افزایش ماندگاری گل بریدنی ژربرا رقم ‘Rosalin’ با استفاده از نانوکامپوزیت‌ها به عنوان محلول نگهدارنده

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشکده کشاورزی، دانشگاه ایلام. ایلام. ایران

2 دانشگاه تربیت مدرس تهران

3 گروه فیزیک، دانشکده علوم پایه، دانشگاه ولیعصر. رفسنجان. ایران

چکیده

ژربرا یکی از مهم­ترین گل­های شاخه بریده است که عمر گلجای کوتاهی دارد. مانند سایر گل­های شاخه بریده، یکی از نگرانی­های اصلی پس از برداشت این گل کاهش کیفیت آن است. کاربرد نانولوله‏های کربنی به عنوان محلول‏های نگهدارنده موجب افزایش جذب آب، تعادل روابط آبی و افزایش عمر گلجای گل‏های شاخه بریده می‎شود. تجمع، پراکندگی نامناسب و آبگریزی شدید از معایب نانولوله‏های کربنی است که مانع پراکنش مطلوب در محلول گلجای می‏شود. در این تحقیق برای افزایش پراکندگی نانولوله‏های کربنی چند دیواره از انواع پلیمرها (پلی وینیل پیرولیدون، پلی­اتیلن گلیکول و سورفکتانت غیریونی تریتون ایکس 100) استفاده شد تا تاثیر آن‏ها در ماندگاری گل شاخه بریده ژربرا مورد بررسی قرار گیرد. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار اجرا شد. تیمارهای آزمایش شامل شاهد (آب مقطر)، نانولوله­های کربنی عامل­دار شده با پلی وینیل پیرولیدون (1 و 2 میلی‏گرم بر لیتر)، نانولوله­های کربنی عامل­دار شده با پلی اتیلن گلیکول (1 و 2 میلی‏گرم بر لیتر) و نانولوله­های کربنی عامل­دار شده با تریتون ایکس 100 (1 و 2 میلی‏گرم بر لیتر) به صورت تیمار کوتاه مدت (24 ساعت) بودند. در این آزمایش عمر گلجای، وزن تر نسبی گل، میزان جذب آب، محتوای نسبی آب گلبرگ و محتوای نسبی آب ساقه اندازه‏گیری شد. نتایج نشان داد که بیشترین عمر گلجای با 5/22 روز مربوط به تیمار نانولوله­های کربنی عامل­دار شده با تریتون ایکس 100 با غلظت 2 میلی‏گرم بر لیتر بود که ماندگاری گل‏ها را حدود 8 روز نسبت به شاهد افزایش داد. نانوکامپوزیت­های موجود در محلول گلجای بر وزن تر نسبی و جذب آب ساقه های بریدنی تأثیر داشتند. در این مطالعه مشخص شد که جذب آب الگوی مشابه وزن تازه گل دارد و ظرفیت جذب آب ساقه به تدریج با گذشت زمان کاهش می­یابد. بر اساس نتایج، تغییرات وزن تر و جذب آب در ساقه گل‏های تیمار شده با نانولوله­های کربنی عامل­دار شده با پلی اتیلن گلیکول با غلظت 1 میلی­گرم بر لیتر کندتر بود. استفاده از نانولوله­های کربنی عامل­دار شده با تریتون ایکس 100 با غلظت 1 میلی گرم بر لیتر در محلول گلجای سبب شد تا محتوای نسبی آب گلبرگ و ساقه حفظ شود. تصویربرداری با میکروسکوپ الکترونی روبشی تایید کننده حرکت نانولوله‏ها به بخش‏های بالایی گل و جذب و جابجایی آن‏ها در ساقه گل بریدنی ژربرا بود. یافته‌های تحقیق حاضر نشان داد که جمعیت باکتری در انتهای ساقه تیمار شاهد بیشتر از جمعیت باکتریایی انتهای ساقه گل‌های تیمار شده با نانوکامپوزت­ها بود. نانولوله‏های کربنی چند دیواره همراه با پلی وینیل پیرولیدون، پلی اتیلن گلیکول و تریتون ایکس 100 ترکیبات موفقی در افزایش جذب آب، حفظ کیفیت و افزایش ماندگاری گل‏ شاخه بریده ژربرا بودند. بنابر نتایج این آزمایش، حذف موانع جریان آب در ساقه بریده به حفظ ماندگاری و تاخیر در پیری گل کمک می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Increasing Vase Life of Cut Gerbera cv. Rosalin Flowers Using Nanocomposites as Preservative Solution

