تأثیر گونه‌های مختلف قارچ میکوریزا بر عملکرد دو رقم سیب‌زمینی در شرایط کنترل شده

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 شرکت فناوران بذر یکتا

چکیده

سیب ‌زمینی یکی از پر تولیدترین محصولات کشاورزی و از منابع غذایی با ارزش در کشورهای در حال توسعه می‌باشد. قارچ‌های میکوریزا نیز همزیست با ریشه اغلب گیاهان زراعی بوده و سبب بهبود در رشد و عملکرد آن‌ها می‌شوند. در این راستا مطالعه‌ای به منظور بررسی تأثیر گونه‌های مختلف قارچ میکوریزا بر عملکرد ارقام سیب‌زمینی انجام شد. آزمایش به صورت فاکتوریل بر پایه بلوک های کامل تصادفی با هشت تیمار (هفت گونه قارچ میکوریزا (G. mosseae،G. intraradices ، G. fasciculatum،G. versiform ، G. claroideum ، G. caledonium، A. longula) و تیمار شاهد ) و دو رقم سیب‌زمینی آگریا و فونتانه در سه تکرار انجام شد. نتایج نشان داد از نظر تعداد غده و مقدار فسفر اندام هوایی بین دو رقم آگریا و فونتانه تفاوت معنی‌داری وجود نداشت اما سطح برگ، وزن خشک اندام هوایی و وزن کل غده‌ها در رقم فونتانه بیش‌تر از آگریا بود. تیمار شاهد و قارچ‌های A. longula به ترتیب کم‌ترین (22 و 21 گرم) و گونه‌های G.intraradices، G. mosseaeو G. versiform به ترتیب بیش‌ترین (60، 54 و 51 گرم) وزن غده را داشتند. قارچ G. mosseae در هر دو رقم آگریا و فونتانه تولید غده بالاتری (سه غده) داشت. متوسط وزن غده نیز در سیب‌زمینی‌های تیمار شده با‌ گونه G. versiform بیش‌تر از سایر تیمارها بود. گیاه میکوریزا توانایی جذب فسفر بالاتری را نسبت به گیاه غیر میکوریزا نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Different Species of Mycorrhizal Fungi on Yield of Two Potatoes Cultivars under Controlled Conditions

نویسندگان [English]

  • saeed khaninejad 1
  • Hamid Reza Khazaei 1
  • Jafar Nabati 2
  • Mohammad Kafi 1
1 Ferdowsi University of Mashhad
2 Ferdowsi University of Mashhad
چکیده [English]

Potato is one of the most productive crops in agriculture and is a valuable food source in developing countries. Mycorrhizal fungi involve a symbiosis with most of crop roots and leads to improve the crops growth and yield. In order to investigate the effect of mycorrhiza fungi species on yield of potato cultivars a factorial experiment was arranged in a randomized complete block design with eight treatments (seven mycorrhiza fungi species and control treatment) on two potato cultivars, Agria and Fontane, in three repetitions. Results show that there is no significant difference in tuber yield and shoot P content in Agria and Fontane, but leaf area and shoot dry weight and total tubers weight in Fontane were higher than Agria. Control treatment and A. longula had the least and G. mosseae، G.intraradices and G. versiform had the highest tuber weights. Among fungi G. mosseae produced the highest tuber yield in both cutivars. Inoculation of root medium with G. versiform produced the highest average tubers weight compared to other treatments. Phosphorus content of treated plants with mycorrhiza was higher than control.

کلیدواژه‌ها [English]

