بررسی تنوع ژنتیکی ژنوتیپ‌های محلی انبه (Mangifera indica L.) استان هرمزگان با استفاده از صفات ریخت‌شناسی و نشانگر ISSR

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس تهران

2 دانشگاه هرمزگان

3 دانشگاه آزاد جیرفت

4 لیدن هلند

5 دانشگاه آزاد اراک

چکیده

بررسی تنوع ژنتیکی انبه موجب افزایش شناخت نسبت به این گیاه شده و امکان انتخاب ژنوتیپ‌های مرغوب‌تر جهت توسعه کشت و کار آن فراهم می‌نماید. در این پژوهش، تنوع ژنتیکی و ریخت‌شناسی ۳۹ ژنوتیپ انبه جمع‌آوری‌شده از شهرستان‌های میناب و رودان (استان هرمزگان) با استفاده از نشانگرهای ISSR و صفات ریخت‌شناسی مورد ارزیابی قرار گرفت. بر مبنای داده‌های ریخت‌شناسی، ژنوتیپ‌ها به هشت گروه اصلی تقسیم‌بندی شدند. دامنه تشابه به‌دست‌آمده برای داده‌های ریخت‌شناسی از 12/0 تا 83/0 متفاوت بود. حداقل میزان تشابه بین ژنوتیپ‌های آل‌مهتری و چارک دیده شد و حداکثر تشابه بین مشک، آناناسی گلشوار، نغال و هلیلی گلشوار بود. متوسط میزان تشابه به‌دست آمده نیز 54/0 بود. نتایج تجزیه ۲۱ ویژگی‌ ریخت‌شناسی در ژنوتیپ‌های انبه مورد مطالعه نشان داد که این ژنوتیپ‌ها از نظر همه صفات (به‌جز تراکم گل و شکل گل‌آذین) دارای اختلاف معنی‌دار بودند. نتایج نشانگرهای ISSR نشان داد که آغازگرهای استفاده شده در این پژوهش، در مجموع ۱۴۵ نوار قابل امتیازدهی تولید کردند. حداکثر و حداقل تعداد نوار چندشکل به‌ترتیب در آغازگرهای MI808 (20 نوار) و MI827 (۶ نوار) مشاهده شد. میانگین محتوای اطلاعات چندشکلی برابر 450/0 بود. دامنه تشابه به‌دست آمده برای داده‌های مولکولی در ماتریس تشابه محاسبه شده از 31/0 تا 90/0 متفاوت بود که در آن، حداقل میزان تشابه بین ژنوتیپ‌های مجلسی و چارک و حداکثر تشابه بین گیلاسی و کلانفر بازیاری دیده شد. تنوع بالای مشاهده شده بین ژنوتیپ‌های مورد بررسی در این پژوهش، علاوه بر وجود تفاوت‌های ذاتی آن‌ها، می‌تواند ناشی از تکثیر بذری این ژنوتیپ‌ها باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic Diversity among Mango (Mangifera indica L.) Genotypes in Hormozgan Province Using Morphological and ISSR Markers

نویسندگان [English]

  • A. Bagheri 1
  • H. Hassanzadeh Khankahdani 2
  • V. Ghanbari 3
  • M. Askari Seyahooei 4
  • S.S. Modarres Najafabadi 5
1 Tarbiat Modarres university
2 Hormozgan university
3 Islamic Azad University, Branch Jiroft
4 Leiden university
5 Islamic Azad University of Arak
چکیده [English]