نویسندگان [English]

  • Simin Garavand 1
  • S.F. Mousavi 2
  • S.H. Hekmatara 3
1 Department of Horticultural Sciences, Faculty of Agriculture, Ilam University. Ilam, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modarres, Tehran
3 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
چکیده [English]

Introduction
 Gerbera is one of the most important cut flowers that has a short vase life. Like other cut flowers, one of the main concerns after harvesting this flower is reducing its quality. The application of carbon nanotubes as preservative solutions increase water uptake, balances water relations, and increases the vase life of cut flowers. Agglomeration, lack of proper dispersion, and severe hydrophobicity are the disadvantages of carbon nanotubes that prevent optimal dispersion in the solution. In this study, polymers (polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), and non-ionic surfactant Triton X-100) were used to increase the dispersion of multiwalled carbon nanotubes (MWCNTs). Their effect on the longevity of cut gerbera flowers was also investigated.
Materials and Methods
The experiment was performed as a factorial experiment in a completely randomized design with four replications. Gerbera (Gerbera jamesonii cv. Rosalin) flowers with fully opened ray florets were purchased. During transportation, each cut flower was covered individually with a cellophane sheet and was placed inside a box of paper to minimize water loss. Gerbera stems were placed in a vase solution as pulse treatment for 24h. Treatments included various concentrations of nanocomposite including control (distilled water), MWCNTs-PVP nanocomposite (1 and 2 mg L-1), MWCNTs-PEG nanocomposite (1 and 2 mg L-1), and MWCNTs-Triton X-100 nanocomposite (1 and 2 mg L-1). Distilled water was used for the control treatment. After the cut gerbera flowers underwent pulse treatment, they were placed individually into glass vases filled with distilled water. Throughout the experiment, the vase life, relative fresh weight, water uptake, relative water content of petals and stems, as well as the bacterial population at the end of the stem were measured.
Results and Discussion
 The study showed that the MWCNTs-Triton X-100 with a concentration of 2 mg L-1 provided the longest vase life of cut flowers, with a duration of 22.5 days, which was an 8-day increase compared to the control. The other nanocomposites (MWCNTs-PVP and MWCNTs-PEG) also improved the longevity of the cut flowers compared to the control. The nanocomposites in the vase solution affected the relative fresh weight and water uptake of the cut stems. The study found that the water uptake pattern was similar to the fresh weight of the flower, and the water uptake capacity of the stem gradually decreased with time. The MWCNTs-Triton X-100 with a concentration of 1 mg L-1 resulted in the highest amount of water uptake. Cut flowers pulsed with this concentration exhibited the highest relative water content in both petals and stems. The application of MWCNTs-PEG nanocomposite (1 mg L-1) in vase solution increased the relative fresh weight of gerbera cut flowers. Our findings suggest that MWCNTs can increase water uptake, resulting in increased fresh weight in the cut stem. SEM analysis revealed that after the evaluation period, MWCNTs were detected in the stem of cut gerbera and deposited on the stem's internal surface. Our finding showed that the bacterial population at the end of the stem in control treatment during the vase life period was higher than the bacterial population at the end of the stem of flowers treated with MWCNTs-Triton X-100 treatment (2 mg L-1). Therefore, reducing bacterial blockages in the xylem vessels improves the water uptake and vase life of cut flowers.
Conclusion
 When gerbera cut flowers are harvested and kept in vase solutions, they face some challenges including wounding and water stress. Continuity of water flow in cut flower stem after cutting is an important factor in determining postharvest quality and longevity of cut flowers. Applying a solution containing well-dispersed MWCNTs is a novel approach for facilitating the entry of this nanotube into plants. The use of a composite of MWCNTs with X-100, PVP, and PEG exhibits excellent dispersion properties in the aqueous media of vase solution. These nanocomposites were successful compounds in increasing water uptake, maintaining fresh weight, and increasing the vase life of gerbera cut flowers. The findings of the present study showed that nanocomposites inhibit bacterial growth. These results suggest that the elimination of barriers to water flow in the cut stem helps to keep the longevity and delayed senescence.
 

