ارزیابی اثر محلول‌پاشی اسید آسکوربیک و ساکارز بر برخی خصوصیات کمی و کیفی کدوی پوست کاغذی (Cucurbita pepo var. Styriaca)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گیاهان دارویی، گروه علوم و مهندسی باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

4 استادیار گروه علوم و مهندسی باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

در مدیریت نهاده‌های کشاورزی، استفاده از موادی که کمترین اثرات جانبی مضر را بر سلامت انسان و محیط زیست داشته باشند، توصیه می‌‌شوند. در این بین، ساکارز و اسید آسکوربیک موادی با منشأ طبیعی جهت بهبود رشد و افزایش عملکرد محصولات می‌باشند، لذا هدف از پژوهش حاضر تعیین اثر این دو ماده بر عملکرد، اجزای عملکرد و خصوصیات فیتوشیمیایی گیاه کدوی پوست کاغذی بود. این آزمایش در قالب فاکتوریل با دو فاکتور ساکارز در چهار سطح (صفر، 5، 10، 15 گرم بر لیتر) و اسید آسکوربیک در چهار سطح (صفر، 15، 30، 45 میلی‌مولار) بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار انجام شد. با توجه به نتایج بدست آمده اثر محلول‌پاشی ساکارز و اسید آسکوربیک و برهمکنش آنها بر بیشتر صفات مورد بررسی معنی‌دار بود. کاربرد 15 گرم بر لیتر ساکارز همراه با 15 میلی‌مولار اسید آسکوربیک سبب ارتقای تعداد میوه تا 68/1 عدد در هر بوته شد که نسبت به تیمار شاهد 15 برابر افزایش نشان داد. بیشترین تعداد کل بذر با میانگین 464 عدد در هر میوه با کاربرد 5 گرم بر لیتر ساکارز همراه با 45 میلی‌مولار اسید آسکوربیک حاصل شد که در مقایسه با شاهد (33/247) افزایش 60/87 درصدی را ثبت کرد. بالاترین میزان کلروفیل کل با میانگین 081/2 (میلی‌گرم بر گرم وزن تر) با کاربرد 5 گرم بر لیتر ساکارز همراه با 15 میلی مولار اسید آسکوربیک اندازه‌گیری شد که نسبت به تیمار شاهد (044/2 میلی‌گرم بر گرم وزن تر) افزایش 81/1 درصدی را نشان داد. همچنین کاربرد 15 گرم بر لیتر ساکارز همراه با 15 میلی‌مولار اسید آسکوربیک موجب افزایش پروتئین تا 03/40 درصد شد که افزایش 26/79 درصدی نسبت به شاهد (33/22 درصد) را نشان داد. سایر نتایج حاکی از این‌است که افزایش میزان روغن بذر تا 50/44 درصد، با کاربرد 15 گرم بر لیتر ساکارز همراه با 30 میلی‌‌مولار اسید آسکوربیک و همچنین با کاربرد 10 گرم بر لیتر ساکارز همراه با 45 میلی‌مولار اسید آسکوربیک، قابل دسترسی است که نسبت به شاهد (16/38 درصد) افزایش 61/16 درصدی داشت. نتیجه پژوهش حاضر نشان داد که استفاده از نسبت‌های تلفیقی ساکارز و اسید آسکوربیک در بهبود صفات کمی و کیفی کدو از جمله محتوای پروتئین و درصد روغن بذر کدوی پوست کاغذی موثر واقع شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effect of Ascorbic Acid and Sucrose Foliar Application on some Quantitative and Qualitative Characteristics of Cucurbita pepo var. Styriaca

نویسندگان [English]

  • M. Fadaei 1
  • V. Akbarpour 2
  • S.J. Mousavizadeh 3
  • K. Ghasemi 4
1 M.Sc. Student of Medicinal Plants, Department of Horticultural Sciences and Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Department of Horticultural Sciences and Engineering, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Department of Horticultural Sciences, Gorgan University of agricultural sciences and natural resources, Gorgan, Iran
4 Assistant Professor, Department of Horticultural Sciences and Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

