatment in comparison with control. Organic fertilizers cause improvement of soil structure, better development of roots, regulation of soil temperature and useful microorganisms, supply of nutrients for plant and supports plant in nutrient absorption. Capsule number, capsule dry weight and seed number per plant were not influenced by cow manure. The number of capsules per plant and the number of seeds per capsule were determined during fertilization. The only parameter that can vary during capsule development was the thousand-seed weight. The results showed that seed dry weight per plant, 1000-seed weight, seed yield and seed HI were decreased in cow manure treatment in comparison with control. It seems that cow manure has more effect on vegetative growth and decrease proportion of seed compared to corm in whole plant weight. Meanwhile, the competition between corm and seed for photosynthetic materials may decrease seed dry weight. The effect of superphosphate was significant on some studied characters. Superphosphate utilization was increased corm yield and biological yield compared to control. Many researchers reported that phosphorus that was effective in leaf photosynthesis and carbon metabolism in plants. Phosphorus increased seed dry weight per plant, seed yield and 1000-seed weight. Phosphorus is a very important nutrient in plant nutrition and is more effective in the formation of flower, fruit and seed. Many researches have shown that phosphorus promote reproductive growth.
Conclusion: The results showed that colchicum could have a good response to treatments especially cow manure and superphosphate. It seems that more levels of fertilizers especially urea could improve quantitative and qualitative yield of plant.
Research Article
Zeinab Safaei; Majid Azizi; Hossein Arouiee; Gholamhossein Davarynejad
Abstract
Introduction: Nigella sativa L. is one of the herbs that has a variety of uses and has been used in Iran’s traditional medicine since old times. Today this plant is considered as one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction ...
Read More
Introduction: Nigella sativa L. is one of the herbs that has a variety of uses and has been used in Iran’s traditional medicine since old times. Today this plant is considered as one of the most important kinds of medicine. Almost all the metabolic activities of plant cells, including the construction of active ingredients in medicinal plants, depend on lack of absorbable water by plants can lead to the morphological, physiological and biochemical changes, including decrease of cell swelling and growth and thus reduction of leaf area and plant height, stomatal closure and photosynthesis restriction, increase of soluble compounds for regulating the osmotic pressure, reduction of nutrient absorption and ultimately reduction of crop production. The use of anti-transpiration compounds is considered as a promising tool for the regulation of transpiration in respect of water conservation at an optimal level, where the strategies such as the use of anti-transpiration compounds have the potential for transpiration regulation. The aim of the present study is to improve the yield and yield components of medicinal plant N. sativa by anti-transpiration compounds under drought stress conditions.
Materials and Methods: The research was done using a split plot experiment on a randomized complete block design with three replications. The irrigation intervals (8 and 16 days) in main plots and anti-transpiration compounds of chitosan (0.25, 0.5 and 1 %), Plantago psyllium mucilage (0.5, 1 and 1.5 %) and arabic gum (0.25, 0.5 and 0.75 %) were put in subplots with three replications. Also, the distance between the main plots in each block and distance between the two blocks were assigned as 100 cm and 200 cm, respectively; so that the moisture content of a plot had no effect on the adjacent plots. Planting date was April 16 and planting was performed by hand in 0.5cm-deep furrows. Anti-transpiration compounds were sprayed simultaneously with applying drought stress till the flowering stage once a week at sunset. Plant height, leaf area index, irrigation water efficiency index, leaf temperature and stomatal conductance were measured.
Results and Discussion: The results showed that there were significant differences between treatments in all studied traits. The best rate of the measured traits was observed at 8-day irrigation interval and chitosan treatment. Providing plant favorite conditions such as reducing plant temperature, increasing morphological traits comparing to rainfed at 16-day irrigation interval. Applying arabic gum did not improve growth but acted as a growth inhibitor. Anti-transpiration compounds led to significant changes in all the studied traits compared to the control, indicating the effectiveness of these natural compounds. Chitosan stimulating abscisic acid synthesis in the treated plant would result in stomatal closure, reduction of stomatal conductance, transpiration rate and water content. It also pointed out that the anti-transpiration effect of chitosan was because of its stimulatory effect in increasing abscisic acid concentration in the treated leaves of bean plant. As the above compounds are natural and biodegradable, as well as safer and less expensive than other chemical anti-transpiration compounds, they can serve as a good alternative to the chemical compounds. Cognition and expertise in water relations of plant and drought stress tolerance is considered as the main program in agriculture and the ability to withstand this stress is of great economic importance.
Conclusion: The important processes, including nutrition, photosynthes is, stomatal opening and closure and growth are all influenced by water. In this study, it was observed canopy temperature and stomatal conductance would increase at 16-day irrigation interval, where the increase is considered as a drought tolerance mechanism. Also, the anti-transpiration compounds led to significant changes in terms of all the studied traits compared to the control, indicating the effectiveness of theses natural compounds. Providing the appropriate conditions, 1% chitosan treatment can enhance the yield under drought stress. Spraying by arabic gum did not improve the growth conditions. According to this experiment, 1% chitosan treatment and 1.5% Plantago psyllium mucilage is considered the most appropriate strategy to enhance the yield of Nigella sativa under drought stress.
Research Article
Yaser Javan; Mohammad Javad Nazarideljou
Abstract
Introduction: Cucumber (Cucumis sativus L.) is an important fruit crops and cultivation in soilless condition may help to improve the quality and productivity. Due to susceptibility of cucumber to climate condition, the cultivation should be done under precise consideration. Nutrient uptake by plant ...
Read More
Introduction: Cucumber (Cucumis sativus L.) is an important fruit crops and cultivation in soilless condition may help to improve the quality and productivity. Due to susceptibility of cucumber to climate condition, the cultivation should be done under precise consideration. Nutrient uptake by plant is greatly affected by the concentration, as well as by the elements ration, especially the cations. Calcium and potassium play an important role in crops biology, functions, quality, and productivity. This experiment was conducted to evaluate the effect of different K: Ca ratios on quality and productivity of cucumber cv. ‘Negin’ to determine the best K: Ca ratio.
