Research Article
Shadan Khorshidi; Gholamhossein Davarynejad; Leila Samiei; Mohammad Moghaddam
Abstract
Introduction: Most deciduous trees need low temperature to break flower bud dormancy. One of the most important abiotic stresses is low temperature which limits production of temperate fruits. Pear production has been considerably reduced in recent years. Important pear cultivars show different levels ...
Read More
Introduction: Most deciduous trees need low temperature to break flower bud dormancy. One of the most important abiotic stresses is low temperature which limits production of temperate fruits. Pear production has been considerably reduced in recent years. Important pear cultivars show different levels of resistance to cold. Cold compatibility followed by resistance increase is controlled genetically and contains several mechanisms which lead to production of different metabolites such as: polypeptides, amino acids and sugars. The object of this research was to evaluate the frost resistance of different ‘Dare Gazi’ genotypes and other pear cultivars in Mashhad climate condition.
Materials and Methods: This study was conducted to investigate the frost resistance of 23 ‘Dare Gazi’ pear genotypes and nine other cultivars include: ‘William’s’, ‘Bell de june’, ‘Spadona’, ‘Koshia’, ‘Domkaj’, ‘Torsh’, ‘Sebri’ and ‘Tabrizi’. Plant material contained vegetative and reproductive buds of one-year-old shoot samples which were collected from 25-year old trees on March 2014, four days after winter cold (-6.6 °C) in three directions of trees and sent to the laboratory. Frost damages of vegetative and reproductive buds were investigated based on visual observations (%), electrolyte leakage (EC) and proline content. EC was measured with a Metrohm 644 digital conductivity meter and proline content was measured based on Bates et al. (1973) method, using acid ninhydrin. The experiment was performed on completely randomized experimental design with three replications. Statistical analysis was carried out using MSTAT-C and Excel software. Mean values were compared using the least significance difference test (LSD) at 1% levels. Cluster analysis was conducted by SPSS 16 program.
Results and Discussion: Highest EC of reproductive buds was observed in ‘Dare Gazi’ 10, 19, ‘Tabrizi’ and ‘Torsh’ whereas ‘Dare Gazi’ 8, 18 and ‘Bell de June’ had the lowest EC. Based on visual observations, the least percentage of damaged reproductive buds was observed in ‘Dare Gazi’ 22 while ‘William’s’ suffered from frost at the highest damage level (96%). Göndör and Tóth (1998) studied 13 pear cultivars by microscopic observations of flower buds and found that ‘Packham's Triumph’ was relatively resistant under Hungarian ecological conditions. Honty et al. (2008) reported that Kaiser was the most sensitive pear cultivar to low temperatures during endodormancy and ecodormancy. Khorshidi et al. (2014) described that pear reproductive buds of ‘Ghodumi’ were the most tolerant. Considering the vegetative buds, ‘Dare Gazi’ 19 had the highest EC (74.47 %) which was not significantly different from ‘Dare Gazi’ 10, 20 and 3 whereas the lowest one was found in ‘William’s’(24.75%). The highest percentage of healthy vegetative buds was found in ‘Dare Gazi’ 1 (50%) which did not show a significant difference with ‘Dare Gazi’ 12, 5 and 7. ‘Tabrizi’ was the most sensitive and had most damaged vegetative buds (95.99%). Khorshidi et al. (2014) observed the least damaged vegetative buds in ‘Dare Gazi’ and the most damaged buds in ‘Boheme’ and ‘Ghodumi’. Palonen and Buszard (1997) mentioned that hardiness of woody tissue of apples did not seem related to flower bud hardiness. The highest proline content of reproductive buds was found in ‘Dare Gazi’ 20 (21.28 µmol g-1FW) and the lowest content observed in ‘Dare Gazi’ 2 (0.1 µmol g-1 FW). Young (1977) described that increase in proline was not correlated well with relative cold hardiness of citrus rootstocks. Data did not show any significant correlation between EC and proline content. Barka and Audran (1997) studied grape buds and shoots and reached a high negative correlation between proline content and frosttolerance. Yelonsky (1979) indicated that accumulation of proline was not correlated to cold hardiness. The results of present experiment were in agreement with Duncan and Jack (1987) findings which reported that increase in proline was not always correspondent to cold resistance. Based on the cluster analysis, the genotypes laid in two distinct groups. First group included ‘Dare Gazi’1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 23 and ‘Sebri’, ‘Domkaj’, ‘Bell de june’ and ‘Koshia’ and second group include ‘Dare Gazi’ 11,16, 21 and ‘William’s’, ‘Spadona’ and ‘Torsh’. Frost damage, EC and proline content were higher in the first group compared to second group.
Conclusion: Cosidering‘DareGazi’ genotypes, no correlation was found between proline content and frost damage rate. This shows that morphological differences among ‘Dare Gazi’ genotypes could be due to the existing of genetic variation of these genotypes or they are different clones of one cultivar.
Research Article
Mohammad Behzad Amiri; Parviz Rezvani Moghaddam; Mohsen Jahan
Abstract
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient ...
Read More
Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient in the long-term in tropical ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of agrochemicals in agricultural systems is also known to have irreversible effects on soil and water resources.
Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost can greatly enhance the physical structure of soil. Decomposing organic amendments slowly release nutrients which may be taken up by plants and thus result in improved agroecosystem productivity.
Vermicompost is currently being promoted to improve soil quality, reduces water and fertilizer needs and therefore increases the sustainability of agricultural practices in tropical countries. Vermicomposting is a process which stabilizes organic matter under aerobic and mesophilic conditions through the joint action of earthworms and microorganisms. The products of vermicomposting have been successfully used to suppress plant pests and disease as well as increase crop productivity.
Cow manure is an excellent fertilizer containing nitrogen, phosphorus, potassium and other nutrients. It also adds organic matter to the soil which may improve soil structure, aeration, soil moisture-holding capacity, and water infiltration.
Plant density is the number of individuals of a given plants that occurs within a given sample unit or study area. Planting density can impact the overall health of plants. Plantings that are too sparse (the density is too low) may be more susceptible to weeds, while planting that are too dense might force plants to compete over scarce nutrients and water and cause stunted growth .
Despite of many studies on the effect of organic fertilizers and plant density on different crops, information on the effects of these factors for many medicinal plants is scarce. Therefore, in this study the effect of organic fertilizers and plant density on morphological characteristics and yield of Echium amoenum was studied in a low input cropping system.
Materials and methods: In order to evaluate the plant density and comparison of organic and chemical fertilizers on Iranian Ox-Tongue (Echium amoenum), a split plots experiment in time based on RCBD design with three replications was conducted in 2011-2014 growing seasons, in Ferdowsi University of Mashhad, Iran. The main plots included factorial combination of 3 plant densities (3, 5 and 10 plants per m2) and 4 different types of organic and chemical fertilizers (compost, vermicompost, cow manure, nitrogen chemical fertilizer and control) and the sub plots included agronomic years (2 and 3 agronomic years).
Results and discussion:The results showed that the effect of plant density on dry flower yield was significant, so that the highest dry flower yield (816 kg.ha-1) obtained for 5 plants per m2 and in this treatment dry flower yield was 23% and 15% more than 3 and 10 plants per m2 treatments, respectively. In both of agronomic years, effect of different organic and chemical fertilizers was intensified in 5 plants per m2, for example in second agronomic year, compost in 5 plants per m2 increased seed yield 30 and 25% compared to 3 and 10 plants per m2 densities, respectively. Although the use of chemical fertilizers to improve yield and yield components of Iranian Ox-Tongue was no ineffective, its impacts was much less than organic fertilizers. In general, the results of this research showed that the use of organic fertilizers in optimal plant densities can be reducing environmental risks of chemical fertilizers and develop sustainable agriculture and protect the health of the products.
Organic fertilizers are among the most significant resources for development of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that this ecological inputs provide favorable conditions for plant growth and development through improvement of physical, chemical and biological properties of the soil, therefore, it can be concluded that improvement of the most studied traits in the present study were due to use of organic fertilizers.
It seems that plants compete with each other over scarce nutrients and water in high plant density and cause stunted growth . Some other studies have reported that suitable plant density can increase the growth and yield of some medicinal plants such as coriander (Coriandrum sativum L.) (Akhani), Ajwain (Carum copticum L.) , lemon balm (Melissa officinalis L.) and anise (Pimpinella anisum L.).
Conclusion: In general, the results of this research showed that the use of organic fertilizers in optimal plant densities can be reducing environmental risks of chemical fertilizers and develop sustainable agriculture and protect the health of the products.
Research Article
Iman Baninaeim; Davood Samsampoor
Abstract
Introduction: Narcissus is a genus of hardy, spring-blooming, bulbous plants in the family Amaryllidaceae. Numerous studies have demonstrated positive effects of various chemical additives (e.g. biocides, surfactants, ethylene inhibitors, wound healing enzyme inhibitors) on the postharvest, water relations ...
Read More
Introduction: Narcissus is a genus of hardy, spring-blooming, bulbous plants in the family Amaryllidaceae. Numerous studies have demonstrated positive effects of various chemical additives (e.g. biocides, surfactants, ethylene inhibitors, wound healing enzyme inhibitors) on the postharvest, water relations and longevity of cut flowers. Cut flowers can have limited commercial value because of their dehydrating during vase life that decreased water uptake. Petal senescence is part of a developmental continuum in cut flowers and proceeded by tissue differentiation, growth and development of seeds and coordinated by plant hormones. Senescence can be studied at cellular, tissue, organ or organization level as a genetically programmed event. The vase life of cut narcissus flowers is often very short. The development of senescence symptoms is caused by vascular occlusion, which inhibits water supply to the flowers. Petal senescence was marked by the loss of turgor in petal tissue followed by complete wilting. The development of occlusions is thought to be caused by various factors, such as bacteria, air emboli and physiological responses of stems to cutting. However, despite anecdotal evidence of positive effects, improving postharvest water relations of cut flowers by various physical stem-end treatments is little researched.
Materials and Methods: The Narcissus flowers harvested from Khafr city of Fars province, in February 2015. The Thyme plants harvested in September 2014 and Savory plants harvested in December 2014 and then submitted to hydrodistillation in a Clevenger-type apparatus for 3 hours. This study was carried out in a completely randomized design with 3 replications. The treatments included control (distilled water), two levels of Savory essential oil (50 and 100 ppm) and two levels of Thyme essential oil (100 and 200 ppm). 2% sucrose were added to control and other of treatments . The cut flowers were also kept at temperature of 20±2 ºC with air humidity (RH) of 70±5%. Different parameters including flower weight, uptake of preservative solution, and wilting of flowers were measured every 2 days (0, 2, 4, 6 and 8) and antioxidant enzyme activity (APX) were measured in days of 0, 4 and 8 during storage period, and at the end of experiment, the vase life were measured. The results analyzed by SAS software and drawing tables and diagrams done by Excel software.
Results and Discussion: The results showed that Savory essential oil 50 ppm treatment was effective in improving the flower weight of cut narcissus by increasing uptake of preservative solution and also reducing wilting of flowers and antioxidant enzyme activities. At 200 ppm of thyme essential oil observed reductionin flower weight and uptake of preservative solution, but increasing in wilting of flowers and antioxidant enzyme activities. At 50 ppm of savory essential oil with average days 12.26, the vase life of cut flowers increased significantly as compared to control (10.36) and at 200 ppm of thyme essential oil treatment with average days 8.53, observed decrease invase life of cut flowers compared to control. Impaired water uptake is typically caused by cut stem occlusions due to microbial, physiological and physical plugging of xylem vessels. Essential oils constituents and derivatives have a long history of application as antimicrobial agents in areas of food preservation and medicinal antimicrobial production. physical treatments damage xylem vessels, allow increase of microbes and increase nutrient supply for microbes, which occlude stems. Recently many works carried out about application essential oils as antimicrobial agents under in vitro and in vivo condition and indicated that essential oils could increase postharvest quality of many horticultural crops such as tomato, table grape and kiwifruit (1, 15 and 24). In addition to improving water uptake, other approaches to maintaining a positive postharvest water balance for cut flowers and foliage include minimizing water loss though reduction in leaf area, keeping them in an environment conducive to less water loss (viz. low temperature and high RH) and providing compatible osmotica (e.g. sucrose) in vase and/or pulsing solutions. The loss of membrane integrity has been shown to cause an increase in the permeability and leakage during senescence in various flowers.