کلیدواژه‌ها [English]

  • Bacteria
  • Multi-walled carbon nanotubes
  • Non-ionic surfactant
  • Vase life
  • Water uptake
  1. Abd-El-Hady, W.M.F. (2020). Effect of potassium nitrate and adenosine triphosphate on pre-and post-harvest gerbera (Gerbera jamesonii) Plants. Scientific Journal of Flowers and Ornamental Plants 7(3): 337-348.‏ http://doi.org/10.21608/sjfop.2020.114574.
  2. Abdoli, F., Dehestani Ardakani, M., & Gholamnezhad, J. )2019). Improving vase life and qualitative properties of cut lisianthus (Eustoma grandiflorum (Raf.) Shinn.) by tragacanth gel and hot water. Flower and Ornamental Plants 3(2): 43-54.
  3. Ahmadi-Majd, M., Mousavi-Fard, S., Rezaei Nejad, A., & Fanourakis, D. (2022). Carbon nanotubes in the holding solution stimulate flower opening and prolong vase life in carnation. Chemical and Biological Technologies in Agriculture 9(1): 1-22. http://doi.org/1186/s40538-021-00264-1.
  4. Ahmadi-Majd, M., Rezaei Nejad, A., Mousavi-Fard, S., & Fanourakis, D. (2021). Postharvest application of single, multi-walled carbon nanotubes and nanographene oxide improves rose keeping quality. The Journal of Horticultural Science and Biotechnology 1-15. http://doi.org/1080/14620316.2021.1993755.
  5. Amin, O. A. (2017). Influence of Nanosilver and Stevia extract on cut Anthurium Middle East Journal of Applied Sciences 7(2): 299-313.
  6. Amingad, V., Sreenivas, K.N., Fakrudin, B., Seetharamu, G.K., Shankarappa, T.H., & Venugopalan, R. (2017). Comparison of silver nanoparticles and other metal nanoparticles on postharvest attributes and bacterial load in cut roses var. Taj Mahal. International Journal of Pure and Applied Bioscience 5(6): 579-584. http://doi.org/18782/2320-7051.2610.
  7. Atefepour, E., Saadatian, M., Asil, M.H., & Rabiei, B. (2021). Effect of silver nano particles and 8-hydroxyquinoline citrate on the longer life of cut Gerbera (Gerbera jamesonii)'Sunway'flowers. Scientia Horticulturae289: 110474. http://doi.org/1016/j.scienta.2021.110474.
  8. Avilala, D.P., Lakshmi, K.S., Prasad, T.N.V.K.V., Bhaskar, V.V., Ramaiah, M., & Kadiri, L. (2021). Effect of nano silver and silver nitrate on vase life of gerbera (Gerbera jamesonii) cv. Madagascar. The Pharma Innovation Journal 10(4): 967-970. http://doi.org/22271/chemi.2021.v9.i1ah.11594.
  9. Bahremand, S., Razmjoo, J., & Farahmand, H. (2014). Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). International Journal of Horticultural Science and Technology1(1): 67-77. http://doi.org/10.22059/ijhst.2014.50519.
  10. Balestra, G.M., Agostini, R., Varvaro, L., Mencarelli, F., & Bellincontro, A. (2005). Bacterial populations related to Gerbera (" Gerbera jamesonii" L.) stem break.  Phytopathol Mediterr 44: 291–299.
  11. Bankole, M.T., Abdulkareem, A.S., Mohammed, I.A., Ochigbo, S.S., Tijani, J.O., Abubakre, O.K., & Roos, W.D. (2019). Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Scientific Reports9(1): 1-19. http://doi.org/10.1038/s41598-018-37899-4.
  12. Camargo, P.H.C., Satyanarayana, K.G., & Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research 12(1): 1-39. http://doi.org/1590/S1516-14392009000100002.
  13. Chehrazi, M., Pourghasemi, D., & Khoshbakht, M. (2018). The effect of planting methods and calcium nanoparticles spray on quality, quantity and vase life of Gladiolus hybrida Magma. Journal of Plant Productions 41(2): 55-66.