Material and Methods: This experiment was done in a hydroponic greenhouse with polyethylene cover. Day/night temperatures were 26±2 and 19±2, respectively. Relative humidity was adjusted at 55-60%. A pot experiment was conducted based on completely randomized design with three replications (9 plants/rep). Treatments included K: Ca ratios (2, 1.5, 1, 0.7, and 0.5). Cucumber cv. ‘Negin’ was treated with above-mentioned K: Ca ratios in an open soilless system equipped with drippers and plants were fertigated basis on Steiner nutrition formula. The culture medium was coco-fibre: perlite (1:1 v/v). Morpho-physiological, as well as biochemical parameters of cultivated plants including, plant fresh and dry weigh, leaf area, root volume, fruit length and weight, total carbohydrates, total phenol, vitamin C content, and fruit yield were determined.
Results and Discussion: Results indicated that morpho-physiological and biochemical parameters, also, plant fresh and dry weight of cucumber cv. ʽNegin’ were significantly affected by application of different K: Ca ratios in nutrient solution (P
Research Article
Roghayeh Fathi; Mehdi Mohebodini; Esmaeil Chamani
Abstract
Introduction: Transformed hairy roots obtained by infection of plants with Agrobacterium rhizogenes strains are used as a tissue culture tool for secondary metabolite production since hairy roots are genetically and biologically stable and they are able to produce metabolite within a short time. Chicory ...
Read More
Introduction: Transformed hairy roots obtained by infection of plants with Agrobacterium rhizogenes strains are used as a tissue culture tool for secondary metabolite production since hairy roots are genetically and biologically stable and they are able to produce metabolite within a short time. Chicory (Cichorium intybus L.) is a medicinal plant from Asteraceae. This plant contains many important metabolites include chicoric asid, inulin, scoline, coumarin and flavonoids.
Materials and Methods: The seeds were surface-sterilized by rinsing with 2% benomil for 30 min and later sterilized with 5% sodium hypochlorite for 20 min and subsequently with 70% ethanol for 90 s. the wounded leaf of 20 and 28-day-old seedlings inoculated with Agrobacterium rhizogenes 11325. Bacterial colonies were cultured on liquid LB medium for 1 day. The explants were submerged in the solution for 15 min and were shaken gently. After that, the explants were drained on sterile filter paper and then transferred to MS solid medium. The explants were incubated at (25 ± 2) ◦C under dark condition for three different co-cultivation period (24, 48 and 72 hours). In the next step, the explants were transferred to MS solid medium supplemented with 500 mg/L cefotaxime. The explants were incubated at (25 ± 2) ◦C under a 16-h photoperiod condition for four weeks. At the end of incubation time, the percentage of hairy root induction, root number and root length were investigated. Genomic DNA of Cichorium intybus L. hairy root was extracted following the method of CTAB and subjected to PCR analysis. Non-transformed root DNA was used as a negative control and pRi11325 plasmid DNA was used as positive control. The pair of primers specific to the rolB fragment sequences was: 5-ATGGATCCCAAATTGCTATTCCCCACGA -3 and 5-TAGGCTTCTTTCATTCGGTTTACTGCAGC-3. The amplification protocol for the rolB was a 5 min melting at 94 ◦C followed by 35 cycles of a 5 min melting at 94 ◦C, a 45 s annealing at 55 ◦C and a 1 min elongation at 72 ◦C, and final elongation at 72 ◦C for 7 min. PCR products were electrophoretically separated on 0.8 % agarose gels (w/v) and stained with gel red. To determine the best media composition for growth of hairy roots, approximately 100 mg FW roots were cultured in basal liquid MS, solid MS and liquid 1/2MS medium supplemented with 500 mg/L cefotaxime on a rotary shaker (90 rpm) at 25 ◦C in dark for 5 weeks, and increase in fresh weight and dry weight was recorded at 5 week later. Three replicates were made for each experimental set. Non-transformed roots were cultured on same mediums.
Results and Discussion: Each of the two different explants – leaf and petiole showed different levels of hairy root induction in different co-culture time. Hairy root induction was observed 7 days after co-cultivation. There were low adventitious roots formed from control explants. 72 hours co-cultivation period was found to be more efficient in inducing hairy root phenotype in both explant types. The infection of explants by A. rhizogenes is a process that implies a succession of events, including the transfer and integration of T-DNA, into the host plant genome. Therefore, the time of contact between A. rhizogenes and the explants determines the transformation efficiency. A maximum of transformation frequency (53.33%) was observed in leaf explants in 72 hours co-cultivation followed by 33.33% in petiole explants in 72 hours co-cultivation. In leaf explants maximum root number (8.5 roots per explant) and maximum length of root (9.16 cm) induced from 20-day-old seedling in 72 hours co-culture. In petiole explants maximum root number (3.66 roots per explant) and maximum root length (11.46 cm) induced from 28-day-old seedling in 72 hours co-culture. The “hairy root” phenotype characterized by high branching and fast growth was previously reported in “reactive species” like Datura innoxia but not for “difficult species”. The high phenolic content of woody plant species could be responsible for the reduced hairy root phenotype as reported for gingko or pine. Three different culture media (solid MS, liquid MS and 1/2 MS media) were tested to determine the best suitable media for the maximum Biomass of hairy roots line.
Conclusions: Genetically transformed hairy roots obtained by infection of plants with Agrobacterium rhizogenes are suitable source for production of bioactive molecules due to their genetic stability and generally show fast growth in culture media free of growth hormones. This study describes the protocol for hairy root induction which could further be useful for the production of secondary metabolites and biomass.