Conclusions: Results of this study showed that savory essential oil treatments increased quality and vase life of narssisus cut flowers compared to control At higher concentrations of thyme (200 ppm) the flowers remained closed, wilted quickly and senesced before controls.
Research Article
Zahra Karimian; Ali Tehranifar; Mohammad Bannayan Aval; Majid Azizi; Fatemeh Kazemi
Abstract
Introduction: With regard to two adverse climatic phenomena of urban heat islands and global warming that has been leading to increase temperature in many cities in the world, providing human thermal comfort especially in large cities with hot and dry climates, during the hottest periods of the year ...
Read More
Introduction: With regard to two adverse climatic phenomena of urban heat islands and global warming that has been leading to increase temperature in many cities in the world, providing human thermal comfort especially in large cities with hot and dry climates, during the hottest periods of the year is crucial. Mainly vegetation with three methods: shading, evapotranspiration and wind breaking can affect micro-climate. The aim of this study was to asses and simulate the impact of existing and proposed vegetation on the human thermal comfort and micro climate changes in some residential areas of Mashhad during the hottest periods of the year by using a modeling and computer simulation approach.
Materials and Methods: This research was performed in the Ghasemabad residential area, Andisheh and Hesabi blocks, and in the hottest period of the year 2012 in Mashhad. Recorded data in the residential sites along with observed data from Mashhad weather station that included temperature, relative humidity, wind speed and direction. Soil data (soil temperature and humidity, soil\ type), plant data (plant type, plant height, leaf area index) and building data (inner temperature in the building, height and area buildings) as input data were used in the ENVI-met model. Both two sites, Andishe and Hesabi residential blocks, with vegetation (different trees and bushes plants, for example Acacia, ash, sycamore, mulberry, chinaberry, barberry, boxwood and Cotoneaster that all of them are tolerant and semi-tolerant to drought) about 20% were simulated. Regarding the area of simulating, 3 receptors were considered in per sites. Simulation was commenced from 6 AM and continued until 18 pm, but just data of 11-15 hours were analysed (the hours of peak traffic).
Results and Discussion: Analysis of outputs data revealed that the temperature of two residential sites in all three receptors during the study were almost the same. In general, the maximum temperature difference between receptors was obtained at 13 hour. The trend of relative humidity changes was very similar in both residential sites. In these two sites the most differences in the relative humidity was obtained at 12 oclock.. In addition, the trend of Predicted Mean Vote (PMV) in Andisheh residential block showed that these changes in central and south-west part of the site were similar. The simulation with vegetation in the sites, also, showed that the trend of temperature and relative humidity changes were similar. The trends of temperature changes in residential site, Hesabi, in the defined receptors were very similar. So that temperature increased from 12 oclock to 15. While the trend of relative humidity changes was quite the reverse. This study results showed that the difference in temperature, relative humidity and PMV between measured and simulated data were minimal in both residential sites. Moreover, the data comparison of PMV indicated that in both residential sites, despite of simulation with vegetation, the human thermal comfort did not improve, so that these sites were in the range of extreme heat stress. There are several reasons to justify this issue, such as the percentage and the type of vegetation, factors related to the topography and geography of area, building distribution and density, type and color of the building materials and surfaces, etc. However, in this part of the study, other factors were constant, except vegetation. It seems that with increase of percentage and the ratio of vegetation, changes in temperature, relative humidity and other micro-climate factors, are created, but sometimes for the reasons stated, the temperature during the hottest period of the year is too high so that increase in vegetation will have little impact on outdoor thermal comfort. It might be the simulated area on these sites as well as the type and the ratio of the selected species to reduce the temperature and increase the relative humidity have been not adequately represent all conditions which be able to improve thermal comfort.
Conclusions: In this study eventually we can conclude that in the simulated sites with about 20 percent vegetation cover,, despite the slight decrease and increase in temperature and relative humidity, respectively compared with the real sites, the thermal comfort range was similar. It is advisable in the future studies to simulate the green area in shape of the vertical and horizontal, changes in species composition in green area like trees, shrubs, and cover plants and also the test of different combinations of type and percentage of vegetation.
Research Article
Golnar GhazianTafrishi; Hossein Arouiee; Majid Azizi; Hamidreza Khazaie; Saeid Reza Vessal
Abstract
Introduction: Plants native to tropical and subtropical climates which grown in the temperate climate zone, suffer chilling injury when exposed to non-freezing temperatures for a certain period of time. The optimum growth temperature for cucumber (a tropical plant) is 20 to 25°C. Cucumber is sensitive ...
Read More
Introduction: Plants native to tropical and subtropical climates which grown in the temperate climate zone, suffer chilling injury when exposed to non-freezing temperatures for a certain period of time. The optimum growth temperature for cucumber (a tropical plant) is 20 to 25°C. Cucumber is sensitive to temperatures lower than 10 °C. Cucumber area of production exposes to late spring and early autumn cold weather in Khorasan-e-Razavai, Iran. Studies showed that chilling leads to an alteration in fatty acid composition of membrane lipids and its permeability, changes in photosynthetic pigments content and decrease in photosynthesis. Many researchers pointed to a possible role of polyamine compounds in plant defense against environmental stresses. Exog enous application Spd could prevent the electrolyte and amino acid leakage or recovering the plasma membrane damage in rice and cucumber in response to salinity, chilling and water stressed conditions.
Materials and methods: A factorial experiment, based on completely randomized design was conducted to investigate the effect of short-term chilling on cucumber plantlets which was earlier treated with spermidine. Factors were included two levels of temperature (6 and 12°C) and four levels of spermidine (0, 0.25, 0.5 and .0.75 mg/L). The studied cultivar was ‘Super-Dominus’. In order to determine the extent of chilling injury, plants of each treatment were rated based on visual symptoms. By assigning values of 1, 2, 3, 4, and 5 while 1: no visible symptoms 2:5% of leaf area necrotic, 3: 5-25% of leaf area necrotic, 4: 26-50% of leaf area necrotic but plant still alive, 5: lost, entire plant necrotic and collapsed. Measured traits were root and shoot length, root and shoot dry weight, root and leaf electrical leakage, and leaf chlorophyll content.
Results and discussion: Plants which exposed to low temperature showed chilling injury symptoms (5-25% leaf area necrotic). The symptoms reduced (less than 5% leaf area necrotic) by using 0.25 and 0.5 mg/L spermidine. The symptoms enhanced by 50% by applying 0.75 mg/L spermidine at 6°C. Analysis of variance showed that there was significant difference between temperature levels, spermidine levels and interaction between them in respect to root length, shoot length, shoot dry weight and root and leaf electrical leakage. Root dry weight, root to shoot ratio and chlorophyll content just affected by temperature and spermidines levels but not by interaction between them. Root and shoot length and dry weight decreased by low temperature. At cold stress condition growth decreased due to a reduction in photosynthesis and carbohydrate metabolism .Root and shoot length decreased more than 79% at 6°C compare with 12°. Root to shoot ratio increased at cold condition which was the result of lower root weight loss in response to cold temperature compared with shoot weight losses. Electrical leakage (EL) enhanced in leaf and root cells at chilling temperature, but the enhancement was significantly more at root cells. Electrical leakage enhanced more than 52% in root cells at 6°C compared with 35% in leaf cells. EL suppressed, using 0.25 and 0.5 mg/L spermidine while an increase observed in El at 0.75 mg/L spermidine. The lowest EL percentage observed for leaf samples treated with 0.25 and 0.5 mg/L spermidine at 12°C. The highest EL percentage belonged to root samples treated with 0.75 mg/L Spd at 6°C .Chlorophyll content (ChlC) decreased at cold condition. ChlC was 52% at12°C compared with 37% at 6°C. High significant correlation observed between chlorophyll content and shoot dry matter (r2= 0.96**). Root and shoot length and dry weight and leaf chlorophyll content enhanced using 0.25 and 0.5 mg/L spermidine at both chilling and control temperatures. A decrease observed in measured traits applying 0.75mg/L spermidine. There was no significant difference between 0.25 and 0.5 mg/L spermidine levels in respect of measured traits expect for shoot dry weight. Spermidine enhances chilling tolerance in cucumber by prohibiting the activity of NADPH oxidase. The capacity of PAs to enhance the tolerance of cucumber to chilling injury is attributed to the scavenging of H2O2 production under chilling condition.
Conclusion: Results showed that root and shoot length and weight, root and leaf electrical leakage and chlorophyll content of leaf adversely affected by chilling stress. Using 0.25 mg/L spermidine modulates plant responses to chilling stress. There was no significant difference between 0.25 and 0.5 mg/L spermidine in respect of measured traits. But all measured traits adversely affected using 0.75 mg/L spermidine at both 6 and 12°C.
Research Article
Azam Ranjbar; Noorollah Ahmadi
Abstract
Introduction: Miniature rose (Rosa hybrida) are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries ...
Read More
Introduction: Miniature rose (Rosa hybrida) are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries such as Denmark and Germany. Some treatments such as application of plant growth regulators and suitable rooting medium could be required for accelerating root formation in rose cuttings. Using plant growth regulators like natural or synthetic auxin is a pre-requirement for the initiation of adventitious root in some stem cuttings and it has been reported that the division of the first initiator cells of root depends on internal or synthetic auxin. Methods of application of these chemicals and suitable concentration could be related to several factors, importantly the plant varieties, type of cuttings and the time of cutting preparation. Various kinds of media such as soil, peat moss, perlite and vermiculite are used as bed substrate according to required ratio. Rooting media must provide appropriate moisture and air ventilation for cuttings establishment, which highly affect the cuttings root formation. Appropriate procedure for using wastes materials as culture bed, especially those materials that produced locally, is main aim of some studies to find an alternative medium in ornamental pot plant production. In this regards, evaluation of agricultural wastes to be used to culture bed and introducing suitable materials could be considered. Accordingly, the objective of the present study was to determine the effects of two types of plant growth regulators and bed combinations on rooting percentage of semi-hardwood cuttings in miniature rose.
Materials and Methods: In order to evaluate the effects of different concentrations of indolebutyric acid (IBA) and naphtaleneacetic acid (NAA), and two media with different composition on root formation of miniature rose stem cutting, this research was carried out as a factorial on the basis of randomized complete design (RCD) with three replications. Plant growth regulators including IBA at concentrations of 0, 1000, 2000 and 3000 mgl-1, concentrations of NAA at 0, 500, 1000, 1500 and 2000 mgl-1 were applied together with two types of rooting media. Media including mixing volume of perlite, tea waste compost and sand in a ratio of 1: 2: 2, and perlite, peat and sand in a ratio of 1:2:2 were mixed and applied in this experiment. Using SAS software, data was analyzed based on a generalized linear model (GLM) analysis and tested by least significant difference (LSD) at (P-value< 0.05).
Results and Discussion: Results showed that the highest rooting percentage of cuttings was obtained with 2000 mgl-1 of IBA, while no significant effect of NAA treatment and different rooting media on percentage of rooting was revealed. The two-fold and three-fold interaction of treatments on other measured traits such as primary and secondary root number and root diameter were significant. The two-fold interaction of NAA treatments and rooting media on the trait of primary root number were no significant. The highest root number and root diameter measured in medium containing perlite, tea waste compost and sand in a ratio of 1:2:2 for cutting received combined plant growth regulators.