Introduction: Assessment of genetic diversity in Mango can provide a platform to deepen our knowledge about its genetic background and determine the high quality genotypes for involving in the inbreeding programs. The high observed diversity among native landraces of mango can be used in breeding programs to produce better cultivars and utilization of these cultivars as donor parent to transfer desirable characteristics to high-bearing cultivars. Suitable mango cultivars to prepare rootstock and scion and resistant cultivars against diseases and the high yielding cultivars (with regards to alternate bearing in mango) can be recognized by better understanding of available germplasms. In the past two decades in southern Iran, the process of producing the grafted mango trees via seed culturing and grafting suitable cultivars (What has been registered such as Sindary and Langra and what has not been registered) on the seedlings has been accelerated. Therefore, studying the diversity of mango germplasms in these regions can be a good way to identify and distinguish these genotypes. In the present study, native genotypes of mango from Minab and Rudan counties (Hormozgan Province) were collected, which are mainly produced through seed and over time they have been propagated by vegetative methods based on the quality and taste and their diversity, was evaluated using morphological attributes and molecular markers.
Materials and Methods: In this experiment, we studied genetic and morphological diversity of 39 mango genotypes collected from Minab and Rudan counties (Hormozgan province) using ISSR markers and morphological attributes. Morphological characteristics were assessed using IBPGR descriptor. DNA extraction was done using modified CTAB method. Similarity coefficient of ISSR markers was calculated by Jaccard’s procedure. Polymorphism information content (PIC) was calculated using PIC=2fi(1-fi) formula, where fi was frequency of the amplified bands and 1-fi was frequency of the null bands. In order to analyze morphological data SAS 9.1 software was used and the means were compared using LSD test. In addition, it was prepared a 0 and 1 matrix from morphological data and dendrogram of morphological attributes was designed using Jaccard’s similarity coefficient.
Results and Discussion: The dendrogram inferred from morphological characters grouped all genotypes in eight main clades in which similarity of the dendrogram ranged from 0.12 to 0.83 with mean value of 0.54. The least similarity was observed between Almehtari and Charak, and the most similarity was observed among Moshk, AnaMG, Noghal and HalMG. Analysis of 21 morphological parameters in the studied genotypes demonstrated being of significant differences among these genotypes in terms of morphological attributes (except flower density and inflorescence shape). The ISSR primers produced totally 145 scorable bands that the highest and lowest polymorphism band were observed in MI808 (20 bands) and MI827 (6 bands) primers, respectively. Average of PIC was 0.450. The similarity for ISSR markers ranged from 0.31 to 0.90, in which the least similarity was observed between Majlesi and Charak. However, the highest similarity was observed between Gilasi and KalanMB genotypes. It was observed the differences among same genotypes grown in the various regions. In Rudan region in due to better quality of irrigation water as well as sufficient and proper availability to irrigation water, growth conditions for mango trees is better than Minab region. These differences between Rudan and Minab regions in viewpoint of growth conditions can be reason of morphological diversity among mango similar genotypes in both regions, which it has been caused to incompatibility of morphological and molecular markers. For this reason, the genotypes that are genetically similar to each other may have different morphological differences and/or two homonymous genotypes in two regions have significant genetic differences. For example, Clanfar Baziari genotype, which had high genetic similarity (0.90) with Gilasi genotype, had morphological similarity coefficient equal 0.37 together. However Gilasi genotype collected from Ahmadabad Minab had same ecological similarity with Baziari region. In other instant, genetic similarity coefficient of AnaMG genotype was 0.85 with ShozMD, while in these genotypes had 38% morphological similarity. Correlation coefficient between similarity matrix of ISSR and morphological markers was 0.336 and not significant.
Conclusion: It seems that the observed high diversity among morphological attributes is intrinsically and stemming from mango propagation procedure in which mango genotypes highly diverged due to seed propagation. The high genetic diversity showed by morphological attributes was also corroborated by ISSR markers, indicating low environmentally influence-ability of the attributes.

