بررسی اثرات غلظت بی‌کربنات کلسیم بر واکنش فیزیولوژیکی و صفات رشدی ارقام بادام پیوند شده بر روی پایه رویشی GN15

نوع مقاله : مقالات پژوهشی

نویسندگان

1 موسسه تحقیقات علوم باغبانی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج ایران

2 دانشگاه بوعلی سینا همدان

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان

4 گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد کرج

چکیده

زردی برگ به دلیل اختلال جذب عناصر غذایی بویژه آهن و در خاک­های آهکی از مشکلات تغذیه‌ای درختان میوه نظیر بادام می‌باشد. همچنین در شدت و تحمل به اختلال جذب عناصر غذایی مانند آهن بین ارقام بادام پیوند شده روی پایه‌ی GN15 اختلاف وجود دارد. بنابراین به منظور بررسی اثر بی‌کربنات کلسیم بر خصوصیات فیریولوژیکی و شاخص­های رشدی در تعدادی از ارقام بادام، آزمایشی به صورت فاکتوریل و بر پایه طرح کاملاً تصادفی با دو عامل استفاده از بی‌کربنات کلسیم  به صورت جرم مولی یا مولکول گرم در پنج سطح (صفر، 10، 20، 30 و 40 میلی­مول در لیتر) و ارقام بادام در ده سطح شامل ارقام سوپرنووا، 25-1، 40-13، مامایی، 16-1، کاغذی، سهند، 200A، 7-9 پیوند شده بر روی پایه GN15 و همچنین پایه GN15 (عدم انجام پیوند) انجام شد. آزمایش در شرایط گلخانه و به صورت گلدانی اجرا شد. بر اساس نتایج حاصله شاخص کلروفیل، کلروفیل a، b، کارتنوئید برگ‌ها و شاخص‌های رشدی در تمام ارقام کاهش معنی­دار داشتند (p≤0.05). با مقایسه میانگین­ها مشخص شد که با افزایش سطح بی‌کربنات کلسیم، مقدار فلورسانس حداقل کلروفیل افزایش و میزان فلورسانس حداکثر کاهش یافت. در نتیجه نسبت فلورسانس متغیر به فلورسانس حداکثر از 81/0 در گیاهان بدون تیمار به 67/0 در پایه GN15، سوپرنوا و  7-9 پیوند شده روی پایه GN15 کاهش نشان داد. در مجموع رقم­های 25-1 و کاغذی متحمل‌ترین و رقم­های 7-9 و سوپرنوا حساس­ترین رقم‌ها نسبت به افزایش بی‌کربنات آب آبیاری تشخیص داده شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Calcium Bicarbonate Effects on Physiological Reaction and Growth Indices of Almond Cultivars Grafted on GN15 Rootstock

نویسندگان [English]

  • A. Imani 1
  • Kh. Parvizi 2
  • H. Beyrami jam 3
  • E. Hadavi 4
1 Horticultural Sciences Research Institute Agricultural Research, Education and Extension O
2 Hamedan
3 Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.
4 Horticultural Science Department, Azad University, Karaj, Iran
چکیده [English]