Introduction
Pumpkin (Cucurbita pepo) is a medicinal plant belonging to the Cucurbitaceae family and the order Cucurbitals. The seeds of this plant are a rich source of essential oils and proteins for the body. It is used in the production of various drugs such as Peponen, Pepostrin, Grunfig and treatment of prostate swelling, urinary tract inflammation, atherosclerosis, gastrointestinal regulation, etc. Since the components of medicinal plants are low at natural condition, and could be increased by means of different environmental conditions, nutrition or application of elicitors; thus, it is necessary to work on mentioned parameters effects on quantitative and qualitative attributes of medicinal plants. Recent years, many researches have been done based on natural components for increment of yield and secondary metabolites of medicinal plants. Ascorbic acid is one of these materials which its effect on plant growth has been validated. In the management of agricultural inputs, especially in the cultivation of medicinal plants, the application of substances that have the least harmful side effects on human health and the environment is recommended. Meanwhile, sucrose and ascorbic acid are healthy substances to improve growth and increase crop yield. Therefore, the aim of the present study was to determine the effect of these two substances on yield, yield components and phytochemical characteristics of pumpkins.
Materials and Methods
 Pumpkin seeds were prepared from Pakan Bazr Esfahan by purity of 99%. Then, planted in a farm of 500 m2 at Behshar. After plant growth, spray treatments were conducted at three times as before flowering, onset of flowering and fruit set stages. This experiment was conducted in factorial with sucrose factor at four levels (0, 5, 10, 15 g.l-1) and ascorbic acid factor at four levels (0, 15, 30, 45 mM), based on a randomized complete block design with three replications. The studied characteristics included number of leaves and fruits, plant yield, 1000-seed weight, total number of seeds, number of healthy seeds, percentage of healthy seeds, number of blank (deaf) seeds, percentage of blank seeds, total chlorophyll, antioxidant activity, phenol, flavonoids, protein and oil percentage. Statistical analysis of data was performed using SAS statistical software and comparison of mean was performed using the least significant difference (LSD) at the level of 5% probability. Figures were graphed with Excel software.
Results and Discussion
 According to this study results, the effect of foliar application of sucrose and ascorbic acid and their interaction on most of the studied traits was significant. Application of 15 g.l-1 sucrose with 15 mM ascorbic acid increased the number of fruits to 1.68 per plant, which showed an increase compared to the control treatment. The highest total number of seeds with an average of 464 seeds per fruit was obtained by applying 5 g.l-1 sucrose with 45 mM ascorbic acid, which compared to the control (247.33) recorded an increase of 87.60%. The highest total chlorophyll content was measured with an average of 2.081 (mg.g-1 fresh weight) using 5 g.l-1 sucrose with 15 mM ascorbic acid, which showed an increase of 1.81% compared to the control treatment (2.044). Also, application of 15 g.l-1 sucrose along with 15 mM ascorbic acid increased protein by 40.03%, which showed an increase of 79.26% compared to the control (22.33). Other results indicate that increasing the amount of seed oil up to 44.50% is available with the application of 15 g.l-1 sucrose with 30 mM ascorbic acid and also with the application of 10 g.l-1 sucrose with 45 mM ascorbic acid; which had an increase of 16.61% compared to the control (38.16). The results of the present study showed that the application of combined ratios of sucrose and ascorbic acid has been effective in improving the quantitative and qualitative attributes of pumpkin, including protein content and percentage of pumpkin seed oil.
Conclusion
 Since the treatment of sucrose 10 g.l-1 with 45 mM ascorbic acid significantly affected most of important attributes such as total antioxidant activity, total flavonoids, protein content and high oil content, therefore, this combination of treatment can be applied to increase the quality of pumpkin seeds. However, if only quantity is important, the treatment of sucrose 15 g.l-1 with 15 mM ascorbic acid, which caused the highest number of fruits per plant, the highest yield as well as the highest protein, can be recommended.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Fruit
  • Oil
  • Seed
  1. Ali, M., Abbasi, B.H., Ahmad, N., Ali, S.S., & Ali, G.S. (2016). Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L. Bioprocess and Biosystems Engineering 39(12): 1945-1954. https://doi.org/10.1007/s00449-016-1668-8.