  14. Dole, J. M. & Wilkins, H. F. (2004). Floriculture: Principles and Species. Pearson Prentice Hall.
  15. El-Serafy, R.S. (2019). Silica Nanoparticles Enhances Physio-Biochemical Characters and Postharvest Quality of L. Cut Flowers. Journal of Horticultural Research, 27(1): 47-54. DOI: 10.2478/johr-2019-0006.
  16. Fatemi, S.M., & Foroutan, M. (2015). Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. Journal of The Iranian Chemical Society12(11): 1905-1913.‏ http://doi.org/1007/s13738-015-0665-1.
  17. Fathi, Z., Nejad, R.A.K., Mahmoodzadeh, H., & Satari, T.N. (2017). Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis ).‏ Journal of Plant Production Research 57(3): 228-236. http://doi.org/10.1515/jppr-2017-0032.
  18. García-González, A., Soriano-Melgar, L.D.A.A., Cid-López, M.L., Cortez-Mazatán, G.Y., Mendoza-Mendoza, E., Valdez-Aguilar, L.A., & Peralta-Rodríguez, R.D. (2022). Effects of calcium oxide nanoparticles on vase life of gerbera cut flowers. Scientia Horticulturae291: 110532.  http://doi.org/10.1016/j.scienta.2021.110532.
  19. Gerabeygi, K., Roein, Z., & Rezvanipour, S. (2021). Control of stem bending in cut gerbera flowers through application of dithiothreitol and thioglycolic acid as wound reaction inhibitors. The Journal of Horticultural Science and Biotechnology96(5): 653-662. http://doi.org/1080/14620316.2021.1887768.
  20. Gopannagari, M., Kumar, D.P., Park, H., Kim, E.H., Bhavani, P., Reddy, D.A., & Kim, T.K. (2018). Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Applied Catalysis B: Environmental236: 294-303. http://doi.org/1016/j.apcatb.2018.05.009.
  21. Haberman, A., Zelinger, E., & Samach, A. (2017). Scanning electron microscope (SEM) imaging to determine inflorescence initiation and development in olive. Bio-Protocol 7(19): e2575-e2575.‏ http://doi.org/21769/BioProtoc.2575.
  22. Haghighi, M., & da Silva, J.A.T. (2014). The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology 17(4): 201-208.‏ http://doi.org/1007/s12892-014-0057-6.
  23. Hassan, F.A.S., Ali, E.F., & El-Deeb, B. (2014). Improvement of postharvest quality of cut rose ‘First Red’by biologically synthesized silver nanoparticles. Scientia Horticulturae 179: 340-348. http://doi.org/10.1016/j.scienta.2014.09.053.
  24. He, S., Joyce, D.C., Irving, D.E., & Faragher, J. D. (2006). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’inflorescences. Postharvest Biology and Technology, 41(1): 78-84. http://doi.org/10.1016/j.postharvbio.2006.03.002.
  25. Hema, P., Bhaskar, V.V., Dorajeerao, A.V.D., & Suneetha, D.R.S. (2018). Effect of post-harvest application of biocides on vase life of cut gerbera (Gerbera jamesonii Bolus ex. Hook) cv. Alppraz. International Journal of Current Microbiology and Applied Sciences http://doi.org/10.20546/ijcmas.2018.703.300.
  26. Jamali Moghadam, H., & Hassanpour Asil, M. (2021). Improving morpho-physiological characteristics and extending vase life of Lily (Lilium LA Hybrid) cv. Original Love using gibberellic acid and humic acid. Flower and Ornamental Plants 6(1): 49-70.
  27. Jamaloei, B.Y. (2009). Insight into the chemistry of surfactant-based enhanced oil recovery processes. Recent Patents on Chemical Engineering2(1): 1-10. http://doi.org/2174/1874478810902010001.
  28. Joseph, S., & Aluru, N.R. (2008). Why are carbon nanotubes fast transporters of water? Nano Letter8(2): 452-458.‏ http://doi.org/1021/nl072385q.