Research Article
Rahmatollah Gholami; Ali Asghar Zeinanloo; Fardin Ghanbari
Abstract
Introduction: Germplasm and reservation of genetical resources is the principal of plant breeding. Different techniques have been used to characterize olive diversity. Morphological criteria such as leaf, fruit, seed and growth behavior have been used to evaluate olive diversity, to determine the origin ...
Read More
Introduction: Germplasm and reservation of genetical resources is the principal of plant breeding. Different techniques have been used to characterize olive diversity. Morphological criteria such as leaf, fruit, seed and growth behavior have been used to evaluate olive diversity, to determine the origin of olive trees as well. An evaluation of phenotypic diversity was used to discriminate olive cultivars with distinct morphological and pomological characters. Iran is one of the origins of olive in the world and it has considerable variation across Iran. Recently olive cultivation and orchard development has been encouraged in Iran. In this developmental project of olive culture, it is necessary to provide agreeable genotypes for cultivation.
Materials and Methods: The present experiment was carried out to identify and evaluate local olive genotypes in Kermanshah province during 2004-2005. Those were located in six locations in Kermanshah province. Their morphological characters and oil content were investigated according to IOOC descriptor. Local genotype identification in this regions was based on morphological characters (Vegetative and reproductive) such as leaf, fruit, seed and growth behavior evaluated at four different growth phases, including onset of dormancy, flowering, fruit set and fruit growth in 39 local olive genotypes olive trees.
Results and Discussion: The results of this study showed that there was a great variation among genotypes in Kermanshah province. Those variations was observed within and between regions. Significant correlation was observed between the fruit weight, with leaf width, stone weight and percentage of flesh, also significant correlation were observed between oil percentage in fresh fruit weight, with internode length and leaf width. Factor analysis showed that five factors with eigen values greater than one, explains the 69.62 percent of diversity. Among these factors, two biggest factors justified a high degree of diversity and genotypes were better than the other factors that were superior in terms of oil content and fruit weight. Generally it can be concluded that genotypes of Kermanshah province wide variety and traits are also high correlated with fruit weight and oil content and can properly use these genotypes and traits in breeding programs. Olea europaea L. represents one of the most important trees in the Mediterranean basin and the oldest cultivated plant. Among cultivated plants, the olive is the sixth most important oil crop in the world, presently spreading from the Mediterranean region of origin to new production areas, due to the beneficial nutritional properties of olive oil and to its high economic value. The Mediterranean basin is the traditional area of olive cultivation and has 95% of the olive orchards of the world. From the Mediterranean basin, olive cultivation is presently expanding into other regions. wide range of distribution, it is becoming increasingly urgent to identify plants into different ranges of distribution in the world to avoid cases of homonymy, synonymy and mislabeling so that a reliable classification of all varieties can be achieved without unnecessary confusion. In this paper, along with morphological characteristics the acquisition of additional information on biochemical markers is essential. This aspect represents a fundamental and indispensable step to preserve the main olive varieties and also to safeguard minor genotypes, in order to avoid a loss of genetic diversity. This research has focused on using morphological markers to characterize and identify olive varieties. Identification of different varieties using morphological characters (vegetative and reproductive) is one of the aims of the modern horticulture, because such a technique would greatly facilitate breeding programs and germplasm collection management.
Conclusion: According to the results of this research, it can be concluded that there is a great variation among different genotypes. Variation was observed within and between regions. High correlation between the fruit weight and leaf width, stone weight and percentage of flesh was observed, also high correlation between oil percentage in fresh fruit weight, with internode length and leaf width were observed. Factor analysis showed that five factors with eigen values greater than one, explains the 69.62 percent of diversity. Among these factors, two biggest factors justified a high degree of diversity and genotypes were better than others of the factors that were superior in terms of oil content and fruit weight. Generally it can be concluded that olive genotypes of Kermanshah province can properly use in breeding programs
Research Article
Saba Nejatie Zadeh; Saeid Malekzadeh Shafaroudi; Ali Reza Astaraei; Nasrin Moshtaghi
Abstract
Introduction: An emerging field of nanotechnology in recent years is the use of nanoparticles and nanomaterials in agricultural systems which is due to their excellent mechanical, electrical, optical, surface properties, crop protection and nano-fertilizers. Titanium dioxide (TiO2) is a class of nanoparticles ...
Read More
Introduction: An emerging field of nanotechnology in recent years is the use of nanoparticles and nanomaterials in agricultural systems which is due to their excellent mechanical, electrical, optical, surface properties, crop protection and nano-fertilizers. Titanium dioxide (TiO2) is a class of nanoparticles which widely used in the food industry, cosmetics, papers, pharmaceuticals, plastics and industrial raw materials. The widespread industrial application of TiO2 is due to its white pigment, ultraviolet blocking property, and chemical features commonly used to alleviate pollutants concentration in water, soil and air. Owing to its increasing use in the industry, a large part of TiO2 residues are released into the environment, and currently, TiO2 nanoparticles are being considered an emerging environmental contaminant. However, there have been a number of studies reporting beneficial effects of TiO2 on growth and physiological traits of crops. It has been postulated that the TiO2-induced improvement of crop growth is not merely related to the promotion of photosynthesis; other biochemical processes especially nitrogen metabolism are also involved in this event. Ethylene diamine tetraacetic acid (EDTA) is a widely used as a chelating agent, i.e., the chemical is able to sequester metal ions such as Ca2+ and Fe3+. EDTA is used as nitrogen source for doping of TiO2 nanoparticles which improves TiO2 photocatalytic features. The present study was conducted to investigate the effects of TiO2 nanoparticles and EDTA on growth indices and biochemical parameters in spinach (Spinacia oleracea). For detailed evaluation of treatment effects, different concentrations of TiO2 nanoparticles were sprayed on spinach leaves and the samples were collected in a time course.