    1. Amiri, H., & Moazzeni, L. (2016). Interaction of salinity and ascorbic acid with some biochemical features in Satureja khuzestanica. Nova Biologica Reperta 3(1): 69-79. (In Persian with English abstract)
    2. Arnon, D. (1994). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15. https://doi.org/10.21859/acadpub.nbr.3.1.69.
    3. Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003.
    4. Avigad, G., & Dey, P.M. (1997). Carbohydrate metabolism: storage carbohydrate. In Plant Biochemistry 143-204.
    5. Azzedine, F., Cherroucha, H., & Baka, M. (2011). Improvement of salt tolerance in durum wheat by ascorbic acid application. Journal of Stress Physiology and Biochemistry 7(1): 27-37.
    6. Beltagi, M.S. (2008). Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. African Journal of Plant Science 2: 118-123.
    7. Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Anal 10: 178-182. https://doi.org/10.38212/2224-6614.2748.
    8. Dolatabadian, A., Modarres Sanavi, S.A.M., & Sharifi, M. (2009). The effect of leaf nutrition with ascorbic acid on the activity of antioxidant enzymes, proline accumulation and lipid peroxidation of rapeseed under salinity stress. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources) 13(47): 611-620. (In Persian with English abstract) https://doi.org/20.1001.1.24763594.1388.13.47.49.7.
    9. Dugger, W.M. (1983). Boron in plant metabolism. In Encyclopedia of Plant Physiology, New Series. (A. Lauchli and R.L. Bieleski, eds.) 15B: 626-650.
    10. Ebrahimian, E., & Bybordi, A. (2012). Influence of ascorbic acid foliar application on chlorophyll, flavonoids, anthocyanin and soluble sugar contents of sunflower under conditions of water deficit stress. Journal of Food, Agriculture and Environment 10: 1026-1030.
    11. Ebrahimzadeh, M.A., Nabavi, S.F., Nabavi, S.M., & Eslami, B. (2010). Antihemolytic and antioxidant activities of Allium paradoxum. Central European Journal of Biology 5: 338-345. https://doi.org/10.2478/s11535-010-0013-5.
    12. El-Kobisy, D.S., Kady, K.A., Medani, R.A., & Agamy, P.A. (2005). Response of pea plant (Pisum sativum L.) to treatment with ascorbic acid. Egyptian Journal Applied Science 20: 36-50.
    13. Fruhwirth, G.O., & Hermetter, A. (2008). Production technology and characteristics of Styrian pumpkin seed oil. European Journal of Lipid Science Technology 110: 637-644. https://doi.org/10.1002/ejlt.200700257.
    14. Ghorbanli, M., Bakhshi, G., Salimi, S., & Hedayati, M. (2011). Effect of water deficiency and its interaction with ascorbic acid on proline content, soluble sugars and activity of catalase and glutathione peroxidase enzymes in Nigella Sativa L. Iranian Journal of Medicinal and Aromatic Plants 26(4): 466-476. (In Persian with English abstract) https://doi.org/10.22092/ijmapr.2011.6662