Conclusions: Compost, the final product of organic residues degradation, improves soil physical characteristics such as soil aggregate formation and stability, water penetration, porosity, compressing resistance and nutrients availability. As well, it improves soil biological characteristics and in result, integration of compost with soil can increase growth, yield and quality of crop. There are also some evidences that in contrast of peat, compost contains plant growth regulators improved plant growth and development. Totally, considering our obtained results, in order to accelerate rooting formation in miniature rose cuttings, treatment of cuttings with synthetic plant growth regulators in medium containing perlite: tea wastes compost: sand (2:2:1) under alternate mist system is recommended. Organic materials activate root area as well as improving fertility of soil. They also play a role in supplying and releasing absorbable nutrients, root establishment, enhancing field capacity, reducing evaporation from soil surface and reducing expenses. Therefore, we emphasize on appropriate using of these components in order to obtain better productivity.
Research Article
Khosro Parvizi
Abstract
Introduction: cold resistance has been studied and evaluated by several methods; visional observation after natural cold injury, establishing of freezing condition by transported micro chamber in native places of trees, cold treatment of detached tree segments in laboratory examination. Most physiological ...
Read More
Introduction: cold resistance has been studied and evaluated by several methods; visional observation after natural cold injury, establishing of freezing condition by transported micro chamber in native places of trees, cold treatment of detached tree segments in laboratory examination. Most physiological traits correlated with cold resistance have multi gene characteristics and have controversial relationships. Russia researchers evaluated cold injury on 30 cultivars of grapevine. Their results showed that only hybrids that accomplished by crossing between Asian and vinifera had more cold resistance as compared with other cultivars. Up to now some researches have been conducted in Iran. Malakooti evaluated the capability of cold injury in some clones. He concluded that only two clones had cold resistance property when treated with -21 OC in 24 hours by duration of cold. All grapevines that have been cultivated in Iran belong to vinifera species. Therefore there is no absolute cold resistance in the most of them. But some clones and cultivars may be showed more cold tolerance comparison with others since they have been selected and acclimated trough the time. By entrance of cold weather that was overwhelming in all of the country in 2011, there had been suitable condition for this survey. In this regard, this research had been conducted to distinguish and evaluate this characteristic.
Material and methods: this study was conducted to evaluate the effect of cold injury on grapevine cultivars and assessment of tolerance to cold injury in the grapevine cultivars. This research was done in a field evaluation in three part of Hamadan province namely, Razan city, Malayer city and collection cultivars in the Agricultural research center of Hamadan. In three regions we collected and evaluated the canes of eight Cultivars, namely, Red Tompson seedless, White Tompson seedless, Askari, Fakhri, Yaghooti, Mehdikhani, ghazne and dozool. After that the winter passed (early spring), we collected the canes and some corsons. Then the canes were separated in three segments. Buds were observed by microscopic detection and survived buds were counted in different segments of the cane. That is a criterion to evaluate the effect of cold injury on buds in this expectation. As we have limited samples in some regions, therefore the experiment was conducted in non-complete randomized design. Tow-way analysis of variance (ANOVA) of the data was carried out using SAS software (v. 8.02, SAS Institute, Cary, NC) and the means were compared through the Duncan’s Multiple Range Test.
Results and discussions: result of analysis variance showed that cultivars have significantly different in respecting to bud growth. There were the most number of activated buds in the first third zone of canes (basal side of the cane). This activation had been decreased comparison with the apical zone. Means comparison showed that two cultivars (Mehdikhani and Yaghooti) had highest number of survived buds in three segments of cane as compared to other cultivars. These two cultivars are early ripening cultivar. It is estimated that less injury of cold in these cultivars might be correlated with their precocity besides inclining with inherits and genetic specifications. These cultivars were harvested 25 to 30 days sooner than other cultivars, so they have more time for repletion of starch and biomass. Other six cultivars had more injured buds as compared with these two cultivars. There were not significant different between these six cultivars, although ghazne and dozool had less survived buds as compared with four other cultivars in three segment of the cane. In comparison between three regions of Hamadan province, Hamadan itself and Razan city had more cold injury than Malayer.
Conclusions: It was demonstrated that in this research two cultivars of grapevine (Yaghooti & Mehdikhani) had more cold tolerance in three regions compared with other cultivars. But red and white Thompson seedless is more widespread in Hamedan. So it is recommended that we have good monitoring on horticultural techniques for preventing and reducing cold injury in these cultivars. These precautions or tactics can be concluded as establishing of better nutrition program, prevention of early harvesting, prevention of any leaf injury and defoliation, good pruning performance and prevention of sever pruning especially in late season, using of resistant rootstock, using of absorbent light mulches in winter, application of some material for inducing cold resistance.
Research Article
Mansur Matloobi; Reza Mahootchian asl; Zeynab Sabaghnia
Abstract
Introduction: In greenhouse roses, canopy management has been highly noted and emphasized during the past decades. It was recognized that improving canopy shape by implementing some techniques such as stem bending and flower bud removing can highly affect the marketable quality of cut roses. For most ...
Read More
Introduction: In greenhouse roses, canopy management has been highly noted and emphasized during the past decades. It was recognized that improving canopy shape by implementing some techniques such as stem bending and flower bud removing can highly affect the marketable quality of cut roses. For most growers, the best method of flower bud treatment has not yet been described and determined physiologically. This experiment was designed to answer some questions related to this problem.
Materials and Methods: A plastic commercial cut rose greenhouse was selected to carry out the trial. Three greenhouse rose cultivars, namely Eros, Cherry Brandy and Dancing Queen, were selected as the first factor, and three methods of flower bud treatment along with bending types were chosen as the second factor. Cuttings were taken from mother plants and rooted under mist conditions. The first shoot emerging from the cutting was treated at pea bud stage by one of the following methods: shoot bending at stem base with intact bud, immediate shoot bending at stem base after removing flower bud and shoot bending at stem base two weeks after flower bud removal. Some marketable stem properties including stem length, diameter and weight, and characteristics related to bud growth potential were measured, and then the data were subjected to statistical analysis.
Results and Discussion: Analysis of variance showed that cultivars differ in their marketable features. Cherry Brandy produced longer cut flowers with higher stem diameter compared to the two other cultivars. This cultivar was also good in stem weight trait; however its difference from Eros was not significant. Dancing Queen did not perform well in producing high quality stems on the whole. Regarding number of days until bud release and growth, Cherry Brandy’s buds spent fewest days until growing. In many studies, the effect of cultivar on rose shoot growth quality has been documented and explained. For instance, it was determined in Rosa hybrida ‘Fire and Ice’ that the rate of increase in stem length was about two times more than that in ‘Kardinal’ cultivar when both compared to control cultivar. These differences may have genetic and/or environmental origins. Methods of stem treatment significantly affected some shoot characteristics such as bud burst time, number and weight of growing shoots on bent stems and flower diameter, but no significant effect was observed on most important marketable traits. However, this factor interacted significantly with cultivar in some characteristics such as time of bud burst and the number of growing shoots on bent stems, showing that similar stem treatments can cause different results in different cultivars. Methods of stem treatment unexpectedly did not change the stem marketable qualities such as stem length and diameter, while it significantly altered time of bud burst, flower diameter and weight of shoot sprouts on bent stems. The most interesting result was that time of bud burst decreased from about 10 days in the immediate stem bending with intact bud to about 5 days in the treatment containing bending practice two weeks after the flower bud removal. This feature can be valuable, since it can decrease time of shoot growth and harvest time, thereby increasing stem production per time scale. The highest weight of shoot sprouts on bent stems obtained when bud removal performed at bending time, indicating that this phenomenon occurs as a consequence of apical dominance removal. Growers can adjust leaf area per plant by controlling the rate of bud growth with or without the number of bud sprouts on the bent stems through implementing different flower shoot management systems. It was reported in many studies that altering stem position, removing flower bud, defoliating and practicing similar activities can change hormone and carbohydrate balance inside the plant, which, in turn, may lead to new shape of plant canopy with different leaf areas and distribution patterns as a result of varying bud growth potential scattered in different positions within the canopy. On the other hand, interactive relations between sink and source organs can positively or negatively affect bud growth potential, which can be a powerful tool for growers to manipulate plant canopy development and cut flower quality.
Conclusion: In commercial rose greenhouses, growers are usually seeking methods which are simple and effective in practice. One of these important methods can be found in training and treating ways of growing stems. The findings of this study suggest that choosing a proper time for apical bud treatment and stem bending can highly influence some important qualitative traits in greenhouse roses. For instance, if the aim is to delay the crop harvest time, the practice of delayed apical bud removal treatment can be chosen as the best option to cause the delay. On the other hand, crop leaf area during the sunny summer days can be increased by adopting a proper treatment which leads to higher rate of bud burst on bent stems. During the winter days, however taking a practice with the potential of producing lower leaf area (by accurate timing and proper management of apical flower bud sink) can be a more useful way of efficient intercepting of incoming light. Taken together and assuming these kinds of manipulations as a tool, growers can make good decisions according to their existing greenhouse conditions, scheduled harvest time and many other influencing factors in order to obtain the highest possible number of cut flower stems.
Research Article
Tahereh Bahrami; Vahid Rouhi; Abdolrahman Mohammadkhani; Saeid Reezi
Abstract
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green ...
Read More
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping.
Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida) in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10%) and rice hull (zero, 7, and 14%). Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of flower, stem diameter, plant height and diameter, crown diameter, the number of produced seedlings, root volume and chlorophyll. The weight of different mediums measured for medium of green roof suitable texture. In addition, in the certain period (three months), water consumption calculated with considering of daily evaporate and transpiration for each of medium. Data analyzed using SAS and MSTAT-C statistical program and means compared using a Duncan test (p < 0.05).
Results and Discussion: The results showed that vermicompost treatments had significant effects on the number and diameter of flowers and stem height of the plant, but had no effect on plant's stem diameter. Based on the results, different amounts of vermicompost increased the flower number and average per day and also the plant length. The largest flower number (88.33) and average (6.3) per day and the plant length (14.52) were observed in 10% vermicompost treatment and the lowest observed in control treatment. In addition, rice hull treatments had significant effect on flower number and diameter. However, rich hull had not any significant effect on stem number and diameter. Mean comparisons showed the highest and lowest flower number (82.4 and 82.1), mean flower number per day (5.88 and 5.86) in 14% and 7% rice hull treatments, respectively. Also, the highest flower diameter was related to 14% rice hull treatments. Result of analysis variance table showed significant effect on flower crown weight, length and diameter and root volume. Rice hull treatments also had significant effect on flower crown number and diameter and root volume. In this study, combination of 10% vermicompost with %7 rice hull treatment, have the greatest impact on the latedmost traits and reducing water consumption on green roof. As results showed water consumption in the certain period (three months), the lowest consumption belonged to 14% rice hull without vermicompost that had lowest water consumption in comparison with reference. In addition, the heaviest weight of different mediums was related to control and the lightest medium was belonged to 5%, vermicompost in combination with 14% rice hull.
Conclusion: The vermicompost and rice hull as bio-fertilizers not only increased structure, physical and chemical condition of medium but also increased nutrition and reduced water consumption. Vermicompost and rice hull both improved the most flower traits on green roof and reduced water consumption and weight of different mediums. Therefore, the vermicompost and rice hull (14% and 7%) combined with soil mixture can be used as a culture medium in green roofs.
Research Article
Mahdi Mohseniazar; Masoud Tohidfar; Kourosh Vahdati
Abstract
Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting ...