  • Agria
  • Fontane
  • Mycorrhiza
1- Abbott L.K., and Robson A.D. 1985. Formation of external hyphae in soil by four species of vesicular arbuscular mycorrhizal fungi. New Phytologist, 99: 245-255.
2- Bayrami S., Mirshekari B., and Farahvash F. 2012. Response of potato (Solanum tuberosum) to seed inoculation with mycorrhiza strains in different phosphorus fertilization. Journal of Food Agriculture & Environment, 10: 726 – 728.
3- Bolan N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake on phosphorus by plants. Plant Soil, 134:187-207.
4- Cardoso I.M., and Kuyper T.W. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 116: 72–84.
5- Carling D.E., and Brown M.F. 1982. Anatomy and physiology of vesicular-arbuscular and non mycorrhizal roots. Phytopathology, 72: 1108 –1114.
6- Chen J. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. October, 16–20. Thailand. 11 pp.
7- Cui M., and Caldwell M.M. 1996. Facilitation of plat phosphate acquisition by arbuscular mycorrhiza from enriched soil patches roots and hyphae exploiting the same soil volume. New Phytologist, 133(3): 453-460.
8- Duffy E.M., and Cassells A.C. 2000. The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Applied Soil Ecology, 15: 137–144.
9- Ebhin Masto R., Chhonkar P.K., Singh D., and Patra A.K. 2006. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisoil. Soil Biology and Biochemistry, 38: 1577–1582.
10- Fabrio C. Martin de Santa Olalla F., and de Juan J.A. 2001. Yeild and size of deficit irrigated potatoes. Agriculture Water Management, 48: 255–266.
11- FAO. 2010. Food composition database of potato varieties (http://www.fao.org/ infoods/index_en.stm.
12- George E., Haussler K.U., Vetterlien D., Gorgus E., and Marschner H. 1992. Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany, 70(11): 2130-2137.
13- Ghazi A.K., and John Zak B.M. 2003. Field response of wheat to arbuscular mycorrhizal fungi and drought stress.Mycorrhiza, 14: 263-269.
14- Gupta M.L., Prasad A., Ram M., and Kumar S. 2002. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasiculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresource Technology, 81: 77–79.
15- Keijbets M. 2008. Potato processing for the consumer. Developments and future chalenges. Potato Research, 51: 271–281.
16- Khalvati M.A., Mozafar A., and Schmidhalter U. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology Stuttgart, 7(6): 706–712.
17- McArthur D.A.J., and Knowles N.R. 1993. lnfluence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiology, 101: 147–160.
18- Medina O.A., Kretschmer A.E., and Sylvia D.M. 1990. Growth response of field-grown Siratro (Macroptilium atropurpureum Urb.) and Aeschynomene americana L. to inoculation with selected vesicular-arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 9(1): 54–60.
19- Murashige T., Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473-497.
20- Murphy J., and Riley J.P. 1962. A modified single solution method for the determination of phosphorous in natural waters. Analytica Chemica Acta, 27: 31-36
21- Niemira B.A., Safir G.R., Hammerschmidt R., and Bird G.W. 1995. Production of prenuclear minitubers of potato with peat-based arbuscular mycorrhizal fungal inoculum. Agronomy Journal, 87: 942– 946.
22- NIVAP. Nederlands Potato Consultative Foundation. The European Cultivated Potato Database. http://www.europotato.org/display_source.php?datasource=19
23- Ortus I., and Harris P.J. 1996. Enhancement uptake of phosphorus by mycorrhizal sorghum plant as influenced by forms of nitrogen. Plant and Soil, 184: 225–264.
24- Panwar J., and Tarafdar J.C. 2006. Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. In Thar Desert. Applied Soil Ecology, 34: 200–208.
25- Rai R., Jalali B., and Chand H. 1990. Improved yields in potato through mycorrhizal infection. Trends in Mycorrhizal Research. Proceedings of the National Conference on Mycorrhizae, Feb. 14-16, Haryana Agriculture University, Hisar, India, pp. 148–149.
26- Sharma A.K. 2002. Biofertilizers for Sustainable Agriculture. Agrobios, India. 407 pp.
27- Smith S.E. 1982. Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytologist, 90: 293-303.
28- Smith S.E., and Read D.J. 1997. Mycorrhizal Symbiosis. Acadamic Press, 605p.
29- Srivastava N.K., and Basu M. 1995. Occurrence of vesicular arbuscular mycorrhizal fungi in some medicinal plants. In: Mycorrhizae: Biofertilizers for the Future. Adholeya, A., Singh, S. (Eds.). Third National Conference on Mycorrhiza, TERI, Delhi, India, pp. 58–61.
30- Subramanian K.S., and Charest C. 1999. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 9:69-75.
31- Tarafdar C., and Marschner H. 1994. Phosphate activity in the rizosphere and hyphosphere of VA mycorrhizaal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry, 26: 287-295.
32- Tilak, K.V.B.R., N. Ranganayaki, K.K. Pal, R. De, A. K. Saxena, C. Shekhar Nautiyal, Shilpi Mittal, A. K. Tripathi and B. N. Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science, 89: 136–150.
33- Vosatka M., and Gryndler M. 1999. Treatment with culture fractions from Pseudomonas putida modifes the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Applied Soil Ecology, 11: 245–251.
34- Yildiz Dasgan H., Kusvuran S., and Ortas I. 2008. Responses of soilless grown tomato plants to arbuscular mycorrhizal fungal (Glomus fasciculatum) colonization in re-cycling and open systems. African Journal of Biotechnology, 20: 3606-3613.
35- Yao M.K., Tweddell R.J., and Desilets H. 2002. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza, 12:235–242.