  29. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., &Biris, A.S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano3(10): 3221-3227. http://doi.org/10.1021/nn900887m.
  30. Koczkur, K.M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S.E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions 44(41): 17883-17905. http://doi.org/1039/C5DT02964C.
  31. Koob, A.O., & Borgens, R.B. (2006). Polyethylene glycol treatment after traumatic brain injury reduces β‐amyloid precursor protein accumulation in degenerating axons. Journal of Neuroscience Research 83(8): 1558-1563.‏ http://doi.org/10.1002/jnr.20837.
  32. Lahiani, M.H., Dervishi, E., Ivanov, I., Chen, J., & Khodakovskaya, M. (2016). Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27(26): 265102.‏ http://doi.org/10.1088/0957-4484/27/26/265102.
  33. Langroudi, M.E., Hashemabadi, D., KalateJari, S., & Asadpour, L. (2020). Effects of silver nanoparticles, chemical treatments and herbal essential oils on the vase life of cut alstroemeria (Alstroemeria ‘Summer Sky’) flowers. The Journal of Horticultural Science and Biotechnology95(2): 175-182. http://doi.org/1080/14620316.2019.1657786.
  34. Liao, S., Zhang, Y., Pan, X., Zhu, F., Jiang, C., Liu, Q., & Chen, L. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosaInternational Journal of Nanomedicine14: 1469. http://doi.org/10.2147/IJN.S191340.
  35. Liné, C., Larue, C., & Flahaut, E. (2017). Carbon nanotubes: Impacts and behaviour in the terrestrial ecosystem-A review. Carbon 123: 767-785.‏ http://doi.org/10.1016/j.carbon.2017.07.089.
  36. Liu, J., He, S., Zhang, Z., Cao, J., Lv, P., He, S., Cheng, G. &  Joyce, D. C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut Gerbera Ruikou flowers. Postharvest Biology and Technologoy 54: 59–62. http://doi.org/10.1016/j.postharvbio.2009.05.004.
  37. Liu, Z., Robinson, J.T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society130(33): 10876-10877.  http://doi.org/10.1021/ja803688x.
  38. Madadzadeh, N., Hassanpour Asil, M., & Roein, Z. (2014). Effect of Essential Oils and Silver Nanoparticles (SNP) on Vase Life of Alstroemeria Cut Flowers (cv. Sukari). Iranian Journal of Horticultural Science 45(1): 67-78.
  39. Maity, T.R., Samanta, A., Saha, B., & Datta, S. (2019). Evaluation of Piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of GladiolusBulletin of the National Research Centre43(1): 1-11. http://doi.org/1186/s42269-019-0051-8.
  40. Naing, A.H., & Kim, C.K. (2020). Application of nano-silver particles to control the postharvest biology of cut flowers: A review. Scientia Horticulturae270: 109463.  http://doi.org/10.1016/j.scienta.2020.109463.
  41. Nazari, F., & Saba, M.K. (2017). Combination effect of 1-methylcyclopropene (1-MCP) with ajowan essential oil and silver nanoparticles on postharvest life of gerbera (Gerbera jamesonii) cut flowers. HortScience52(11): 1550-1555. http://doi.org/10.21273/HORTSCI12299-17.
  42. Paul, D., Jannat, A., Mahmud, A.A., Akhter, M.J., & Mahmood, S. (2021). Preservative solutions on vase life and quality of cut Polianthes tuberosaOrnamental Horticulture 27: 417-424. http://doi.org/10.1590/2447-536X.v27i3.2375.
  43. Perik, R.R., Razé, D., Ferrante, A., & van Doorn, W.G. (2014). Stem bending in cut Gerbera jamesonii flowers: Effects of a pulse treatment with sucrose and calcium ions. Postharvest Biology and Technology98: 7-13.‏  http://doi.org/10.1016/j.postharvbio.2014.06.008.