Introduction: Iron chlorosilicon caused by calcium carbonate can be controlled widely with iron chelate in nutrition management of gardens, but it has high costs and potential environmental hazards. Such constraints have led to alternative strategies for managing iron nutrition in relation to soil and plant parameters. Almond rootstocks and almond x peach hybrids (GF 677) are widely used as the rootstock for almonds, peaches and nectarines in the Mediterranean basin, moreover, in addition to its drought resistance, has a high tolerance to iron chlorosis. Different references of almond tree have introduced this fruit tree as a chlorosis resistant, but it shows different ranges of chlorosis when grafted on almond x peach hybrids such as GF677 and GN15. Therefore, this study carried out to evaluate the effect of calcium bicarbonate on some physiological characteristics of selected almond cultivars on the GN15 rootstock.
Materials and Methods: This research was conducted during 2015 and 2016 to evaluate the resistance to bicarbonate and the amount of chlorosis produced in selected almond cultivars on the hybrid rootstock (peach and almond) as a factorial experiment with completely randomized design with three replications in greenhouse conditions. The first factor consisted of different concentrations of calcium bicarbonate (0, 20, 10, 30 and 40 mmol L-1) and the second factor included nine selected almond cultivars grafted to the GN15 rootstock and a GN15 (non-grafted) rootstock. Almond cultivars included 9 cultivars including Supernova, 25-1, 40-13, Mamaei, 16-1, Kaghazi, Sahand, 200A, 7-9, and GN15 rootstock. Each plot included a pot, where the rootstock planted. In the spring, the cultivars and GN15 rootstock planted in plastic pots with soil compositions including perlite (50%) and cocopeat (50%). After sufficient growth of these rootstocks in the pots, almond cultivars were grafted onto them and immediately after the transplantation, the calcium bicarbonate treatments began after proper growth of the scions. In order to apply bicarbonate treatment, 1.62, 3.23, 4.86 and 6.48 g L-1 calcium bicarbonate (Ca (HCo3) 2) were added to the pots. In addition, 10% of calcium bicarbonate added also to the pots because of the deficiency of 10% chemical purity. After applying the treatments, chlorophyll, chlorophyll a and b, carotenoids, chlorophyll fluorescence were measured in two stages at intervals of 30 and 90 days. After the end of the growth period, the length and diameter of the current season branches and the leaf length and width of each almond cultivar were measured and recorded in different treatments. Two-way ANOVA of the data was carried out using SAS software (v. 8.02, SAS Institute, Cary, NC) and the means were compared based on Duncan’s multiple range test.
Results and Discussion: Based on the ANOVA results, it was determined that the effects of calcium bicarbonate, cultivar and their interactions on the content of chlorophyll a and b were statistically significant (p≤0.01). The lowest decrease levels of chlorophyll a and b were found in the leaflets of Kaghazi, Mamaei, saplings, 25-1, and 40-13 cultivars, but the highest decrease was observed in Supernova cultivar, 7-9, and GN15. The reasons for decreasing the chlorophyll content of the leaf with the increase of bicarbonate levels can be related to iron deficiency and its deactivation and the role of iron in the synthesis of chlorophyll. Nevertheless, the difference for chlorophyll depletion at different levels of bicarbonate in different cultivars can be due to the capacity of these cultivars to tolerate higher levels of bicarbonate and the possibility of the synthesis of chloroplastic proteins in leaf cells even with a relative lack of iron. In all cultivars, as well as the GN15 rootstock, the level of carotenoids decreased with increasing concentrations of calcium bicarbonate. However, the response of the cultivars was different. Under bicarbonate conditions, reducing leaf iron concentration reduces chlorophyll and carotenoids. The results of the mean comparison showed that bicarbonate induced height growth reduction and branch diameter in the current season, while the reaction of the studied rootstocks were also different. So that the highest decrease in growth rate was observed in Supernova, 7-9 cultivars and GN15 rootstock and the lowest decrease of growth rate were found in the cultivars of Kaghazi, 1.25-1 and -40-13. High concentrations of bicarbonate, by disabling and decreasing iron absorption, indirectly reduces DNA synthesis, cell division, and thus decreases cell growth and plant biomass. The results of this study are in agreement with Ghasemi et al. (2010) in different responses of the rootstock to bicarbonate concentration on the height and diameter decreasing of current season branch. Mean comparison of data showed that the length and width of leaf area in all studied cultivars decreased with increasing concentration of calcium bicarbonate in irrigation water. Also, leaf length and width decrease in rootstock grafted cultivars had a significant difference, so that the lowest reduction in leaf length and width was in pepper, midwifery and 25-1, and the highest leaf area decrease in Supernova cultivars, 7-9 and GN15 base was observed. Leaf growth decreases in calcareous soils due to a decrease for iron in the symplast. The specific effects of high bicarbonate on leaf growth in almond cultivars and the different reaction of almond rootstocks in this study are in agreement with Tedaion et al. (2004) results in orange, as well as Wahom et al. (2001) in olive and peach.
Conclusion: Totally, the results of this study indicate that cultivar and rootstock cause the amount of chlorosis tolerance induced by calcium bicarbonate. In general, in terms of morphological and physiological traits studied in this research, Kaghazi and 25-1 cultivars are the most tolerant, while 7-9 and supernova are the most sensitive cultivars to bicarbonate.

کلیدواژه‌ها [English]