کلیدواژه‌ها [English]

  • ISSR
  • Morphological markers
  • PIC
1. Adato A., Sharon D., Lavi U., Hillei I., and Gazit S. 1995. Application of DNA fingerprints for identification and genetic analysis of Mango (Mangifrera indica) genotypes. Journal of American Society of Horticultural Sciences, 120: 259-264.
2. Bally I.S.E., Graham G.C., and Henry R.J. 1996. Genetic diversity of Kensington mango in Australia. Australian Journal of Experimental Agriculture,36: 243-247.
3. Begum H., Reddy M.T., Malathi S., Reddy B.P., Narshimulu N., Nagaraju J., and Siddiq E.A. 2014. Morphological and microsatellite analysis of intravarietal heterogeneity in ‘Beneshan’ mango (Mangifera indica L.). International Journal of Agricultural and Food Research, 3(2): 16-33.
4. Bhuyan M.A.J., and Guha D. 1995. Performance of some exotic mango germplasm under Bangladesh conditions. Bangladesh Horticulture, 23(1&2): 17-22.
5. Bose T.K., and Mitra S.K. 1990. Fruits: Tropical and subtropical. NAYA PROKASH, India.
6. Doyle J.J., and Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
7. Eiadthong W., Yonemori K., Kanzaki S., Sugiura A., Utsunomiya N., and Subhadrabandhu S. 2000. Amplified fragment length polymorphism (AFLP) analysis for studying the genetic relationship among Mangifera species in Thailand. Journal of American Society of Horticultural Sciences, 125(2): 160-164.
8. FAO. 2016. FAOSTAT agriculture data, Domain: Agriculturel Production. (Food and Agriculture Organization of the United Nations) http://apps.fao.org/.
9. Galvez-Lopez D., Salvador-Figueroa M., Adriano-Anaya M.L., and Mayek-Perez N. 2010. Morphological characterization of native mangos from Chiapas, Mexico Subtropical. Plant Science Journal, 62: 18-26.
10. Gan Y.Y., Zaini S., and Idris A. 1981. Genetic variation in the grafted vegetatively ropagated mango (Mangifera indica). Pertanika, 4(1): 53-62.
11. Gonzalez A., Coulson M., and Brettell R. 2002. Developmentof DNA markers (ISSRs) in mango. Acta Horticulturae, 575: 139-143.
12. Haque A.M.M.M., Ali M.R., Uddin M.R., and Hossain A.K.M.A. 1993. Evaluation of elite mango cultivars at southern region of Bangladesh. Bangladesh Journal of Plant Breeding and Genetic, 6(2): 21-28.
13. Human C.F. 2008. Production areas. In: de Villiers, E.A., Joubert, P.H. (eds). The Cultivation of Mango. ARC-Institute for Tropical and Subtropical Crops, pp: 9-15.
14. Illoh H.C., and Olorode O. 1991. Numerical taxonomic studies of mango (Mangifera indica L.) varieties in Nigeria. Euphytica, 51: 197-205.
15. IPGRI. 2006. Descriptors for Mango (Mangifera indica L.). International Plant Genetic Resources Institute, Rome, Italy.
16. Jayasankar S., Litz R.E., Schnell R.J., and Hernandez A.C. 1998. Embrogenic mango cultures selected for resistance to Colletotricum gloeosprioides culture filtrate show variation in random amplified polymorphic DNA (RAPD) markers. In Vitro Cellular and Developmental Biology-Plant, 34(2): 112-116.
17. Jintanawong S., Hiranpradit H., Polprasid P. and Duangpikul P. 1992. Group characterization of Thai mango, Mangifera indica L. Acta Horticulturae, 321: 254-261.
18. Krauss S.L. 2000. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Molecular Ecology, 9: 1241-1245.
19. Kumar N.V.H., Narayanaswamy P., Prasad D.T., Mukunda G.K., and Sondur S.N. 2001. Estimation of genetic diversity of commercial mango (Mangifera indica L.) cultivars using RAPD markers. Journal of Horticultural Science and Biotechnology, 76: 529-533.
20. Kumar S., and Venkateswarlu K. 2013. Clonal variability studies in ‘Alphonso’ mango (Mangifera indica L.) by phenotypic characters and molecular markers. International Journal of Pharmamedix India, 1(2): 398-414.