Read More
Introduction: Dwarfism is one of the important traits in breeding of crops and horticulture plants. A dwarfing rootstock will produce trees with 15-50% of standard trees size. In modern intensive fruit tree orchards, dwarfing rootstocks are commonly used to reduce trees size, enabling high-density planting and easy management, thus achieving higher yield. Trees on dwarfing rootstocks can also exhibit other economically important traits, such as precocious flowering, increased yield and increased disease resistance. Dwarf rootstocks have been extensively studied and released in stone and pome fruits, because of presence of genetic materials and the simplicity of budding methods. Control of tree size using genetically dwarf rootstocks for achievement to higher density and mechanized orchard systems is now very important for walnut production in the world especially in Iran. Many different genes can be involved in appear of this. Mutations in GAI and PIP2 genes cause dwarf trait by two different mechanisms in some plant species. In this case, we study in silico analysis of GAI and PIP2 genes consist of conserved sequences and domains, exon and intron number, function of their proteins, targeting, secondary and tertiary structure, and post translational modification.
Materials and methods: The GAI and PIP2 mRNA and protein sequences (FASTA format) belonging to 17 monocotyledon and dicotyledon were downloaded from NCBI (http://www.ncbi.nlm.nih.gov) accessed, on September 2014. Several online web services and software were used for analysis of GAI and PIP2 mRNA and Proteins in plants. Comparative and bioinformatics analyses of PIP2 and GAI proteins were performed online at two websites NCBI (http://www.ncbi.nih.gov) and EXPASY (http://expasy.org/tools). Molecular Evolutionary Genetics Analysis (MEGA; version 4) program and CLUSTAL-W with default parameters were used for multiple alignments of sequences. The phylogenetic analysis of GAI and PIP2 protein was done with MEGA from aligned sequences. The motifs of protein sequences were found using the program of T-COFEE at website (http://www.ebi.ac.uk/Tools/msa/tcoffee/). The Neighbor-Joining (NJ) method was used to designing the phylogenetic tree. The predicted exons and introns in mRNA sequences were done by http://genes.mit.edu/GENSCAN.html website. The secondary structure of proteins was predicted by PSIORED online on http://bioinf.cs.ucl.ac.uk/psipred/. Prediction of 3D model of protein was performed using the 3D alignment of protein structure by BLASTp and PDB database as source. Also, targeting prediction of proteins was done online by TargetP at (http://www.cbs.dtu.dk/services/TargetP/) website.
Results and discussion: In phylogenetic investigation among 17 different species, Walnut species evolutionary stand in dicotyledonous and woody plants by both of GAI and PIP2 genes and protein sequence clustering. By multiple alignments and investigation in conserved sequence of these genes in plant revealed that despite differences in cDNA length, there were very similarities in conserved region, secondary and tertiary structure. Protein analysis in the GAI gene family showed that the following domains including DELLA, TVHYNP, VHIID, RKVATYFGEALARR, AVNSVFELH, RVER, and SAW were conserved in this proteins. In secondary structure of protein, β-sheets and α-helixes specified by PSIPRED software for both of GAI and PIP2 proteins. GAI protein had 9 β-sheets and 15 α-helixes in its structure, also PIP2 protein had2 β-sheet (at 180-188 and 248-253) and 8 α-helixes. In comparison of 3D structure, walnut PIP2 protein was very similar to chain A of PIP2 protein of spinach (Spinacia oleracea) and GAI protein of walnut was similar to B-subunit of Arabidopsis GAI protein with 48% similarity. The length of GAI protein was varied from 636 aa in Malus baccata var. xiaojinensis to 336 aa in Physcomitrella patens among species. In walnut, the length of GAI and PIP2 protein was 613 aa and 287 aa, respectively. PIP2 protein length was similar in different species among 257 aa in Triticum aestivum to 290 aa in Zea mays. By exon-intron and targeting analysis of sequence, it was found that GAI gene target was in nuclear and had just one exon without intron, and PIP2 gene in walnut had 4 exons and 3 introns with cell membrane targeting. In results, Tcoffee analysis revealed that PIP2 gene was very conserved across the evolution between plant species in compared with GAI gene.
Conclusion: Our results provide new insights into the evolutionary relationships of GAI and PIP2 proteins. The results of the sequence alignment showed that GAI and PIP2 in walnut and other species have high homology with each other. After this analysis, we can have a good perspective about molecular situation of walnut GAI and PIP2 genes. Result of this study can be used for make relationship between growth, flowering, and water uptake characteristics of these plants and their protein sequences. Also this research gives good information for us if we want to clone these genes from Iranian genotypes.
Research Article
Mohammad Taghi Darzi; Bijan Sadeghi Nekoo
Abstract
Introduction: Hyssop (Hyssopus officinalis) is a perennial herb which is cultivated in temperate regions of Asia, Europe and America. The essential oil of hyssop is widely used as traditional drug in some of the parts of Asia and Europe to treat respiratory diseases. Hyssop is also used in food, pharmaceutical, ...
Read More
Introduction: Hyssop (Hyssopus officinalis) is a perennial herb which is cultivated in temperate regions of Asia, Europe and America. The essential oil of hyssop is widely used as traditional drug in some of the parts of Asia and Europe to treat respiratory diseases. Hyssop is also used in food, pharmaceutical, flavor and cosmetic industries throughout the world. It is mainly used for antispasmodic, stomachic, antifungal, relax spasm and cough treatment. Applying organic fertilizers and biofertilizers such as compost, vermicompost and nitrogen fixing bacteria contain Azotobacter and Azospirillum has led to a decrease in chemical fertilizers consumption and has provided high quality agricultural products. Several studies have shown that organic and bio-fertilizers application such as vermicompost and nitrogen fixing bacteria can increase essential oil content of medicinal plants of dill, basil and fennel.The main object of this work was to record the best suitable treatment of organic and biological fertilizer to obtain highest yield of Hyssop.
Materials and Methods: A field experiment, arranged in a randomized complete blocks design with eight treatments and three replications at research field of the Agriculture Company of Ran, Firouzkuh, Iran during the growing season of 2012. The treatments were (1) 20 t/ha compost, (2) 12 t/ha vermicompost, (3) biofertilizer [inoculated seeds with Azotobacter and Azospirillum], (4) 10 t/ha compost + 6 t/ha vermicompost, (5) 20 t/ha compost + biofertilizer, (6) 12 t/ha vermicompost + biofertilizer, (7) 10 t/ha compost + 6 t/ha vermicompost + biofertilizer and (8) control [without fertilizer application]. Inoculation was carried out by immersing the hyssop seeds in the cells suspension of 108 CFU/ml for 15 min. The required quantities of compost and vermicompost were applied and incorporated to the top 5 cm layer of soil in the experimental beds before planting of hyssop seeds. Each experimental plot was 3 m long by 2.28 m wide with the spacing of 15 cm between the plants and 38 cm between the rows. There was a space of one meter between the plots and 2 meters between replications. Hyssop seeds were directly sown by hand. There was no incidence of pest or disease on hyssop during the experiment. Weeding was done manually and the plots were irrigated weekly (as trickle irrigation system). All necessary cultural practices and plant protection measures were followed uniformly for all the plots during the entire period of experiment. In this study, some morphological traits and yield hyssop including plant height, branch no./plant, fresh weight of plant, dry weight of plant, herb fresh yield, herb dried yield, essential oil content and essential oil yield were evaluated. In order to determine herb fresh yield and herb dry yield, 1 m-2 plants were used at the harvest time (full blooming). For determine the essential oil content (%), About 100 g dried herb of hyssop (dried in shadow) as sample from the each plot were selected and then were subjected to hydro-distillation (Clevenger type apparatus) for 3 hours. Essential oil yield also was calculated by using essential oil content and herb dried yield. Analysis of variance by using SAS software and mean comparisons by Least Significant Difference Test (LSD) (at the 5% probability level) was done.
Results and Discussion: The present results have shown that the highest plant height and branch no/plant in treatment of integrated application of 20 t/ha compost,biofertilizer,the maximum fresh weight of plant and herb fresh yield in treatment of application of 20 t/ha compost were obtained. Also, the highest dry weight of plant in treatment of integrated application of 10 t/ha compost, 6 t/ha vermicompost and biofertilizer and the highest herb dried yield, essential oil content and essential oil yield in treatment of integrated application of 12 t/ha vermicompost and biofertilizer were obtained. Vermicompost application through high ability for absorption of mineral nutrients like N, P and K by plants and then increase of biomass amount has a positive effect on secondary metabolites concentration such as essential oil and subsequently the enhanced essential oil content. Increased essential oil yield in treatment of 12 tonnes vermicompost per hectare and biofertilizer can be owing to the improvement of yield attributes such as herb dry yield and essential oil content.
Conclusion:Integrated application of organic manures and biofertilizer positively influenced morphological traits and yield of hyssop, as the highest herb dry yield, essential oil content and essential oil yield were obtained in treatment of integrated application of 12 t/ha vermicompost and biofertilizer and treatment of integrated application of 10 t/ha compost, 6 t/ha vermicompost and biofertilizer. On the base of research results, organic amendments and biofertilizer application can be caused in improvement of morphological characters and yield of hyssop.
Research Article
Maryam Zare; Barat Ali Fakheri; Sara Farokhzadeh
Abstract
Introduction: The recognition of salt tolerant plants is important as a result ofincreasing saline lands in Iran and world. Cultivation of plants in hydroponic environment is a reliable and economical method in order to select the salt tolerant plant. Salt stress can effect on plant growth and development ...
Read More
Introduction: The recognition of salt tolerant plants is important as a result ofincreasing saline lands in Iran and world. Cultivation of plants in hydroponic environment is a reliable and economical method in order to select the salt tolerant plant. Salt stress can effect on plant growth and development by ion toxicity, ionic disturb the balance and osmotic potential. Lettuce is one of the most important vegetable crops. This plant is one of the most important leafy vegetables which is used for salad and fresh marketing, also some types of this vegetable is used in baked type. The aim of this study was to investigate the genetic diversity of lettuce genotypes undersalt stress in the hydroponic system.
Materials and Methods: To assess response of lettuce seedlings to salt stress, a factorial experiment was conducted in a completely randomized design with three replications at Biotechnology Research Institute for hydroponic cultivation of Zabol. In this experiment, the effects of three salinity levels (0, 2 and 4 dS/m) on morphological characteristics of 15 lettuce genotypes were evaluated. The seeds were sterilized for ten seconds in ethanol 96% and then 15% sodium hypochlorite solution for 50 seconds, then rinsed several times with distilled water, then disinfected seeds were cultured in plastic pots containing coco peat and perlite. After …days plants were transferred to hydroponic system containing Hoagland solution. Collected data were analyzed and means comparisons were made using LSD by SAS software.
Results and Discussion: The results showed that salinity has a significant effect on seedling growth of lettuce genotypes (p≤0.01). significant difference between salinity levels and genotype were observed for all traits. Interaction of genotype and salinity for all the traits except root length, plant length and leaf were significant at 1%. Based on the results, the greatest root length was belong to Esfahan Varzaneh leafy lettuce and Romaine lettuce long green Teresa genotype, respectivly. Increasing salinity led to significant reduction (p≤0.01) in the plant length lettuce in all genotypes. Root and plant fresh weight lettuce genotypes were significantly (p≤0.01) influenced by different levels of salinity. The greatest amount in root and plant fresh weight lettuce genotypes were obtained in the control treatment and the lowest amount at the level of 4 dS/m. Root and plant dry weight lettuce genotypes were significantly (p≤0.01) influenced by the salinity. Root and plant dry weight decreased with increasing salinity. So that the greatest amount of root and plant dry weight lettuce genotypes were obtained in control treatment and the lowest amount at the level of 4 dS/m.. The results showed that root and plant length ,root fresh and dry weight, plant fresh and dry weight and leaf length and width reduced with increasing salinity. The clustering pattern the genotypes were grouped into 3 clusters based on their charachters at 4 dS/m salinity. The first cluster were placed in salt tolerant groups, while the other genotypes were clustered into moderately tolerant cluster. Romaine lettuce long green Teresa genotype was placed in salt-tolerant group and Lettuce Everest, Lettuce May Queen, Curly endive hair angel, Cabbage Milan Aubervilliers and Romaine lettuce long blonde Galaica were placed in salt-sensitive group.