    15. Gibson, S.I. (2000). Plant sugar-response pathways: part of a complex regulatory web. Plant Physiology 124: 1532-1539. https://doi.org/10.1104/pp.124.4.1532
    16. Hamada, A.M., & Al-Hakimi, A.M. (2009). Exogenous ascorbic acid or thiamine increases the resistance of sun flower and maize plants to salt stress. Acta Agronomica Hungarica 57: 335-347. https://doi.org/10.1556/AAgr.57.2009.3.8.
    17. Hendawy, S.F., Ezz, E.L., & Din, A.A. (2010). Growth and yield of Foeniculum vulgar var. azoricum as influenced by some vitamins and amino acids. Ocean Journal of Applied Science 3(1): 113-123.
    18. Hoshino, J.Y., Nonaka, M., & Oda, M. (1987). Physiological and ecological study on effect of cryoprolectant spray on cold hardiness of lettucc. Report of Rural Development Administration 29: 1-6.
    19. Jaswant, S., Sharma, K.K., Mann, S.S., Singh, R., & Grewal, G.P.S. (1994). Effect of different chemicals on yield and fruit quality of «LeConte» pear. Acta Horticulture 367: 210-212.
    20. Jellin, J.M., Gregory, P., Batz, F., Hitchens, K., Burson, S., Shaver, K., & Palacioz, K. (2000). Natural Medicines Comprehensive Database. Pharmacists Letter 1,530p.
    21. Jeromela, A.M., Marinkovic, R., Mijic, A., Jankulov, M., & Dunic, Z.Z. (2007). International relationship between oil yield and other quantitative traits in rapeseed (Brassica napus L.). Journal of Central European Agriculture 8(2): 290-306.
    22. Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress induced alteration in solute carbohydrate content in wheat seedlings. Crop Science 40: 482-487. https://doi.org/10.2135/cropsci2000.402482x.
    23. Khalid Hussein, Z., & Qader Khursheed, M. (2014). Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat under water stress conditions. Jordan Journal of Agricultural Sciences 10: 1-15.
    24. Kim, S.K., & Lagerstedt, H.B. (1985). Germination responses of filbert (Corylus avellana) pollen to pH, temperature, glucose, fructose, and sucrose. HortScience 20(5): 944-948. https://doi.org/10.21273/HORTSCI.20.5.944.
    25. Mashayekhi, K., & Atashi, S. (2012). Effect of foliar application of boron and sucrose on biochemical parameters of “Camarosa” strawberry. Journal of Plant Production 19(4): 157-171. (In Persian with English abstract). https://doi.org/20.1001.1.23222050.1391.19.4.9.1.
    26. Miguel, A., Rosales, Z., Juan, M., Ruiz, A., Hernandez, J., Soriano, T., Castilla, N., & Romero, L. (2006). Antioxidant content and as ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture 86: 1545-1551. https://doi.org/10.1002/jsfa.2546.
    27. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plant. Current Science 80(6): 758-763.
    28. Moing, A., Larglois, N., Svanella, L., Zanetto, A., & Gaudillere, J.P. (1997). Variability in sorbitol: sucrose, ratio in mature leaves of different Prunus amygdalus. Journal of the American Society Horticultural Science 122: 83 90. https://doi.org/10.21273/JASHS.122.1.83.