21. Litz R.E. 2001. Recovery of mango plants with anthracnose resistance following mutation induction and selection in vitro with the phytoalexin(s) produced by Colletothricum gloesporioides Penz. Report of the First Co-ordinated Research Project. Vienna: Johnt FAO/IAEA Division: 73-78.
22. Luo C., He X., Chen H., Ou S., Gao M., Brown J.S., Tondo C.T., and Schnell R.J. 2011. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochemical Systematics and Ecology, 39: 676-684.
23. Morell M.K., Peakll R., Apels R., Preston L.R., and Lloyd H.L. 1995. DNA profiling techniques for plant variety identification. Australian Journal of Experimental Agricultire, 35: 807-819.
24. Morton J.F. 1987. Fruits of warm climates. Miami. Florida Flair Books, pp: 221-239.
25. Mussane C.R.B., Biljon A.V., and Herselman L. 2010. Morphological and genetic characterization of mango varieties in Mozambique. Second Ruforum Biennial Meeting 20-24, September 2010, Entebbe, Uganda pp: 991-995.
26. Naik K.C. 1948. Improvement of mango (Mangifera indica L.) by selection and hybridization. Indian Journal of Agricultural Sciences, 18(1): 35-41.
27. Naik K.C. 1971. Mango improvement. Andhra Agricultural Journal, 18(6): 221-222.
28. Naghavi M.R., Ghareyazi B., Hosseini Salekdeh GH. 2009. Molecular markers. Tehran University Publication. 337 p.
29. Nakasone H.Y., and Paull R.E. 1998. Tropical fruits. Cab International.
30. Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecyfic genetic diversity in plants. Molecular Ecology, 5: 1143-1150.
31. Oppenheimer C. 1956. Study tour report on subtropical fruit growing and research in India and Ceylon. Special Bulletin No. 3, State of Israel, Ministry of Agriculture, Agicultural Research Station, Rehovat, Israel, October.
32. Ozkaya M.T., Cakir E., Gokbayrak Z., Ercan H., and Taskin N. 2006. Morphological and molecular characterization of Derik Halhali olive (Olea europaea L.) accessions grown in Derik–Mardin province of Turkey. Scientia Horticulturae, 108: 205-209.
33. Pandey S.N. 1998. Mango cultivars. In Srivastav, R.P.P. (Ed.) Mango Cultivation. International Book Distributing Company, Lucknow, India, pp. 39-99.
34. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., and Rafalsky A. 1996. The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Molecular Breeding, 2: 225-238.
35. Rajwana I.A., Khan I.A., Malik A.U., Saleem B.A., Khan A.S., Ziaf K., Anwar R., and Amin M. 2011. Morphological and biochemical markers for varietal characterization and quality assessment of potential indigenous mango (Mangifera indica) germplasm. International Journal of Agriculture and Biology, 13: 151-158.
36. Singh S., Gaikwad A.B., and Karihaloo J.L. 2009. Morphological and molecular analysis of intra cultivar variation in Indian mango (Mangifera indica L.) cultivars. Acta Horticulture, 829: 205-212.
37. Sokal R.R., and Sneath P.N.A. 1963. Principles of numerical taxonomy. Free-man, San Francisco.
38. Tomar R.S., Gajera H.P., Viradiya R.R., Patel S.V., and Golakiya B.A. 2014. Characterization of mango genotypes of Gir region based on ISSR markers. Indian Journal of Horticulture, 71(1): 1-5.
39. Ukoskit K. 2007. Development of microsatellite markers in mango (Mangifera indica L.) using 5’ anchored PCR. Thammasat International Journal of Science and Technology, 12: 1-7.
40. Zhao Y., Chen X.Y., Wang X.R., and Pian R.Q. 2007. ISSR analysis of genetic diversity among Lespedeza bicolor populations. Journal of Plant Genetic Resources, 2: 195-199.
CAPTCHA Image