Research Article
Fatemeh Shamlo; Mehdi Rezaei; Abbas Biabani; Ali Reza Khanahmadi
Abstract
Introduction: Persian walnut (Juglans regia L.), a monoecious tree with a long history of cultivation in Middle East and Europe, is currently one of the major nut crops in Iran. Since Iran is known to be one of walnut origins, a high genetic diversity can be found in this area. Almost all traditional ...
Read More
Introduction: Persian walnut (Juglans regia L.), a monoecious tree with a long history of cultivation in Middle East and Europe, is currently one of the major nut crops in Iran. Since Iran is known to be one of walnut origins, a high genetic diversity can be found in this area. Almost all traditional commercial walnut orchards in Iran propagated by seed, therefore these orchards are rich in genetic resources. Morphological studies on the basis of pomological traits can be used for assessment of genetic variability in fruit trees, as well as for selection superior genotypes. Some researchers studied walnut genetic diversity in several areas of Iran but not in Azadshahr region, an area located in north and north-eastern of Iran with high walnut production. As walnut is highly diverse due to open-pollination system and seed propagation, we intend to study genetic diversity of Azadshar walnut genotypes by using morphological and pomological traits.
Materials and Methods: This research was conducted in Azadshare, Golestan province, Iran in 2012. Considering walnut orchards distribution, distance and height above sea level, four areas, namely Vamenan, Kashidar, Roodbar and Sidabad, with the distance of 15 Km apart were selected. Based on tree density and distribution, 15 to 40 trees in each area were labeled, and 102 walnut genotypes were generally evaluated. In each genotype, 30 morphological characteristics related to fruit, leaf and tree-growing habit were studied by using IPGRI walnut descriptor with a few modifications. Data analysis was performed by SPSS 16 software. Correlation coefficient of quantitative and qualitative characteristics was performed by using Pearson and Spearman methods, respectively. Cluster analysis was also performed by Ward method.
Results and Discussion: The results of anatomical characteristics analysis showed that genotypes of this area have high diversity in some pomological traits such as kernel percentage, nut weight, kernel color, easy separation of kernel. Based on the results, genotypes Ka17 and Va31 had the highest average of nut weight (19.79 gr). Va31 genotype had the heaviest kernel (9.4 gr). SID1 genotype had the highest kernel percentage (60.34%). Moreover, e genotypes ROOD4 and Va34 were typified by easy removal of kernel halves (very easy) and fruit flavor desirability (desirable). 26.47% of the genotypes showed very easy separation of kernel from shell. Correlation analysis showed that there was significant correlation among some traits. Fruit weight had high positive correlation with fruit length and diameter, and kernel and shell weight. There was no significant correlation among kernel shape, easy separation of kernel and shell tissue. As the results of cluster analysis of walnut genotypes indicated, clustering of genotypes is mostly similar to collected region and genotypes separated to four main groups in 12.5 distances of 25 in cluster figure. Most walnut genotypes of Vamenan and Kashidat regions, with the exception of ROOD 11 and ROOD 4, were placed in the first and second clusters similar to their geographical distribution. These areas have been the closest to the geographical distance and the height above sea level is not much different from each other. Almost all the genotypes collected from Sidabad region were placed in the third cluster. Sidabad village has high geographical distance from other studied regions, with its elevation is being significantly different from other areas., The majority of Roodbar genotypes, some genotypes of Vamenan and Kashidar, and one genotype of Sidabad (SID4) formed the fourth cluster. Roodbar region was located geographically between Sidabad and Vamenan regions. It has the same elevation as Vamenan and Kashidar have. In general, nut, kernel and leaf characteristics had the major role in clustering of genotypes.
Conclusion: Large genetic diversity in Azadshar walnut genotypes as inferred from morphological markers is advantageous to crop improvement through breeding and selection. Clustering analysis by morphological markers could clearly separate Sidabad walnut genotypes from other populations which have a good similarity with their geographical distribution. According to the results of this study, walnut genotypes collected from Azadshahr region showed a high genetic variation that can be used in breeding programs. Clustering based on morphological characteristics can be an effective method to determine the relationship between genotypes, as well as their relative distance.
Research Article
Reza Rezaee; Faranak Naghilou
Abstract
Introduction: Persian walnut (Juglans regia L.) is an important nut crop in Iran and many parts of the world. One of the major challenges of growing walnut is planting of non-grafted walnut trees in orchards, which leads to the reduction of yield, quality and productivity of walnut orchards. Compared ...
Read More
Introduction: Persian walnut (Juglans regia L.) is an important nut crop in Iran and many parts of the world. One of the major challenges of growing walnut is planting of non-grafted walnut trees in orchards, which leads to the reduction of yield, quality and productivity of walnut orchards. Compared to the other fruit trees, walnut grafting is difficult and even newly grafted walnut seedlings are vulnerable to fall or winter frost chilling, so that most of the seedlings are lost after subjecting to the cold winter. There are a few studies reporting successful grafting in outdoor conditions, however, final grafting take after winter has been usually ignored. Hence, increased walnut grafting success and improved tree growth after grafting through foliar nutrient application may lead to increased tolerance of chilling. Therefore, main goals of this research were to investigate the effect of some graft covers and role of foliar spray of calcium, boron and zinc on the reduction of frost damage in newly grafted seedlings under outdoor conditions.
Materials and methods: This research was conducted at agricultural research station, Khoy city, west Azerbaijan province, during 2012-2014. In the first experiment, three methods of grafting including cleft, bark and V-shaped, and two kinds of graft covers including moist sawdust and superabsorbent plus cotton wool were investigated in terms of grafting success and quality of seedlings. In the second experiment, effect of the three above-mentioned grafting methods and two levels of foliar spray including sequential spray of Ca (4 ppm), B and Zn (2%) (3 times during growth season) and control (no spray) were studied in terms of frost damage. The experiments conducted in factorial based on randomized complete block design with 10 trees in each plot. Data were collected 45 days after grafting take, final grafting take after one winter, subsequent scion growth length and diameter and concentration of Ca, B and Zn in the tissues of shoot tips as well as percentage of frost damage one year after grafting. The collected data were transformed by relevant methods and analyzed by GLM analysis using SPSS software.
Results and discussion: According to the results obtained from the first experiment, significant differences were observed among grafting methods and grafting covers in terms of grafting success and scion growth. Cleft grafting with the grafting take of 47.4% after 45 days was ranked as the best method, followed by bark and V-shaped grafting methods with 40.0 and 35.0 %, respectively. Meanwhile, V-shaped grafting method finally showed the highest grafting take with 46.6%. The effect of grafting type was also significant for scion shoot length and diameter, with the highest scion growth obtaining from bark grafting method. Regarding the effect of cover types, significant differences were found between the two types of covers, so that the highest grafting take (75.5%) obtained from moist sawdust cover compared to the lowest grafting take (11.1%) from super absorbent plus cotton wool cover. The increase found in grafting success by sawdust cover was in agreement with the previous reports. This increase can be attributed to the buffering action of sawdust in absorbing xylem sap, provision of moist and aerated conditions suitable for better callus formation and subsequent scion growth without any wood rot symptoms around the graft area. The results of the second part of the research also revealed that percentage of frost to dieback of shoots varied statistically among the three grafting methods. The lowest frost damage (17.5%) was related to the cleft followed by V-shaped grafting method (20.0%). The highest frost damage (24.6%) was observed on scion woods grafted by bark grafting method. Results related to foliar spray showed that spray of Ca, B and Zn caused a significant reduction in frost damage percentage. In the sprayed plots, the average of frost damage was only 11.6% compared to the control plot with the damage rate of 29.4%. Moreover, foliar spray statistically increased the concentration of related elements in vegetative tissues of scion.
Conclusion: Based on the results, using V-shaped, cleft and bark grating methods covered with moist sawdust were effective for the increase of graft success percentage. Spraying of young grafted trees with Ca, B and Zn was also effective to reduce frost damage and is thus recommended in walnut nurseries. Moreover, there was a significant interaction between grafting method and spraying treatments in terms of balanced scion growth and higher contents of mineral in scion tissues, indicating that choosing an appropriate method of grafting and spraying can be effective in the reduction of frost damage. In this study, the lowest frost injury was observed with cleft grafting and spraying treatments due to relatively reduced scion growth as well as higher content of minerals in scion tissues.
Research Article
Maisam Ahmadi; Mahmood Ghasemnejad; Hossein Meighani; Masoud Kavoosi
Abstract
Introduction: Pomegranate (Punica granatum L.), belonging to Punicaceae family, is a tropical and subtropical attractive deciduous or evergreen shrub and is one of the native fruits of Iran. With total production of 941804 tons in 2013, Iran is one of the most important pomegranate producers in the ...
Read More
Introduction: Pomegranate (Punica granatum L.), belonging to Punicaceae family, is a tropical and subtropical attractive deciduous or evergreen shrub and is one of the native fruits of Iran. With total production of 941804 tons in 2013, Iran is one of the most important pomegranate producers in the world. Pomegranate is an important source of bioactive compounds. Despite the high nutritional values of pomegranate fruits, the overuse of synthetic fertilizers and pesticides in conventional systems reduces nutritional and functional quality of pomegranate fruits. On the other hand, world demand for organic products is growing rapidly in developed countries, especially in Europe, USA, Japan and Australia. Previous studies showed that organic fruits contain higher minerals, vitamins and oxidant activity than conventional crops. Therefore, the aim of the present paper was to compare organic, integrated and conventional management systems in pomegranate orchard on mineral contents and qualitative attributes of pomegranate fruit.
Materials and methods: Pomegranate (cv. Rabbab-e-Shiraz) grown under organic, conventional and integrated management systems in a commercial orchard, in Nourabad Mamsani, Fars province, was used for this study. Pomegranate fruits were harvested at commercial harvest stage and transported in an air-conditioned vehicle to the laboratory of Horticultural Science Department, University of Guilan, Rasht. Some factors like fruit, aril and peel weight, aril length, weight ratio of peel to aril, peel to fruit and aril to fruit, and seed firmness (Penetrometer, with the diameter of 11 mm) were assessed. In addition, qualitative properties (Total Soluble Solids (TSS), TA (Titratable Acidity), TSS/TA and pH), antioxidant compounds (total phenol, flavonoids and anthocyanin content) in pomegranate juice and mineral nutrients (N, P, K, Ca and Mg) in peel and arils were measured. The experiment was conducted in a randomized complete block design with 4 replications.
Results and discussion: The results showed that fruit, arils and peel weight and fresh weight of peel were significantly higher in conventional system than organic management system. Fruit weight depends on plant nutrition, which, in turn, significantly influences postharvest quality. It is possibly due to smaller cells and less intercellular spaces in organic fruits. In this study, fruit size in organic management system was significantly lower than conventional system; our results in this regard are in accordance with the previous studies reported on kiwifruit, apple and grape . Fruit taste is determined mainly by juice TSS and the ratios between TSS and TA. In this study, juice TSS in conventional and integrated management systems was higher than organic fruits at harvest time. Our findings are in agreement with Beng et al. (6), who reported higher amount of TSS in kiwifruit obtained from conventional system than organic system due to more mature fruit and greater use of nitrogen fertilizers.
No difference was found for pH, TA, TSS/TA, seed firmness, total anthocyanin and flavonoid content among the three management systems. The antioxidant activity properties of pomegranate juice were attributed to polyphenols, sugar-containing polyphenolic tannins and anthocyanins. In this study, total phenolic content and antioxidant activity in fruits obtained from organic management system were greater than conventional management system. These results are in agreement with the findings reported in blueberry, peach and grape, apple, kiwifruit and strawberry fruits. Mineral nutrient analysis showed that the concentrations of P, Ca and Mg in peel, and N, P, K, Ca and Mg in aril of organic fruits were lower than fruits of conventional system, but the ratio of Ca to other elements in the arils of organic fruits was significantly higher than conventional system fruits. In apple, N concentration of conventionally grown fruits was higher, while K, Ca, Na and Mg concentrations of organic fruits were higher than conventional fruits. There were positive correlations between total phenolic content and antioxidant activity in pomegranate juice, which was in agreement with the results reported in kiwifruit and grape fruits.