Materials and Methods: A factorial experiment was carried out in the form of completely randomized design (CRD) with three replications. Soil samples were taken before cultivation of spinach (S. oleracea) seeds (Var VIROFLAY) and analyzed for nutrients’ concentration. Treatments include different levels of TiO2 (T1=0, T2=0.05mg/l and T3=0.1mg/l) and two concentrations of EDTA (E1=0 and E2=130mg/l) sprayed on spinach plants in research greenhouse of agriculture faculty, Ferdowsi University of Mashhad. Aqueous solutions of nanoparticles were treated by ultrasound for 10 min to enhance homogeneity. The solutions were sprayed on the plant at six- leaves stage. The plant samples were taken before reproductive phase for measurement of biochemical parameters. Nitrogen content of plant samples was measured by PDV 500 Macro- Kjeldahl device; Potassium content was determined by 310c flame photometer; phosphorus concentration in plant samples was measured by spectrophotometer model 2100. Chlorophyll and carotenoid contents were measured by the method proposed by Lichtenthaler (1978). For analysis of growth parameters, plant samples were taken a week after TiO2 treatments and leaf area, shoot fresh/dry weight, stem length, internode length, root area, root fresh/dry weight and total root diameter were measured.
Results and Discussion: Application of 0.05mg/l of TiO2 nanoparticles without EDTA resulted in 13.5% and 9.48% increase in nitrogen and protein; respectively, however by increasing nanoparticles to 0.1mg/l, nitrogen and protein content in the treated plants were respectively reduced to 21% and 19.57% of those of control group (p
Research Article
Karim Arabsalmani; Amirhooshang Jalali; Peyman Jafari
Abstract
Introduction: Cucumis melo L. is one of the most important horticultural products in Iran. According to some reports from the third millennium BC, it has been under cultivation in. High nutritional value and high vitamin A, vitamin C, calcium, potassium, magnesium and iron have made it to be a valuable ...
Read More
Introduction: Cucumis melo L. is one of the most important horticultural products in Iran. According to some reports from the third millennium BC, it has been under cultivation in. High nutritional value and high vitamin A, vitamin C, calcium, potassium, magnesium and iron have made it to be a valuable fruit. According to the environmental conditions and cultivar, melon flowering began 30-60 days after planting and 30-70 days after pollination, the product can be harvested. Immature melon is tasteless and towards maturity, its sweetness increases. From the economic point of view, the minimum acceptable sweetness of melon's cultivars is 9% in terms of the total amount of fruit-soluble solids, but according to the vendors, this number should be 11% or more. The arid and semi-arid regions of the world are the main habitat for such products as melon and salinity stress as an integral part of these areas is an important factor for decreasing yield. The effect of salinity stress in melon's reproductive stage is somewhat more complex than other products, because some reports indicated a significant decrease in yield, number of fruit and weight of melon fruits in salinities greater than 2 dS m-1 and even some researchers determine the threshold of tolerance of 1 dS m-1. The present study was conducted to investigate the effect of two salinity treatments on yield and yield components of three melon cultivars in Varamin province.
Materials and Methods: This research was carried out in 2013 using split plot design in a randomized complete block design with three replications in Varamin Agricultural Center located in 45 km Southeast East of Tehran (35 ° 35 ', 19', 51 ', 39') 1000 meters above sea level. Prior to the experiment, the first step was to prepare the soil including deep plowing and disc. The main plots consisted of irrigation water salinity treatments at 8 dS m-1 (prepared from the Ishraq area) and 2 dS m-1 (prepared from the Khaveh station). The subplots consisted of 3 Cantaloupe masses, including Semsoori Varamin, Green Tile of Mashhad and Magasie Neishabur. The soil of the place-tested sandy loam and the amounts of organic matter (in percent), acidity and salinity (in dS m-1) were 0.95, 7.5 and 2.1 respectively. Based on the soil test, 100 kg ha-1 phosphorus (triple superphosphate) and 150 kg ha-1 potassium (as potassium sulfate) and 150 kg ha-1 nitrogen fertilizer (urea before and after flowering) were added to the ground the experiment. The cultivation date was selected May 5th. The length and diameter of the flesh with the ruler and the percentage of fruit-soluble solids were measured using a refractometer based on 10 fruits, and then the mean of the obtained numbers was taken as the final value. Before harvest, the average number of fruits per plant and average fruit weight were measured and recorded based on the performance of sub plots and the middle lines of each plot. All soil and vegetation tests were carried out in the laboratory of the Soil and Water Research Department of Varamin Agricultural Research Center. Statistical analysis was performed using SAS software and the meanings were compared with Duncan's method (5%).
Results and Discussion: The effect of interaction of salinity and genotype on the length of the fruit (at 1% level) and on the traits of seed cavity thickness, percentage of soluble solids, fruit meal diameter, fruit weight and fresh yield (at 5% level) were statistically significant. In salinity 8 dS m-1 compared to 2 dS m-1, the fresh yield of Semsuri Varamin, Green Tile of Mashhad and Magase Neishabur decreased by 32.7, 45.6 and 80%, respectively. Salinity stress can increase the percentage of non-marketable fruits by reducing the weight of fruits, and it is reported in salinity of 8 dS m-1, which is a 56% decrease in marketable yield. The highest reduction in fruit weight and number of fruits per plant were related to the two mass of Magase Neishabur (average weight 540 g) and Green Tile of Mashhad (average number of 1.23 fruit per plant), respectively. Similarly, in a research with a salinity increase of 2.41 dS m-1 to 12.6 dS m-1, yields dropped from 37 t ha-1 to 28 t ha-1, mainly due to the reduction in the number of fruits. The length of fruits in three populations of Semsuri Varamin, Green Tile of Mashhad and Magase Neishabur in the salinity of 8 dS m-1 compared to 2 dS m-1 decreased by 25, 30 and 45%, respectively. Increasing salinity from 3 to 5 dS m-1 caused a significant decrease in fruit length in products such as cucumber (equivalent to 25%). Increasing the percentage of fruit solids in salinity of 8 dS m-1compared to 2 dS m-1 treatment, was 5.8, 1.75 and 1.5 times, respectively, in the Magase Neishabur, Green Tile of Mashhad and Semsuri masses. In a study in which the effect of different treatments on salinity was investigated on the percentage of soluble fruit solids, increasing salinity from 2 to 8 dS m-1 increased the percentage of soluble solids from 7.6 to 10.5 percent.