    30.. Moreno-Valenzuela, O.A., Minero-Garcia, Y., & Brito-Argaez, L. (2003). Immunocytolocalization of tryptophan decarboxylase in Catharanthus roseus hairy roots. Molecular Biotechnology 23: 11–18. https://doi.org/10.1385/MB:23:1:11.

    1. Murkovic, M., Hillebrand, A., Winker, H., & Pfannhauser, W. (1996). Variability of vitamin E content in pumpkin seeds (Cucurbita pepo L.). Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 202: 275-278. https://doi.org/10.1007/BF01206096.
    2. Najjar Khodabakhsh, A., & Chaparzadeh, N. (2015). The role of ascorbic acid in reduction of oxidative effects of salinity on Lepidium sativum L. Journal of Plant Research (Iranian Journal of Biology) 28(1): 175-185. (In Persian with English abstract). https://doi.org/20.1001.1.23832592.1394.28.1.16.1.
    3. Nasiri, Y., Baghban, Akbari, P., Nouraein, M., & Amini, R. (2020). Evaluation of farmyard and vermicompost application and spray of ascorbic acid and humic substances on dragonhead production (Dracocephalam moldavica L.). Agricultural Science and Sustainable Production 29(4): 83-101. (In Persian with English abstract)
    4. Noctor, G., & Foyer, C. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49: 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249.
    5. Phuong, M., Nguyen, E.M., & Niemeyer, K.E.D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry 123: 1235–1241. https://doi.org/10.1016/j.foodchem.2010.05.092.
    6. Pignocchi, C., & Foyer, C. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Current Opinion in Plant Biology 6: 379-389. https://doi.org/10.1016/s1369-5266(03)00069-4.
    7. Selahvarzi, Y., Goldani, M., Nabati, J., & Alirezaei, M. (2011). Effects of exogenous application of ascorbic acid on some physical-chemistry response of marjoram under salt stress. Iranian Journal of Horticultural Science 42: 159-167. (In Persian with English abstract)
    8. Shaheen, A., Fatma, M.R., Hoda, A., Habib, M., & Abdel, H. (2010). Nitrogen soil dressing and foliar spraying by sugar and amino acids as affected the growth, yield and its quality of onion plant. Journal of American Science 6(8): 420-427.
    9. Shalata, A., & Neumann, P.M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany 52: 2207-2211. https://doi.org/10.1093/jexbot/52.364.2207.
    10. Sheteawi, S.A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology 9: 473-478.
    11. Slinkard, K., & Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. Amrican Journal of Enology and Viticulture 28: 49-55. https://doi.org/10.5344/ajev.1974.28.1.49.
    12. Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51: 49-81. https://doi.org/10.1146/annurev.arplant.51.1.49.
    13. Smeekens, S., & Rook, F. (1997). Sugar sensing and sugar-mediated signal transduction in plants. Journal of Plant Physiology 115: 7-13.
    14. Smirnoff, N. (2011). Vitamin C: The metabolism and functions of ascorbic acid in plants. Advances in Botanical Research 59: 107-177. https://doi.org/10.1006/anbo.1996.0175.
    15. Soha, E., Nahed, G., & Bedour, H. (2010). Effect of water stress, Ascorbic acid and spraying time on some morphological and biochemical composition of Ocimum basilicum plant. American Journal of Science 6(12): 33-44.
    16. Taher Yehia, A., & Hassan, H.S.A. (2005). Effect of some chemical Treatments on Fruiting of Leconte pears. Journal of Applied Sciences Research 1(1): 35-42.
    17. Taqi, A.K., Mazid, M., & Firoz, M. (2011). A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of Agrobiology 28(2): 97-111. https://doi.org/10.2478/v10146-011-0011-x.
    18. Vwioko, E.D., Osawaru, M.E., & Erugun, O.L. (2008). Evaluation of okra Exposed to paint waste contaminated soil for growth, ascorbic acid and metal concentration. African Journal of General Agriculture 4(1): 39-48.
    19. Ward, J., Kuhn, M., Tegeder, M., & Frommer, W.B. (1998). Source transport in higher plants. International Review of Cytology 178: 41-71. https://doi.org/10.1016/S0074-7696(08)62135-X.
    20. Wind, J., Smeekens, S., & Hanson J. (2010). Sucrose: metabolite and signaling molecule. Phytochemistry 71: 1610-1614. https://doi.org/10.1016/j.phytochem.2010.07.007.
    21. Yadollahi, P., Javaheri, M.A., & Asgharipour, M.R. (2019). Effect of ascorbic acid and sodium nitroprusside foliar spraying on yield and qualitative characteristics of summer squash (Cucurbita pepo) at different levels of drought stress. Journal of Plant Ecophysiology 10(35): 88-101. (In Persian with English abstract). https://doi.org/20.1001.1.20085958.1397.10.35.9.0.
    22. Zhang, Y. (2013). Ascorbic acid in plants (biosynthesis, regulation and enhancement). Springer Briefs in Plant Science pp. 123.

     

     

CAPTCHA Image