Conclusion: The results of the current study indicated that fruit quality of pomegranate cv. Rabbab-e-Shiraz was affected by the type of orchard management system. Although fruits obtained from organic system had smaller size in comparison with the fruits of other systems, the amount of total phenolic content and antioxidant activity was higher in organic system compared with conventional system, representing a higher nutritional value of organically grown fruits than conventionally grown fruits. Furthermore, organic fruits had higher Ca to N, Mg and K ratio, which can affect the shelf life and postharvest quality of pomegranate fruits.
Research Article
Hadi Sanginabadi; Sara Khorasaninejad
Abstract
Introduction: Recently, medicinal and aromatic plants have received much attention in several fields such as agro alimentary, perfumes, pharmaceutical industries and natural cosmetic products. Although secondary metabolites in the medicinal and aromatic plants impressed conventionally by their genotypes, ...
Read More
Introduction: Recently, medicinal and aromatic plants have received much attention in several fields such as agro alimentary, perfumes, pharmaceutical industries and natural cosmetic products. Although secondary metabolites in the medicinal and aromatic plants impressed conventionally by their genotypes, their biosynthesis is strongly influenced by environmental factors. It means biotic and abiotic environmental factors affect growth parameters, essential oil yield and constituents. Abiotic environmental stresses especially salinity and drought has the most effect on medicinal plants. The genus Lavandula (lavender) of Lamiaceae family consists of about 30 species, many of which are found in Mediterranean, Sahara-Arabian and Iran-Turanian regions. There are only two species of Lavandula growing naturally in Iran, L. stricta Del. and L. sublepidata Rech. K. These species are not mentioned as medicinal plants in references; however L. soechas L., L. vera DC., L. angustifolia Mill. and L. dantata L. occurs naturally in Iran. Lavandula stricta Del. is a native aromatic plant in Iran from Lamiaceae. In traditional medicine, it is used for treatment of rheumatic pain, stomach pain and cough. Germination is one of the critical stages in the cycle of plants growth due to its important role in determining the final density of plant. Under water stress and salinity conditions, plant germination and its final density is important. Salicylic acid (from Latin salix) is a monohydroxybenzoic acid which is a type of phenolic acid and a beta hydroxy acid with C7H6O3 chemical formula. This colorless crystalline organic acid is widely used in organic synthesis and functions as a plant hormone which is derived from salicin metabolism. Salicylic acid (SA) is a phenolic phytohormone and is found in plants with roles in plant growth and development, photosynthesis, transpiration, ion uptake and transport. SA also induces specific changes in leaf anatomy and chloroplast structure.
SA is involved in endogenous signaling, mediating in plant defense against pathogens. The signal can also move to nearby plants by salicylic acid being converted to the volatile ester, methyl salicylate. Salicylic acid has an important role in resistance to environmental stresses. In the current study, the effects of pretreatment of salicylic acid to eliminate salinity and drought stresses were evaluated on Lavender seed germination (Lavandula stricta Del.).
Materials and Methods: Seed samples of raised lavender were collected from Geno (Bandar Abbas) on May 2013. Two experiments were conducted based on completely randomized design with three levels of Salicylic acid (0, 0.1 and 0.5 mM) and four levels (0, -2, -4 and -6 bar) of drought and salinity stresses with three replications in Horticultural Sciences department, Plant production faculty of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR). Plumule and radicle length, germination percentage and seed vigor were evaluated.
Results Discussion: Results indicated that plumule and radicle length, germination percentage and seed vigor were significantly decreased by increasing drought and salinity stresses. The absence of pretreatment with salicylic acid were lead to increase negative effects of salinity in comparison with non-pretreated in the studied trait. However salinity stress levels -2 and -6 bar and pretreatments increased all traits significantly. Overall, the results showed that among total characteristics, plumule length is more sensitive in to drought and salinity stresses. As a result, the best range of moisture for lavender seeds germination is from non-stress conditions to -2 bars. It seems that seed germination on lavender has more tolerance to drought stress conditions than salinity stress conditions. Since the climate change will result in ecological degradation and further threaten the fragility of dry and saline lands, with serious consequences for crop and livestock production and food security. Today, an estimated one billion people face hunger and absolute poverty, and in many developing countries, the gap between food production and demand is increasing rapidly. The diversity contained within plant genetic resources provides the variability needed for adaptation, and therefore will serve as a key element in maintaining food and medicine production under novel temperature, precipitation, and pest and disease conditions. Key to successful crop improvement is a continued supply of genetic diversity, including new or improved variability for target traits such as early flowering as an escape mechanism to drought and salinity. Given that Lavandula stricta Del.is native to Iran, it seems that this plant is a good candidate for further research in this area.
Research Article
Zohre Hoshyar; Ebrahim Ganji Moghadam; Bahram Abedy
Abstract
Introduction:Dormancy is one of the most important stages in the life cycle of temperate plants and plants are required to exit from it with supply of chill unit. Flowering is defined with chilling and heat requirement. Owing to low chilling requirement, blooming happens too early and cold temperatures ...
Read More
Introduction:Dormancy is one of the most important stages in the life cycle of temperate plants and plants are required to exit from it with supply of chill unit. Flowering is defined with chilling and heat requirement. Owing to low chilling requirement, blooming happens too early and cold temperatures produce an important loss of yield by frost. In temperate fruits, awareness of the need buds to avoid winter frost is one of the main objectives in breeding programs. Studies concerning chilling and heat requirements are thus of special interest in these species, being very important for the choice of parents in breeding programs to create superior varieties of winter and spring frost (late flowering and resistant cold) provide. Utah is one of the most important model was introduced in 1974 by Richardson and colleagues. Effective temperature on cold storage in Utah model is 1/9-5/2. This is 6/1-9/12 in North Carolina and 8/1-9/13 in low chilling. Temperatures above 16 have negative effect on accumulation in Utah model. Later models were developed according to the Utah model that the Low chilling requirement (18) and the North Carolina (31) models are among them. Apricot (Prunus armeniaca L.) is belonging to warm temperate regions and due to the lack of compatibility and apricot spring frost in Khorasan Razavi province, the identification of varieties and genotypes with high compatibility and high thermal and cooling requirements to reduce the risk of early frost and increase production efficiency, seems important. The purpose of this study was to determine the need for chilling and heat requirement in apricot cultivars.
Material and methods: In this research, chilling and heating requirements of four local cultivars of apricot were evaluated under field and laboratory conditions. This experiment was conducted at agricultural research station Golmakan. A factorial (two-factor) experiment was laid out in a completely randomized design with tree replications. First factor was various apricot cultivars (Noori- Dirras, Mashhad- Dirras, Shams Mashhad and Mashhad-44) and the second factor was chilling hours in five levels (0,100,300,500,700). About 45 branches of deciduous trees of each variety were collected when the temperature was below 7 °C. Finally, samples were taken in the greenhouse with an average temperature of 23° C and 16 hours of light and flowering percentage was recorded. For determination of chilling requirement in Utah, low chilling requirement and the North Carolina was performed in CU and Heat based on the degree of development hours (GDH) was calculated. GDHs average hours of temperatures between 5-5 / 4 ° C) and for any amount of time, sleep disruption and blossoming flowers will be calculated by 50% (5). Data analysis was done by JMP 8 and Excel softwares.
Results: There were significant differences (1%) between chilling hours, cultivars and their interactions on flowering percent. .Under laboratory condition, cultivars began flowering after 100 hours in 4°C.The results showed that there was a significant difference between 500 and 700 hours of chilling requirement. Most of the flowering was related to 700 hours and the lowest one was in control.
There was a low difference in the chilling requirement. Heating requirement was 3300 growth degree hours (GDH) for Noori- Dirras and Shams Mashhad to 3379 GDH for Dirras- Mashhad and Mashhad-44 cultivars. Although little differences exist in flowering onset of cultivars, the differentiation of flowering period among cultivars was around one week. Various cultivars revealed little differences in flowering onset in locations they meet their chilling requirement. The chill units estimated by Utah model was 1588. Chill units in Low chilling model and North Carolina model was 1291 and 1331, respectively while in chill hours was about 1100. The heat units in Noori- Dirras, Shams Mashhad was about 3,300 and it were calculated 3379 for Dirras Mashhad and Mashhad-44, . The various models of chilling in the field conditions were calculated according to the Utah model. Chilling requirement by the North Carolina and Low chilling requirement models were calculated, respectively, 1331 and 1291 chill unit while in the chill hours, 1,100 hours were calculated for varieties. There was negative relationship between chill and heat requirement in flowering date.
Research Article
Fatemeh Ranjbar; Alireza Koocheki; Mahdi Nasiri Mahalati
Abstract
Introduction: Ecological agriculture is an integrated system that gives credit to higher quality of products. Using of ecological agriculture and low input systems or other similar systems as a replacement for conventional systems turn out to progress in sustainable agriculture and protecting environment ...
Read More
Introduction: Ecological agriculture is an integrated system that gives credit to higher quality of products. Using of ecological agriculture and low input systems or other similar systems as a replacement for conventional systems turn out to progress in sustainable agriculture and protecting environment health. One of the best approaches to achieve these goals is to use mixed farming. Many experiments have shown that mixed farming has higher yield than sole cropping. The other benefits of mixed farming are: management of insects, weeds and diseases, promotion of diversity, improvement of products quality and also increase in stability and sustainability. These goals also achieved by decreasing in use of non-renewable resources and also reducing environment risks. Hence, assessment of intercropping patterns of Fennel (Foeniculum vulgar), Sesame (Sesamum indicum) and Bean (Phaseolus vulgaris) on qualitative and quantitative characters and yield components were the purposes of this experiment.
Materials and methods: In order to study yield and yield components in different intercrops of fennel, sesame and bean, an experiment was conducted in Agricultural Research Station, Ferdowsi University of Mashhad during 2010-2011growing season. The experimental design was a Randomized Complete Block with three replications. The treatments were consisted of: pure stand of fennel, sesame and bean, row intercropping of sesame-bean with recommended density (1:1), fennel-bean (1:1), fennel-sesame (1:1) and intercrops of fennel- sesame - bean (1:1:1). The field of experiment was prepared at the end of March, a month before sowing; 30 ton/ hectare manure fertilizer was used. Because of sowing these 3 crops in a low input system, non-chemical approaches to control weeds and diseases during the growth season were employed. In order to determine crops seed yield and their biological yield in this experiment, sampling was done after omitting of margin effects (0.5 m first and end of each row) and 8 m2 area was harvested. All harvested crops were dried under free condition and shadow, then was weighted and after that seeds were separated from crops. To measure yield components five samples were selected. For fennel: umbel number per plant, umbellate number per plant, seed number per umbellate, 1000 seed weight, for sesame: capsule number per plant, seed number per capsule and 1000 seed weight and for bean: pod number per plant, seed number per pod and 1000 seed weight were measured.
Results and discussion: Results indicated that the yield and yield components of intercropped and pure fennel treatments significantly affect grain and biological yield, harvest index, the number of umbels per plant, the number of fertile umbellates per plant, and vegetative essential oil. In addition, these treatments in sesame showed significant effect on biological yield, grain yield, harvest index, plant height and seed weight per capsule. The results for bean revealed significant effects on biological yield, grain yield and the number of seeds per pod. Moreover, the highest percentage of essential oil in fennel was obtained in fennel-sesame treatment. The highest percentage of oil in sesame was obtained in sole crop of fennel. Furthermore, the results showed that the highest LER (1.22) was observed in sesame-fennel treatment. Considering this ratio, this treatment was selected as a superior treatment among the other treatments.