Research Article
Mohammad Soleimani; Mostafa Mobli; Ali Akbar Ramin; Bahram Baninasab; Leila Aslani
Abstract
Introduction: Cold stress is one of the limiting factors for plant growth and yield production in most parts of the world. Cold stress damages cells through changes in the activity of macromolecules, decreasing osmotic potential, and significant changes in other parts of the cell. Cold stress in young ...
Read More
Introduction: Cold stress is one of the limiting factors for plant growth and yield production in most parts of the world. Cold stress damages cells through changes in the activity of macromolecules, decreasing osmotic potential, and significant changes in other parts of the cell. Cold stress in young seedlings generally reduces leaf development, induces wilting and chlorosis and in more severe cases, browning and necrosis become visible. Cucumber is a sensitive plant to low temperature and its cultivation, except the southern and central parts of Iran, occurs in areas where there is a possibility of cold stress in the early part of the growing season due to the low temperature. The different ways for controlling cold stress had been used; one of them is using plant growth regulators such as spermidine. Spermidine is one of the polyamines that has been used in recent years to control cold stress. The effect of cold treatment on the amount of indigenous leaf polyamines has been reported differently between cold-resistant and sensitive cucumber cultivars. During the cold stress, the amount of indigenous spermidine in leaves of cold-resistant cucumber cultivars and sensitive cultivars increased significantly and remained unchanged, respectively. The increase in the content of putrescent, spermidine and spermine in cold resistant cultivars during cold stress was probably due to the increased activity of ornithine decarboxylase (ODC). The amount of polyamines in chickpea plants that were exposured to low temperatures (12-15°C and 4-6°C are related to mean maximum and minimum temperature of the farm, respectively) increased six to nine times. Adding spermidine to the cucumber growing medium before applying cold treatment increased spermidine amount in all organs and increased cold tolerance.
Materials and Methods: To study the effect of spermidine on cold tolerance of cucumber, seedling of ‘Rashid’ cultivar, an experiment was conducted based on completely randomized design with four replications and four treatments consist of different concentrations of spermidine (0, 0.1, 0.5 and 1 mM) in incubator of College of Agriculture, Isfahan University of Technology. So seeds were exposed to 20°C for 7 days in a humid condition and then were treated with 0, 0.1, 0.5 or 1 mM spermidine, the remaining 8 days they were kept at 6 or 9°C. The treatments performed in dark conditions until the second day of germination and received 8 hours of light daily from the third day until the end of the experiment. At the end of each experiment, shoot and root length were measured by use of the ruler, shoot and root fresh and dry weight were measured by use of digital scale, shoot and root ion leakage were measured based on Lates method (3) and shoot and root proline concentration were measured based on Bites et al., (2) method. To compare the effects of temperature and its interactions with spermidine, data of two experiments analyzed as split plot experiment (Different temperatures and spermidine concentrations were as main and subplots, respectively).
Results and Discussion: The findings of this study showed that application of the highest concentration of spermidine (1 mM) in 9°C had the inverse effect on cold tolerance, so it decreased the fresh and dry weight of root. In 6°C, 0.5 mM spermidine was more effective than other concentrations, and it increased root fresh weight, shoot proline concentration and decreased root ion leakage. It has been shown that the non-saturated lipid profile of membranes of cold-resistant plants in comparison of non-resistant plants is significantly increased, and this increase is associated with a decrease in cell ion leakage. Proline works as a nitrogen source and soluble substance that helps the plant to combat again stress conditions. The split-plot analysis of data showed that 0.5 and 0.1 mM spermidine treatments increased root length, root fresh and dry weight significantly. The study of spermidine concentrations ×temperatures showed that the increasing effect of 0.5 mM spermidine on root length, root fresh and dry weight was only visible in 6°C.
Research Article
Mahboobe Dianati; Yousef Hamidoghli; Jamal-Ali Olfati
Abstract
Introduction: Cucumber (Cucumis sativus L.) breeding and seed production is highly important in Iran. Local varieties of cucumbers are desirable in terms of taste and resistance to diseases but in yield and some important traits such as number of female flowers are weak. There are three types of male, ...
Read More
Introduction: Cucumber (Cucumis sativus L.) breeding and seed production is highly important in Iran. Local varieties of cucumbers are desirable in terms of taste and resistance to diseases but in yield and some important traits such as number of female flowers are weak. There are three types of male, female and hermaphrodite flower in cucumber. Distribution of these three types of flowers leads to different sex types in cucumber. Generally, cucumber plants are monoecious. Monoecious plants produce male and female flowers on the same plant, while gynoecious plant produce only female flowers. Among the different types of sex in cucumber, gynoecious plant has a higher yield as they have only female plants in every node. Therefore, almost all cultivars used in commercial production are gynoecious. Increasing cucumber yield through gynocey was studied by several scientists. In previous researches superior lines of cucumber with general and specific combining ability were identified but these lines did not have enough gynoecious. In the current study, the possibility of crossing commercial Ailar cultivar with elite lines are studied and their progeny are evaluated.