  • Almond rootstock
  • Chlorophyll
  • Chlorosis
  • Morphological characteristics
  • Soil lime
1. Ana A.F., Pilar P., Javier A., and Anuciacion. 2003. Effects of Fe Deficiency Chlorosis on Yield and Fruit Quality in Peach (Prunus persica L. Batsch. Journal of Agricultural and Food Chemistry 51: 5731-5744.
2. Arnon D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology 24: 1-15.
3. Baker N.R., and Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Journal of Experimental Botany 55: 1607–1621.
4. Bongi G., and Loreto F. 1989. Gas exchange properties of salt stressed olive (Oleae uropea L.) leaves. Plant physiology 90: 1408-1416.
5. Cambrolle J., Garcia J.L., Ocete R., Figueroa M.E., and Cantos M. 2015. Evaluating tolerance to calcareous soils in Vitis vinifera ssp. sylvestris. Plant and Soil 396.1-2:97-107.
6. Claudia O., and Jaime R. 2003. The chelating agent under environmental scrutiny. Quimica Nova 26(6): 901- 906.
7. Constantinos T., Thomas T., Kalomira E., and Anestis I. 2005. Effect of Peach Cultivars, Rootstocks and Phytophthora on Iron Chlorosis World. Journal of Agricultural Sciences 1(2): 137-142.
8. De L., Guardia M.D., and Alcantara E. 2002. A comparison of ferricchelate reductase and chlorophylland growth ratios as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant Soil 241: 49–5.
9. Donnini S., Castagna A., Ranieri A., and Zocchi G. 2009. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of Plant Physiology 166: 1181–1193.
10. Imani A., Hadavi E., and Salimi M. 2016. Study of the Effect of Irrigation Water Bicarbonate on Growth and Some Physiological Properties of 6 Growth Approaches of Apple. Tehran University Journals 4(1): 1-15. (In Persian with English abstract)
11. Gasemi A., Nasiri J., and Yahya Abadi M. 2010. Study of the Relative Tolerance of Quince (Cydonia oblonga Mill.) Rootstocks to Different Bicarbonate Concentrations. Journal of Seed and Plant Production 26(2): 137-151. (In Persian with English abstract)
12. Gruber B., and Kosegarten H. 2002. Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Plant Nutrition and Soil Science 164(2): 155-163.
13. Hakan N., Khanizadeh S., Deell J., and Ricker C., 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. In: Hort Science., 35: 184-186.
14. Jung S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science 166: 459-466
15. Köseoğlu A.T. 1995. Effects of iron chlorosis on mineral composition of peach eaves. Journal of Plant Nutrition 18(4): 765-776.
16. Ksouri R., Gharsalli, M., and Lachaal M. 2005. Physiological response of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. Plant Physiology 162: 335- 341.
17. Liu J., and Shi D.C. 2010. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica 48: 127-134.
18. Malakoti M.J., and Shahabi A.A. 2002. The role of bicarbonate in the development of nutritional defects in fruit trees. Sana Publication 108 P.
19. Malassiotis A., Tanou G., Diamantidis G., Patakas A., and Therios L. 2006. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology 163: 176-185.
20. Manzari Tvakoli M., Bageri V., Karimi H., and Rostaei H. 2016. Evaluation of some physiological and growth responses of three different genotypes of walnut to irrigation water bicarbonate. Iranian Journal of Horticultural Science 46(4): 549-561. (In Persian with English abstract)
21. Malakoti M.J., and Homaei M. 2004. Fertility of soils in arid regions (Problems and Solutions), Second Edition Full Review, Tarbiat Modares University Press, Tehran, Iran. 321 pp.
22. Maribela P., Amarilis D.V., Javier A., and Eugenio A. F. 2005. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae 104: 25–36
23. Meral I., Turgut Y., Berken C., and Bilge Y. 2015. Influences of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turkish Journal of Agriculture and Forestry 39(5): 838-844.
24. Momen por A., Bakhshi D., Imani A., and Rezaei H. 2015. Effect of salinity stress on the morphological and physiological characteristics in som selectedalmond (prunus dulcis) genotypes buddedon GF677 Rootstock. Journal of Water Research in Agriculture (Soil and Water Sci.) 32(2): 201-215. (In Persian with English abstract)
25. Prado R.M., and Alcantara-Vara E. 2011. Tolerance to iron chlorosis in non-grafted quince seedlings and in pear grafted onto quince plants. Journal of Soil Science and Plant Nutrition. Journal of Soil Science and Plant Nutrition 11(4): 119-128.
26. Sergio J., Nathalie O., Catherine D., Mickael M., Ruben R.A., Maria A.M.Y., and olanda G. 2008. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology 415–423
27. Tadaion M.S., Talaei A., and Malakoti M. J. 2004. Investigation on the influence of different rootstocks on iron absorption with chlorosis paradox in grafted orange cultivars. Iranian Horticultural Science 5: 23-32. (In Persian with English abstract)
28. Taheri M. 2011. Nitrogen absorption and metabolism study on vegetative growth of some olive cultivars. Phd dissertation on horticulture. Tehran University, Tehran, Iran.
29. Wahome P.K., Jesch H.H., and Grittner I. 2001. Mechanisms of salt stress tolerance n two rose rootstocks: Rosa Chinensis Major and Science Horticulture 87: 207-216.
30. Yamasaki T., Yamakawa T., Yamane Y., Koike H., Satoh K., and Katoh S. 2002. Temperature acclimation of photosynthesis and related changes in photosystem ІІ electron transport in winter wheat. Plant Physiology 128: 1087-1097.
31. Yang J.Y., Zheng W., Tian Y., and Zhou D.W. 2011. Effects of various mixed saltalkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49: 275-284.
32. Yang C.W., Xu H.H., Wang L.L., Liu J., Shi D.C., and Wang D.L. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47: 79-86
33. Zribi K.M. 2002. Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition 25: 2143–2149.