  44. Perik, R.R., Razé, D., Harkema, H., Zhong, Y., & van Doorn, W. G. (2012). Bending in cut Gerbera jamesonii flowers relates to adverse water relations and lack of stem sclerenchyma development, not to expansion of the stem central cavity or stem elongation. Postharvest Biology and Technology74: 11-18.  http://doi.org/10.1016/j.postharvbio.2012.06.009.
  45. Pisal, D.S., Kosloski, M.P., and Balu-Iyer, S.V. (2010). Delivery of therapeutic proteins. Journal of Pharmaceutical Sciences99(6): 2557-2575.‏ http://doi.org/10.1002/jps.22054.
  46. Rahman, M.M., Ahmad, S.H., Mohamed, M.T.M., & Ab Rahman, M.Z. (2019). Improving the vase life of cut Mokara red orchid flower using leaf extracts with silver nanoparticles. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences89(4): 1343-1350. http://doi.org/1007/s40011-018-1055-0.
  47. Rashidiani, N., Nazari, F., Javadi, T., & Samadi, S. (2020). "Copper nanoparticles (CuNPs) increase the vase life of cut carnation and Chrysanthemum flowers: antimicrobial ability and morphophysiological improvements." Ornamental Horticulture26: 225-235. http://doi.org/1007/s40011-018-1055-0.
  48. Saifuddin, N., Raziah, A.Z., & Junizah, A.R. (2013). Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry 1-18. http://doi.org/10.1155/2013/676815.
  49. Shabanian, S., Esfahani, M.N., Karamian, R., & Tran, L.S.P. (2018). Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biology and Technology137: 1-8. http://doi.org/10.1016/j.postharvbio.2017.11.009.
  50. Smart, R.E., and Bingham, G.E. 1974. Rapid estimates of relative water content. Plant Physiology53(2): 258-260.‏ http://doi.org/10.1104/pp.53.2.258.
  51. Solgi, M. (2020). Application of Biogenic and Non-biogenic Synthesized Metal Nanoparticles on Longevity of Agricultural Crops. In Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore, 205-220. http://doi.org/1007/978-981-15-2985-6_12.
  52. Sunpapao, A., Wonglom, P., Satoh, S., Takeda, S., & Kaewsuksaeng, S. (2019). Pulsing with Magnesium Oxide Nanoparticles Maintains Postharvest Quality of Cut Lotus Flowers (Nelumbo nucifera Gaertn) ‘Sattabongkot’and ‘Saddhabutra’. The Horticulture Journal 87: 1-7. http://doi.org/2503/hortj.UTD-087.
  53. Tiwari, D.K., Dasgupta-Schubert, N., Cendejas, L.V., Villegas, J., Montoya, L.C., & García, S. B. (2014). Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience4(5): 577-591. http://doi.org/1007/s13204-013-0236-7.
  54. Uthaman, A., Lal, H. M., Li, C., Xian, G., & Thomas, S. (2021). Mechanical and water uptake properties of epoxy nanocomposites with surfactant-modified functionalized multiwalled carbon nanotubes. Nanomaterials11(5): 1234. http://doi.org/10.3390/nano11051234.
  55. Villagarcia, H., Dervishi, E., de Silva, K., Biris, A.S., & Khodakovskaya, M.V. (2012). Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15): 2328-2334.‏ http://doi.org/1002/smll.201102661.
  56. Wu, Z., Huang, X., He, S., Pang, Z., Lin, X., Lin, S., & Li, H. (2019). Transcriptomics profile reveals the temporal molecular events triggered by cut-wounding in stem-ends of cut ‘Tiber’ lily flowers. Postharvest Biology and Technology 156: 110950.‏ http://doi.org/1016/j.postharvbio.2019.110950.
  57. Zhou, Y., Fang, Y., & Ramasamy, R.P. (2019). Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors19(2): 392. http://doi.org/3390/s19020392.

 

 

CAPTCHA Image