Material and Methods: In previous research we obtained some breeding lines which showed suitable general combining abilities. Breeding lines are B10, A10 and B12. They are monoecious but they are different in growth habit so that the growth habit of B12 line is determinate with small fruits. Growth habit of B10 is semi-determinate with medium fruits and the A10 line has intermediate growth habit with large fruits. The commercial Ailar cultivar was used to transfer gynocious trait. The seeds of lines and commercial Ailar cultivar were planted in pot on January of 14, 2016. Pollination was done by hand before anthesis. A hand pollinated flower was covered with gelatin capsule to prevent insect pollination. After crossing between parent lines and commercial cultivar three fruits were kept in each line and their seeds were planted on September 30, 2016. We planted 60 shrubs in each crossing and 10 shrubs from parent. This experiment was conducted in complete randomized block design with three replications. Information such as the number of male flowers, the number of female flowers, the number of lateral branch, percentage of male flowers and female flowers were recorded. We investigated all three populations from the crossing and selected the plants with the maximum number of female flowers for the next step. At the end, data were analysis with SAS and compare means was done with Tukey’s test.
Results and Discussion: Investigation of the population of crosses in all three hybrids showed an increase in the average number and percentage of female flowers compared to the parent lines. The results showed that the progeny of commercial Ailar cultivar with B12 had the highest number and percentage of female flower. The maximum number of female flowers was found in the progeny of commercial Ailar cultivar with B12 and B10 lines, which showed a better result than the maximum number in commercial cultivars. Along with the increase in the number of female flowers, examination of male flowers in all three populations showed a decrease in the average percentage and the number of male flowers in all three populations compared to the parent lines. The highest percentage of male flowers was observed in the progeny of commercial Ailar cultivar with A10 lines. The number of lateral branches in each of three populations was approximately the same, but there was a large variation among the studied plants, so that some plants produced two and some ten lateral branches in the first ten nodes. The results showed no significant differences between lateral branches. The environment has a great influence on the expression of the number of lateral branches, and the low heritability of this trait confirms this (11). The t test was performed on parents and offspring of Ailar hybrid with all three lines at 1% level. The significance of the t test indicates progeny deviation relative to the parent's mean that can be a predominant factor for controlling genes in these traits. Comparison of means by Tukey test showed an increase in female flowers in the offspring compared to parental lines. According to these result it is possible to release recombinant inbred lines similar to elite lines with gynoecious in future.
Research Article
Reza Gholami; Norollah Moallemi; Esmaeil Khaleghi; Seyyed Mansour Seyyednejad
Abstract
Introduction: Olive tree (Olea europaea L.) is one of the most important fruit crops that, has a huge economic price. The plant is significant in the Mediterranean countries and Iran for table olive and oil. The nutritional requirements of olive are much lower than those of other fruit trees, but shortfall ...
Read More
Introduction: Olive tree (Olea europaea L.) is one of the most important fruit crops that, has a huge economic price. The plant is significant in the Mediterranean countries and Iran for table olive and oil. The nutritional requirements of olive are much lower than those of other fruit trees, but shortfall in these needs costs tree important physiological disorder. Fertilization, especially Potassium and micronutrients is a cultivation technique that strongly affects the productivity of olive trees. The amount of oil and fruit quality is effected by the correct nutrition. Leaf spraying is an important tool for correcting food deficiencies and improving the quality of the fruit of the planted olive trees under unsuitable conditions, which provides nutrients directly and as soon as possible to the branches and leaves, or fruit. Studies have shown that leaf feeding with potassium, boron and zinc can be useful for increasing the qualitative and qualities characteristics of fruit in most products, especially in arid and semi-arid regions. Thus, the present study was aimed to assessing the effect of zinc sulphate, boric acid and potassium sulphate foliar application on oil content and the qualitative and quantitative characteristics of fruit of three olive, “Caillet”, “Koroneiki” and “Mission” cultivars in unfavorable temperature conditions in Ahwaz.
Materials and Methods: This study was carried out to investigate the effect of foliar spraying of Potassium, Boron and Zinc on the oil content and the qualitative characteristics of the fruit of three olive, “Caillet”, “Koroneiki” and “Mission” cultivars in the olive orchard of Shahid Chamran University in 2016. Spray treatments were included T0 (Distilled water as control),T1 (1000 mg/l boric acid + 1000 mg/l potassium sulfate + 1000 mg/l zinc sulfate) and T2 (2000 mg/l boric acid+2000 mg/l potassium sulfate +2000 mg/l zinc sulfate ) which applied on olive cultivars in four time including a week before the full bloom (the second half of March), two weeks after the full bloom (the first half of April), at pit hardening (the first half of June of the month) and at the stage of oil synthesis and accumulation (first half of July). The research was performed in a factorial experiment based on a randomized complete block design with three replications thirty fruits from each tree were harvested, then the qualitative characteristics of fruit such as fruit fresh weight, pit fresh weight, fresh weight of the pulp, pulp/pit ratio, length and diameter of fruit and pit and also, to determine the amount of nutrients in the fruit and dry weight of the pulp, the samples were placed an oven for 48 hours at 80°C. After drying, the dry weight of the pulp was calculated, then the samples were completely powdered with the milling machine and the Kjedahl method was used Nitrogen, from a Flame Photo Meter to measure Potassium concentration and Atomic Absorption Spectrophotometry method was used for measuring Zinc and Boron of the available in fruit. Data analysis was performed using SAS software and mean of comparison was done by Duncan's multiple range test at 5% probability level.