An experiment on mixed cultivation of Zea maize and bean showed higher amount of biological yield, in intercropping treatments (RezvanBeydokhti et al., 2005). Another experiment on mixed cropping of cumin (Cuminum cyminum L.) and lentil (Lens culinaris M.)showed higher amount of seed yield in intercropping treatments and biological yield in sole cropping .
Research Article
Parisa Daryani; Naser Zare; Esmaeil Chamani; Parisa Sheikhzade Mosaddegh; Davoud Javadi Mojaddad
Abstract
In this research, the effects of different basal medium and plant growth regulators on in vitro establishment and growth of hazelnut were investigated. For this, the spring apical and auxiliary buds of cv. Fertile were sterilized and cultured on NRM, MS and 1/2MS basal media containing 0.01 mg/l IBA ...
Read More
In this research, the effects of different basal medium and plant growth regulators on in vitro establishment and growth of hazelnut were investigated. For this, the spring apical and auxiliary buds of cv. Fertile were sterilized and cultured on NRM, MS and 1/2MS basal media containing 0.01 mg/l IBA and different levels of BAP. The results indicated that percentage of explant growth (shooting), number of leaves per explant and shoot length influenced significantly by basal media and concentration of plant growth regulator. Based on orthogonal contrasts analysis, although the highest percentage of shooting was obtained on MS medium, shoot length of explants cultured on NRM basal medium were significantly higher than those of MS and 1/2MS. The best growth response of explants in establishment stage (50% shooting, 5.33 leaves per shoot and 1.6 cm shoot length) were obtained with NRM medium supplemented with 0.01 mg/l IBA and 1 mg/l BAP. Shoots derived from establishment stage were cut to single-node explants and transferred on NRM medium supplemented with 0.05 mg/l IBA and different levels of BAP and TDZ. The highest percentage of explants growth with lowest callgenesis and explnt browning were obtained on NRM medium containing 0.05 mg/l IBA and 5 mg/l BAP.
Research Article
Mahdieh Razaei; Abbas Safarnejad; Mostafa Arab; Seyyedeh Bibi Leila Alamdari; Marzieh Dalir
Abstract
Introduction: Thyme is an important medicinal plant in cosmetic, pharmaceutical and food industries. The genus Thymus L. (Lamiaceae) consists of about 300 species of herbaceous perennials and subshrubs. This genus is mainly distributed over Mediterranean country, northern part of Africa and Southern ...
Read More
Introduction: Thyme is an important medicinal plant in cosmetic, pharmaceutical and food industries. The genus Thymus L. (Lamiaceae) consists of about 300 species of herbaceous perennials and subshrubs. This genus is mainly distributed over Mediterranean country, northern part of Africa and Southern Greenland. Thymus species are commonly used as spices, herbal tea, insecticide and flavoring materials. Also, Thymus have been most frequently used in traditional herbal medicine due to its antiseptic, carminative, expectorant, antispasmodic, anti-inflammatory properties. Recent studies have showed that this genus have strong antifungal, antibacterial and antioxidant activities. Because of these medical features of this genus, Thymus is cultivated all over the world. The aromatic and medicinal properties of the genus thymus have made it one of the most popular plantsthroughout all of the world.
Materials and Methods: In order to study genetic variations, 22 populations of endemic species of Thymus include thirteen populations from species of T. daenensis, four populations of T. migricus and one population from each of the following species: T. fedtschenkoi, T. vulgaris, T. transcaspicus, T. pubsence and T. kotschyanus were used for assessment of morphology and essence value. Populations in completely random block design with three replications at the Razavi-khorasan Agriculture and Natural Resources Research Center were planted. Morphological measurement was taken on five random individuals of each replicate and average traits were analyzed. Clevenger unit was used to measure the essence amount. Morphological traits were included leaf length, leaf width, leaf number of year stem, maximum diameter of canopy, minimum diameter of canopy, canopy area, height flowering stem, height inflorescence, number of stems per plant, number days to starting of flowering, number days to 50% of flowering, fresh yield, dry yield, height of stem than inflorescence, and essence weight and volume. A balanced completely randomized design with three replications was used. Biometric measurement was applied to study the selected thyme populations. SAS, SPSS and NTSYS softwares were used for calculating the statistics indicators, normality tests, analysis of variance, means of traits, correlation coefficients, stepwise regression analysis and principal component analysis.
Result Discussion: A wide range of morphological variety was observed by biometric measurements. The results showed that there were highly significant differences between thyme populations. Mean comparison was carried out using Duncan method at 5% level. Population No.18 and population No.4 were showed the highest and the lowest diameter of canopy, respectively. Population No.18 and population No.4 exhibited maximum and minimum canopy area, respectively. Maximum and minimum stem lengths were related to populations No.12 and No.4, respectively. Maximum and minimum numbers of stems at each plant were seen in populations No.12 and No.2, respectively. Inflorescence length of population No.6 was maximum and population No.5 was minimum. The maximum and minimum average of the number of leaf per stem were observed in population No.17 and population No.12, respectively. Maximum and minimum of the leaf length were seen in populations No.10 and No.16, respectively. Population No.4 and population No.22 exhibited the highest and the lowest leaf width, respectively. For inflorescence length/ stem length ratio, population No.6 and population No.21 were showed maximum and minimum, respectively. The maximum number days to stating of flowering and 50% flowering, were seen in populations No.2 and No.8 and populations No.6 and No.4 had minimum of these. Population No.13 and population No.4 exhibited maximum and minimum dry weight, respectively. Populations No.13, No.17, No.18 and No.20 had the maximum of fresh yield and population No.4 had the minimum of fresh yield. For essence value characteristics, the most volume and weight of essential oil was observed in populations No.2, No.9, No.10 and No.18 and the least volume and weight of essential oil was observed in populations No.4, No.5, No.6 and No.12.
Conclusion: ANOVA showed that there was significant difference between thyme accessions for morphological traits which it is important for plant breeding. High variation increases selection of desirable traits for breeding. In order to crossing and hybridization, parents must be genetically distant to gain the most variation. In this study, relationship between thyme accessions using morphological and essence value traits was investigated so plant breeder can use it for production desirable hybrid.
Research Article
Mohammad Mahmoodi Sourestani
Abstract
Introduction: Mediterranean climate conditions induce several stresses that plants have to cope with, especially during summer months when high temperature and radiation levels along with low water availability in the soil prevail for long periods. Variation in physiological traits such as photosynthesis ...
Read More
Introduction: Mediterranean climate conditions induce several stresses that plants have to cope with, especially during summer months when high temperature and radiation levels along with low water availability in the soil prevail for long periods. Variation in physiological traits such as photosynthesis and plant water status and their association with morphological characters can play an important role in the adaptability of the species to environmental constraints. The previous studies show that scorching weather not only affects the rate of gas exchange, but also results in diurnal changes in activity. Thus, the impact of environmental stresses on plants growing in these conditions should be assessed by examining the evolution of their diurnal variations on leaf gas exchange. Aromatic plants represent a renewable source of valuable compounds that can be used in food, perfumery, and pharmaceutical industry. Among these plants, sweet basil (Ocimumbasilicum), holy basil (Ocimum sanctum), lemon balm (Melissa officinalisL.) and catnip (Nepetacataria) are very important for different industries. Studies on environmental physiology of medicinal plants are relatively scarce and very few information is available concerning the physiological basis of medicinal plant response to heat stress that is one of the most important factors limiting production of medicinal plants in Khuzestan province.
Material and methods: In order to evaluate the diurnal fluctuation of gas exchange of mentioned plants, an experiment was carried out in 2013 at research farm of Horticultural Science, Shahid Chamran University (31°20'N latitude and 48°40'E longitude and 22.5m mean sea level), Ahvaz (Iran), a site characterized by a semidry and scorching weather during late spring and summer. The experiment was arranged based on randomized complete block design (RCBD) with three replications and 4×8 factorial scheme (Four plants including lemon balm, catnip, holy basil and basil; and eight times of evaluation 7:00,9:00, 10:00, 11:00, 12:00, 13:00, 17:00 and 20:00 h). Land preparation consisted of disking and the formation of raised beds (15cm high and 45cm wide across the top) using a press-pan-type bed shaper. The plants were arranged on two rows on each bed, with 20 cm in-row and 40 cm between-row spacing. The plants were irrigated weekly as needed. Gas exchange parameters were investigated from June 9-11at end of vegetative phase under natural environmental conditions. The parameters of gas exchange were measured on the 5th and 6th nearly full expanded leaves between the hours of 07:00 and 20:00 during bright sunlight on clear and cloudless days. Determination of leaf net photosynthesis rate (Pn), stomatal conductance (gs) and transpiration (E) was made with Infra-red gas analyzer (LCA4, ADC Co. Ltd., Hoddesdon, UK).Instantaneous water use efficiency (WUEinst) and apparent quantum yield(AQY) were calculated as Pn/E andPn/PPFD ratios, respectively.
Result and discussion: The result showed that plant type had significant effect on all measured traits as well as record time. Interaction between plant type and record time were significant for PPFD, leaf temperature and net photosynthesis. The highest Pnof Lemon balm (8.97 µmol CO2 m-2 s-1), catnip (11.2 µmol CO2 m-2 s-1) and sweet basil (13.75 µmol CO2 m-2 s-1) were recorded at 9:00 when the photosynthetic photon flux density (PPFD) was 1488, 1598 and 1645 µmol photon m-2 s-1, respectively. Holy basil showed highest Pn (15.47 µmol CO2 m-2 s-1) at 10:00 when PPFD was 1821 µmol photon m-2 s-1.High irradiances caused photoinhibition of the four plants and it seems the four plants reach to light saturation point about 1500 µmol photon m-2 s-1.The midday depression of photosynthesis likely resulted primarily from long periods of high PPFD, limitation in stomatal conductance and high temperature. Catnip was more sensitive to high irradiance. The Pn had positive and significant correlation with gs in four plants. The stomatal conductance was also positively correlated with E in four plants. The plants represented double peak curve for WUE. The first and second peaks appeared at 9:00 and 17:00, respectively. The four plants also showed highest AQY at 7:00. There were significant difference between four plants for leaf temperature, gs, Pn, WUE and AQY. Lemon balm showed lower leaf temperature than other plants due to its high gs. The highest amounts of Pn, WUE and AQY were observed in holy basil.
Conclusion: In regard to Pn, WUE and AQY, it seems holy basil and sweet basil can tolerate weather condition of Ahvaz.
Research Article
Morteza Goldani; Hossein Zare; Maryam Kamali
Abstract
Introduction: Purple coneflower with scientific name Echinacea purpurea (L.) is an herbaceous perennial plant native to North America and is the one of the most important medicinal plants in the world. Root of Echinacea purpurea is commonly used around the world for stimulation of immune system. It is ...
Read More
Introduction: Purple coneflower with scientific name Echinacea purpurea (L.) is an herbaceous perennial plant native to North America and is the one of the most important medicinal plants in the world. Root of Echinacea purpurea is commonly used around the world for stimulation of immune system. It is used as herbal medicine in respiratory infections, against malignant tumors and several inflammatory conditions However, nitrogen and phosphorus are the main elements that make up the proteins in plants and herbs for natural growth, especially is necessary in their productive organs. The results showed that nitrogen and phosphorus are important in continuation of flowering, the flowers fresh and dry weight and in essential oil. Fertilization of E. purpurea plants indicated that in absence or at low levels of nitrogen fertilization (0 and 100 kg acre-1), the addition of 50 and 100 kg acre-1 of potassium increased aerial parts, flower heads and root yield. Another report indicated that highest aerial biomass and root yield in E. purpurea was obtained with 100 kg ha-1 of nitrogen at constant rates of phosphorus and potassium. Polyphenol content was not influenced by nitrogen fertilization and values fluctuated between 2.4 and 5.4 % in the aerial part at flowering and between 1.6 and 3.5 % in the roots. Fertilization with nitrogen caused a decrease in the concentrations of echinoside. Echinoside content was 1.16 % without nitrogen fertilization, and 0.94 % with nitrogen fertilization.