Results and Discussion: The results indicated that the foliar spray had a significant effect on fruit fresh weight, fresh and dry weight of pulp, the ratio of Pulp/Pit weight, Oil content and amount of K, N, B and Zn of fruit, also fruit and pit dimension, but no significant difference in pit fresh weight were observed. Maximum oil content was 23.69% in Koroneiki cultivar sprayed with T1 treatment. Minimum oil content was 19.62% in Mission cultivar treated with distilled water. The highest and lowest rates in most of the studied traits were related to ‘Mission’ cultivar sprayed with T2 treatment and ‘Koroneiki’ cultivar treated with distilled water. The highest oil content was 23.69% in Koroneiki cultivar treated with T1 treatment. The highest amount of fresh weight of fruit (2.48 g) and pulp fresh weight (1.83 g) were obtained in ‘Mission’ cultivar treated with T2.It can be argued that food is responsible for activating cell division in addition to photosynthesis and organic matter transfer, Boron. Zinc and Potassium nutrients are treated trees, interfering with cell division and the synthesis of acid nucleic and increasing the formation and transfer of carbohydrates and by activating carbohydrate enzymes during fruit growth and development, improve the trait fruit.
Conclusions: The results of this study indicated that the spraying of the leaves of olive fruit trees, especially with T2 treatment (2000 mg / L of potassium sulfate, zinc sulfate and acid-boric), had the most positive effect on the increase of fruit properties compared to other treatments ,and increased the qualitative and quantitative traits of the fruit. Also, the results indicated that the cultivar had an influence on the characteristics of the fruit and by creating appropriate environmental conditions, especially the supply of nutrients during the growth stage of the fruit. Finally, the Mission cultivar has best response to T2 treatment by spraying of potassium, zinc and boron. There were significant differences between mission cultivar treated with T2 and other cultivars on fresh fruit weight, fresh and dry weight of pulp and fruit oil percentage, as well as the concentration of nutrients in fruit. The improvement in fruit characteristics should be due to the formation of more fruits, larger fruit and more fruit weight due to the role of Zinc and Boron in cell division and prolongation of the cell and increasing the volume of intercellular space in mesocarp cells. Conversely, Koroneiki cultivar showed the least reaction to spraying. Therefore, the characteristics of fruits are different in different cultivars, and the type of cultivars and soluble concentrations are effective on the quality of yield, which implies that leaf application can be used to increase the quality of olive fruit in hot areas.
Research Article
Ali Tajabadipour; Mohammadreza Fattahi; Zabihollah Zamani; Fatemeh Nasibi; Hossein Hokmabadi
Abstract
Introduction: Spring cold injury is one of the main limiting factors to production and distribution of pistachio. Pistachio is one of the most valuable and exported agricultural crops of Iran. Since, spring frosts results to considerabe damage to this plant, hence, it is important to investigate methods ...
Read More
Introduction: Spring cold injury is one of the main limiting factors to production and distribution of pistachio. Pistachio is one of the most valuable and exported agricultural crops of Iran. Since, spring frosts results to considerabe damage to this plant, hence, it is important to investigate methods for reducing freezing damage. For this reason, selection of rootstocks and cultivars are an important objective in breeding programs. Freezing temperatures (below 0ºC) cause the movement of water from the protoplast to the extracellular space, resulting in the growth of extracellular ice crystals and ultimately, cell dehydration. Plants have developed complex processes to survive and recover from unfavorable conditions. To tolerate cold stresses, plants develop multiple mechanisms, including the accumulation of cryoprotective molecules and proteins, alterations in membrane lipid composition, and primary and secondary metabolite composition, as well as changes in global gene and protein expression Frost affects cell membranes, which become less permeable, and even break, giving rise to the leakage of solute from damaged cells. There is often a good correlation between ion leakage and freezing tolerance (22). Sugars may depress the freezing point of the tissue and act as a nutrient and energy reserve, alter phase properties of membranes in the dry state and act as cryoprotectants to preserve protein structure and function. Other compounds acting similarly are lipids, soluble proteins and free proline (44). Proline seems to have diverse roles under osmotic stress conditions, such as stabilization of proteins, membranes and subcellular structures and protecting cellular functions by scavenging reactive oxygen species (23). The aim of the present study was to evaluate different degrees of sensitivity to low temperatures in different genotypes and ‘Ahmad-Aghaii’ cultivar in relation to physiological and biochemical changes in field conditions.
Materials and Methods: In order to determine the effects of rootstock on pistachio cultivar ‘Ahmad-Aghaii’ under freezing stress conditions, an experiment was carried out as factorial based on a randomized completely design (RCD) with four replications. Treatments consisted of two levels: 1- rootstock genotype (four cold sensitive and tolerant rootstocks) and 2- temperatures (-2 and -4 ºC). The sampling was performed in full bloom stage from apical branches of pistachio cultivar ‘Ahmad-Aghaii’ budded on these rootstock genotypes. The branches in pots contain distillted water treated under -2 and -4 °C for 2 h. After treatment, the chilling index was determined. Flower clusters were used for measuring physiological and biochemical parameters. All determinations were carried out in four triplicates and data were subjected to analysis of variance. Analysis of variance was performed using the ANOVA procedure. Statistical analyses were performed according to the SAS software. Significant differences between means were determined by Duncan’s multiple range tests. P values less than 0.05 were considered statistically significant.
Results and Discussion: The results showed that chilling index was significantly lower in the cold-tolerant rootstocks than cold-sensitive rootstocks at -2 and -4 ºC. Also, Results indicated that electrolyte leakage, hydrogen peroxide (H2O2) and malondialdehyde (MDA) were significantly lower in tolerant rootstocks than sensitive ones. The content of soluble carbohydrate, total protein and proline were significantly higher intolerant rootstocks than sensitive ones. The activity of anti-oxidant enzymes ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) in tolerant rootstocks was greater than sensitive rootstocks. The reaction of temperature and rootstock indicated that electronic leakage, proline, H2O2,و and MDA significantly increased in -4 ºC. The activity of anti-oxidant enzymes APX, GPX and CAT decreased in -4 ºC as compared to -2 °C especially in cold-sensitive rootstocks. Some researchers believe that the accumulation of proline is as an index to select the drought-resistance varieties (26, 48). Stated that there was no comprehensive information about the relationship between the accumulation of proline and tension resistance. Research on apricot and peach confirmed the results of the present study because this pattern is also seen in their proline level (26 and 41). While the starch concentration decreases during the dormancy, the amount of proline increases which is in accordance with their results (36).
Conclusions: In this study, the damage of the membrane increased with decreasing temperature. The results showed that the rootstocks could increase the resistance to cold by increasing the amount of soluble sugars, protein, proline and the activity of the antioxidant system in the shoots and leaves of the scion. Regarding physiological and biochemical studies, it was determined that ‘Ahmad-Aghaii’ cultivar budded on cold tolerant rootstocks had higher soluble sugars, total protein, proline and CAT, APX and GPX enzymes activity and had less chilling index, ion leakage, H2O2 and MDA, which indicates less damage to the membrane of the cell and its contents compared with the cultivar 'Ahmad-Aghaii' budding to sensitive rootstocks. Consequently, the findings of this study selected TR1 as the most tolerant rootstock compared to other ones.
Research Article
Niaz Gholi Firozbakht; Mehdi Rezaei
Abstract
Introduction: Size of fruit in Japanese plum has an important role in marketability and fruit quality. In Golestan province, one of the most important areas of plum production in Iran, due to high temperatures in summer that led to unfavorable conditions in fruit ripening stage, final fruit size are ...
Read More
Introduction: Size of fruit in Japanese plum has an important role in marketability and fruit quality. In Golestan province, one of the most important areas of plum production in Iran, due to high temperatures in summer that led to unfavorable conditions in fruit ripening stage, final fruit size are reduced in commercial scale. In this respect, the large financial loss is imposed to plum growers. Today, synthetic auxins are widely applied in the commercial gardens of the world in order to increasing fruit size and improving fruit growth . Auxins can promotes cell division, cell enlargement in fruit growth stages and it also acts as sink for nutrients absorption. In this study, the effects of the foliar application of two synthetic auxins were investigated on fruit qualitative and quantitative of Japanese plums in Golestan province climatic conditions.
Material and Methods: A split-plot factorial experiment based on randomized complete block design with four replications was conducted in a commercial orchard from Run Agri Company in Golestan province, Iran for two years (2015 and 2016). The main factor was considered four plum cultivars including ‘Ghatreh Tala’, ‘Shablon Zodras’, ‘Shablon Mianras’ and ‘Shablon Dirras’ which were spraying by two synthetic auxins: NAA (0, 300 and 400 mg/l) and 2, 4-D (0, 10 and 30 mg/l) along and in combination. Fruit length, diameter, length to diameter ratio and fruit weight, yield, yield efficiency and percentage of first and second fruit grade production characteristics were evaluated. Data analysis was performed by SAS 9.1 software and the comparison of mean values was done by Duncan's multiple range tests at 0.05 of probability level.
Results and Discussion: The results showed that foliar application of auxin significantly increased fruit size and weight. The results showed that the response of plum cultivars to synthetic auxins was different. Fruit length and width of ‘Shablon Dirras’ cultivar were increased with the 2,4-D application at 10 and 30 mg/l , but in the ‘Shablon Mianras’ cultivar, the combination of 2,4-D with NAA improved fruit size. NAA at its highest concentration (400 mg/l) plus 2, 4-D at its highest concentration (30 mg/l) produced the largest fruits and the highest yield in ‘Shablon Mianras’ cultivar. Stern et al. (16) also obtained similar results from NAA and 2, 4-D treatments in plum, which is confirmed our results. The yield (kg/tree) and yield efficiency in plum cultivars increased significantly by synthetic auxin treatments. The average of yield (kg/tree) by 2, 4-D and NAA foliar application increased 30, 60, 28 and 34 percent in ‘Shablon Zodras’, ‘Shablon Mianras’, ‘Shablon Dirras’ and ‘GhatrehTala’ cultivars, respectively. The highest yield efficiency was obtained in ‘Shablon Mianras’ cultivar (0.38 kg/cm2) in 30 mg/L of 2, 4-D plus 400mg/L of NAA, which showed a 120 % increasing in comparison to control trees. Denis (7) reported increases the quantitative characteristics of stone fruits such as fruit size and weight by using synthetic auxin spray. The effect of auxin on increase cell proliferation and cell size are main reason for increasing the length and weight of the fruits (7). The results showed that 2, 4-D and NAA auxins were able to increase the percentage of first grade fruit relative in all plum cultivars in comparison to the control trees, but the concentrations and composition of plant growth regulators that increased the percentage of first grad fruits were not completely same to best treatments on fruit size, weight or yield. It referred to the first-grade fruits selection criteria. In selecting of best marketable fruits, in addition to the size of the fruit, others feature such as fruit appearance, color, physical damage and the absence of symptoms of diseases are also taken into grading. Temperature, water, nutritional and genetic conditions can affect the effect of plant growth regulator treatments (13).
Conclusions: Plum cultivars showed different reactions to synthetic auxin treatments. The largest fruit, highest yield and yield efficiency obtained in 2,4-D (30 mg/l ) with NAA (400 mg/l) in ‘Shablon Mianras’, ‘Shablon Dirras’ and ‘Ghatreh Tala’ cultivars and 2,4-D at 30 mg/l with NAA at 300 mg/l concentration in ‘Shablon Dirras’ and ‘Ghatreh Tala’ Cultivars. The highest degree of first grad-fruit was observed at 10 mg/l 2,4-D in ‘Shablon Zodras’ and ‘Dirrras’ cultivars and 300 mg/l of NAA in ‘Shabolon Mianras’ and ‘Ghatreh Tala’ cultivars.