Materials and Methods: To evaluate the effect of different levels of nitrogen and phosphorus on growth and yield of coneflower, a factorial experiment in a completely randomized design with three replications was conducted in Ferdowsi University of Mashhad. Treatments were included three levels of nitrogen (0, 1 and 2 gr urea per kilogram of soil) and three levels of phosphate fertilizer (0, 0.75 and 1.5 gr of phosphate (P2O5) per kg of soil). Nitrogen fertilizer was applied to the soil before planting and one month after transplanting seedlings and phosphorus fertilizer was added to the soil after transplanting.
Results and Discussion: A difference in plant height at different levels of nitrogen was significant. By increasing the amount of nitrogen to 1 gr, plant height from 69.44 increased to 81.11 cm. Number of lateral shoots wasn’t significant in any levels of nitrogen and phosphorus. Increasing of nitrogen from 0 to 2 grams per kg of soil increased leaf weight from 2.4 to 7.5 g. However, with increasing levels of phosphorus, weight and leaf area increased. So that the treatment without phosphorus, dry weight was 4.37 grams and in 1.5 grams of phosphorus was the highest leaf dry weight with 5.77 gr. With increasing levels of nitrogen from 0 to 1 gram, shoot dry weight increased and with increasing nitrogen from 1 to 2 grams of weight shoot dry weight was low. Treatment with 1 gr of nitrogen per kilogram of soil had the highest stem dry weight per plant with 8.7 grams and showed significant differences with other treatment. Based on the results, the effect of nitrogen fertilizer treatments in the number of flowers and flower dry weight was significant at 1%, the effect of phosphorus on flower dry weight was significant. But the interaction of nitrogen and phosphorus fertilizer treatments in any levels was not significant. The highest SPAD index in1.5 gr of phosphorus and lowest (53.74) in the treatment without phosphorus was observed. Different levels of nitrogen fertilizer had not significant effect on the length and diameter of the root but a significant effect of phosphorus on root length was showed. It seems nitrogen in 1 gr per kg is related to increase photosynthesis and the growth of organs. Nitrogen with increasing in meristem cell division can increase vegetative growth and plant size. Zeinali et al (1387) reported that phosphorus can increase carbohydrates and mineral combinations in the shoots, flowers and roots. As a result increase in shoots, roots and flowers dry weight is related to nitrogen and phosphorus.
Conclusion: In general the results showed that with increasing nitrogen fertilizer height, flower number and shoot dry weight was significantly increased. Also, increasing the amount of phosphorus up to 1.5 gr per kilogram leads to an increase in plant roots. Due to the interactions of nitrogen and phosphorus in leaf dry weight and root dry weight, nitrogen and phosphorus in 2 and 5.1 gr per kg of soil had the best results.
Research Article
Seyedeh Zeinab Attari; Mahmood Shoor; Mahmoud Ghorbanzadeh Neghab; Ali Tehranifar; Saeid Malekzadeh Shafaroudi
Abstract
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods ...
Read More
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods for conservation of the plants. Genetic variation studies are fundamental for the management and conservation of this species. The use of molecular markers is a powerful tool in the genetic study of populations. The use of DNA marker, such as AFLP, SSR, RAPD and ISSR represents an alternative method in detection of polymorphism. ISSRs are highly variable, require less investment in time, money and labor than other methods. ISSR can generate higher percentages of polymorphic loci than other PCR methods. These can serve as an efficient tool for phylogenetic studies. ISSRs had reported that used in studies of cultivated species to produce genetic linkage maps and to determine the relatedness of lines of agriculturally important species. ISSR analysis involves the PCR amplification of regions between adjacent, inversely oriented microsatellites, using a single simple sequence repeat (SSR) motifs (dinucleotide, trinucleotide, tetranucleotide or penta nucleotides). Therefore, little is known about the genetic variability of the Iranian Iris ssp .The objectives of this study were to evaluate genetic diversity among genotypes using ISSR markers and the degree of polymorphism generated from ISSR technique as a pre-requisite for their applicability to population genetics studies in Iris ssp.
Materials and Methods: To evaluate genetic variations in some wild Iris genotypes, Iris kopetdaghensis ،Iris songarica and Iris fosteriana were collected from some parts of Khorasan province. Genomic DNA was extracted from young leaves following the cetyltrimethylammonium bromide (CTAB) procedure. Extracted DNA concentration was quantified by using the spectrophotometer and qualified using agarose gel electrophoresis. A total of 16 primers were initially screened against two plants selected from different regions and finally six primers for final analysis was selected based on consistent (CA)8G ،(CT)8RG ،(TC)8C ،(TG)8G ، (AC)8YG and (AG)8YT, strong amplification products, production of polymorph, reproducible fragments between replicate Polymerase Chain Reaction (PCR). The ISSR amplification reactions contained 30-50 ηg of genomic DNA, 2.5 μL 1 × buffer, 2 mM MgCl2, 200 μM of each dNTP (Fermentas), 10 μM primers and 0.2 U Taq DNA polymerase (Fermentas), with the final volume adjusted to 25μL with H2O bidest. ISSR reaction products were separated on 1.5% horizontal agarose gels, in TBE buffer and visualized under ultraviolet light after staining in 0.5μg/mL ethidium bromide. Digital photo was taken with gel documentation system. The 100 bp DNA ladder plus molecular weight marker was used to compare the molecular weight of amplified products. Amplified products were scored for the presence (1) or absence (0) of bands and binary matrices were assembled for the ISSR markers. The binary matrices were subjected to statistical analyses using NTSYS-pc software version 2.02.
Results and Discussion: Six ISSR primers produced 126 bands across the 16 genotypes, of which 119 were polymorphic. The number of amplified fragments varied from 16 [primer (CA)8G)] to 24 [primer (TC)8C and (AC)8YG)] across the genotypes. The average polymorphic bands per primer were 19.4. The percentage of polymorphism for primers ranged from 76 to 100, with an average of 94.4.The amplified bands genotypes related to a species the same banding pattern was observed but there was lower similarity between the species. Our data indicated that ISSR technology can detect considerable polymorphisms (76.4 %) in our genotypes, suggesting that it will be useful in characterization and fingerprinting of Iris germplasm. The results of this study also provide fundamental evidence demonstrate that ISSR marker is a simple, informative, reproducible and suitable approach to evaluation of molecular diversity and phylogenetic relationships in Iris spp. The highest genetic similarity was between species Iris kopetdaghensis and Iris fosteriana. This study revealed a significant variation especially between Iris kopetdaghensis and Iris songarica.
Conclusions: The results of cluster analysis showed that molecular markers able to identify the species and genotypes within a species from each other. Results of this study showed that the use of molecular markers in breeding programs, especially fingerprinting is useful for lily. ISSR molecular markers have proved to be an efficient tool for studying genetic diversity and management of lily germplasm. . Also the result showed these genotypes have high genetic diversity, and the success in Iris breeding programs use to recommend Iranian local Iris.
Research Article
Hosein Shekofteh; Mohammad Nick-Pour
Abstract
Introduction: Date bunch fading disorder has been one of the most important problems, which caused economic damage to date plantation area of Iran. It has been first reported on Mozafti cultivar in Kahnuj area, Kerman province. It has often been observed on soft and mid ripening cultivars such as Mozafti, ...
Read More
Introduction: Date bunch fading disorder has been one of the most important problems, which caused economic damage to date plantation area of Iran. It has been first reported on Mozafti cultivar in Kahnuj area, Kerman province. It has often been observed on soft and mid ripening cultivars such as Mozafti, Mordaseng and Kalote. Furthermore, it usually appears on Mozafti cultivar when fruits change from Khalal to Rutab stage. The most important symptoms of this disorder are sudden wilting of fruits and necrotic strips on the upper surface of the main bunch stalk. Incidence and development of these symptoms increase by high temperature, low relative humidity, and hot and dry wind. Several research studies have been carried out on this disorder so far, but the only research about the effect of nutrition on disorder was performed by Rosta (2003). The aim of the present study was to investigate the effect of calcium and potassium spray on date bunch fading and some traits of date fruit in Rigan region, Kerman province.
Materials and Methods: The experiment was conducted based on randomized complete block designs with three replicates in Rigan located in east south of Kerman province, Iran, in 2012. Treatments were: T1: control, T2: spray of calcium nitrate at the concentration of 5 ppm, T3: spray of potassium sulfate at the concentration of 5 ppm, and T4: combined spray of calcium nitrate and potassium sulfate at the concentration of 5 ppm. Treatments were applied at Kimri, Hobabok and Khalal stages. Sampling was performed from 3 date palms (3 bunches from each date palm were selected randomly) at the second date harvest. Totally, the traits of 200 fruits were measured in each date palm. The traits measured in the present study were: fruit length, fruit diameter, fruit weight, stone weight, stone diameter, and bunch fading percentage.
Results and Discussions: According to the data of variance analysis, treatments had a significant effect on wet fruit weight, fruit length, fruit diameter, stone weight, stone diameter, and bunch fading percentage at 1℅ level. The highest wet fruit weight, fruit length, fruit diameter, stone weight, and stone diameter were attained in the treatment containing combined application of calcium nitrate and potassium sulfate. Furthermore, the lowest amounts of these traits were obtained in control. The lowest and highest percentage of date bunch fading belonged to the combined treatment of calcium nitrate and potassium sulfate, and control, respectively. In general, application of calcium nitrate and potassium sulfate with each other improved fruit traits and reduced bunch fading percentage. Calcium mobility in the plant takes place mainly in the xylem, together with water. Therefore, calcium uptake is directly related to plant transpiration rate. Conditions of high humidity, cold and low transpiration rates may result in calcium deficiency. Salinity might also cause calcium deficiency because it decreases water uptake by the plant. Since calcium mobility in plants is limited, calcium deficiency appears in younger leaves and in fruits, because they have a very low transpiration rate. Therefore, it is necessary to have a constant supply of calcium for continued growth. Calcium deficiency is usually caused by low calcium availability or water stress which results in low transpiration rates. Calcium is an essential plant nutrient with many roles including participation in metabolic processes of other nutrients uptake, promotion of proper plant cell elongation, and improvement of cell wall structure – calcium is an essential part of plant cell wall. It forms calcium pectate compounds which give stability to cell walls and bind cells together. It also helps protecting the plant against heat stress - calcium improves stomata function and participates in induction of heat shock proteins. In addition, it helps protecting the plant against diseases - numerous fungi and bacteria secret enzymes which impair plant cell wall. Stronger cell walls, induced by calcium, can avoid the invasion of diseases. Considering the important roles of calcium, calcium spray increased thetraits of date fruit and decreased bunch fading percentage. As an important element in photosynthesis, , potassium regulates the opening and closing of stomata, and therefore regulates CO2 uptake. Potassium plays a major role in the regulation of water in plants (osmo-regulation). Both uptake of water through plant roots and its loss through the stomata are affected by potassium. Moreover, protein and starch synthesis in plants requires potassium, so that the enzymes responsible for starch synthesis are activated by potassium. Potassium has also an important role in the activation of many growth related enzymes in plants. Results of the analysis of the studied soil showed that available potassium content in soil was less than plant requirement. So spraying of potassium sulfate could result in the improvement of date fruit traits and reduction of bunch fading disorder. Finally, combined spray of calcium and potassium caused a significant reduction in date bunch fading percentage.
Conclusion: The results of the present study indicated that spray of calcium and potassium solely improved fruit traits and bunch fading disorder, but maximum values of fruit yield components and minimum bunch fading percentage obtained from foliar spray of calcium and potassium together.